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Preliminaries

Many of you might be familiar with these notion, but nonetheless it is
very important to go over them.

Definition
The density of any subset A ⊆ N is defined to be

lim
N→∞

|A ∩ {1, 2, · · · , N}|
N

,

if that the limit exists. (Otherwise A does not have a density.)

Now suppose f, g : N → R+.

Definition
We say

g(n) = O(f(n))

if there exists some constant c for which g(n) ≤ cf(n) for all n ∈ N.
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Preliminaries (Continued)

Definition
We say

g(n) = o(f(n))

if limn→∞
g(n)
f(n) exists and equals 0.

Definition
We say g(n) ≪ f(n) if g(n) = O(f(n)). For two fixed constants a and
b, we say a ≪ b instead of a < b to indicate that a is “sufficiently less
than b.”
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Definition of ω(n)

Definition
Define ω(n) to be the number of distinct prime factors of n.

Example
For example, ω(175) = ω(52 · 7) = 2.

Question
How big is ω(n)? That is, roughly speaking, how large do we expect it
to be given, say, n is some fixed order of magnitude? (More rigorously
speaking, what is an “average order” of ω(n)?)
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How big is ω(n)?

Definition
This won’t be very central to the main topic, but just to make this
notion of “largeness” concrete: f and g have the same average order if

lim
x→∞

∑
n≤x

f(n)∑
n≤x

g(n)
= 1.

Answer to the question
The answer is that ω(n) ≈ log logn. Meaning, they have the same
average order.
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Why?

Here’s a heuristic argument to why ω(n) should be around log log n.

For each prime p, let χp =

{
1 p | n
0 p ∤ n

.

Then, ω(n) =
∑
p≤n

χp since χp = 1 iff p | n.

For p ≪ n, the chance that χp = 1 should be around 1
p since the

density of multiples of p in the positive integers is 1
p .

So, we can “approximate” χp as 1
p . Then, ω(n) ≈

∑
p≤n

1
p .

Now, note the following:

Theorem (Mertens, 1874)∑
p≤n

1

p
= log log n+O(1).

We can use this logic to prove that log logn and ω(n) have the same
average order. (Exercise for the reader.)
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Further Estimates of ω(n)

Theorem (Hardy and Ramanujan, 1917)
The normal order of ω(n) is log log n, that is, for all ε > 0, that is,
the density of all n ∈ N for which∣∣∣∣ ω(n)

log logn
− 1

∣∣∣∣ < ε

is 1.

This further establishes the idea that ω(n) ≈ log logn.
Okay, but what about the error term? Namely, what about
ω(n)− log logn?

Theorem (Turán, 1934)∑
n≤x

(ω(n)− log logn)2 = (1 + o(1))x log log x.
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The Erdős–Kac Theorem

What this theorem of Turán tells us is that the error term should
be close to

√
log log x for all n ≤ x.

In fact, the error term has a strong connection with
√
log log n:

Theorem (Erdős, Kac, 1959)
If a < b are in R ∪ {−∞,∞}, the density of the set{

n ∈ N
∣∣∣ a ≤ ω(n)− log log n√

log logn
≤ b

}
is

1√
2π

∫ b

a
e−x2/2 dx.

Okay, what?

Vikram Sarkar The Erdős–Kac Theorem 8 / 27
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Small Simplification

It is not hard to show that it suffices to show the density of the set{
n ∈ N

∣∣∣ a ≤ ω(n)− log logN√
log logN

≤ b

}
is

1√
2π

∫ b

a
e−x2/2 dx

instead.

Since log logN =
∑

p≤N p−1 +O(1), it is also not hard to show
that if A(N) =

∑
p≤N p−1, it suffices to show that the density of the set{
n ∈ N

∣∣∣ a ≤ ω(n)−A(N)

A(N)1/2
≤ b

}
.

is 1√
2π

∫ b
a e−x2/2dx as well.
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Probability Theory

Definition
Let

φ(x) =
1√
2π

e−x2/2,

for x ∈ R. Then, φ is called the standard normal distribution.

A graph of φ is shown below.

Looks like a “squished” bell curve.
Note that

∫∞
−∞ φ(x) dx = 1 due to the infamous

∫∞
−∞ e−x2

dx =
√
π.

Vikram Sarkar The Erdős–Kac Theorem 10 / 27
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Probability Theory (Continued)

Definition
A discrete random variable X has a finite sample space S and fixed
probabilities of being each element of S. For example, S could be
{1, 2, 3}, and Prob(X = 1) = 1

3 , Prob(X = 2) = 1
6 , Prob(X = 3) = 1

2 .

Definition
A continuous random variable X which has an infinite sample space
S ⊆ R that is equipped with a probability density function f has

Prob(a ≤ X ≤ b) =

∫ b

a
f(x)dx.

In our situation, we have the sequence of discrete random variables
{XN}, for which XN has sample space

{
ω(n)−A(N)

A(N)1/2
| n ≤ N

}
, and each

n ≤ N has equal probability to be chosen.
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Expected Value

Definition
The expected value of a continuous random variable X with
probability density function f is defined to be

E[X] :=

∫ ∞

−∞
xf(x) dx.

Definition
The expected value of a discrete random variable X with sample
space S ⊆ R is defined to be

E[X] :=
1

|S|
∑
s∈S

s · Prob(X = s).
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Moments

Definition
The kth moment of a continuous random variable X with probability
density function f is defined to be

E[Xk] :=

∫ ∞

−∞
xkf(x) dx.

Definition
The kth moment of a discrete random variable X with sample space
S ⊆ R is defined to be

E[Xk] :=
1

|S|k
∑
s∈S

sk · Prob(X = s).
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Moments (Continued)

Theorem (Well-known)
The standard normal distribution is completely determined by all its
moments. That is, if there exists some random variable X with

E[Xk] =
1√
2π

∫ ∞

−∞
xke−x2/2 dx,

then the probability density function of X must in fact be 1√
2π
e−x2/2.

Theorem (Well-known)
Suppose X1, X2, · · · , Xn, · · · is a sequence of random variables. Let X
be a random variable that is completely determined by all its moments.
Then, if E[Xk

n] → E[Xk] for all k ≥ 1, then
Prob(a ≤ Xn ≤ b) → Prob(a ≤ X ≤ b) for all a < b ∈ R ∪ {−∞,∞}.
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Moments (Continued)

Now, let XN be the random variable with sample space{
ω(n)−A(N)

A(N)1/2
| n ≤ N

}
for which each element of this set has an

equal probability of being chosen (if there are somehow repeats,
then the probability of Xn = r would be the # of n for which
ω(n)−A(N)√

A(N)
= r divided by N).

Let X be a random variable with probability density function φ.
Then, if we had

E[Xk
N ] → E[Xk] =

1√
2π

∫ ∞

−∞
xke−x2/2 dx,

we would then have
Prob(a ≤ XN ≤ b) → Prob(a ≤ X ≤ b) = 1√

2π

∫ b
a e−x2/2 dx. where

X is a random variable with probability density function φ.
However, note that limN→∞(a ≤ XN ≤ b) is also the density of
{n ∈ N | ω(n)−A(N)√

A(N)
}. So showing that the moments of XN

approach the moments of X suffices.
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1√
2π

∫∞
−∞ xke−x2/2

Theorem
We have

µk :=
1√
2π

∫ ∞

−∞
xke−x2/2 =


(k − 1)!! k even, k > 2

0 k odd
1 k = 0

.

This is not very hard to prove; if k is odd then we are integrating a
bounded odd function over a symmetric interval so the integral is 0. If
k is even, use integration by parts to get a recurrence between µk and
µk+2. So, we want to prove E[Xk

N ] → µk.
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Simplifications

Note that

E[Xk
N ] =

1

N

∑
n≤N

(
ω(n)−A(N)

A(N)1/2

)k

.

So if this converges to µk, then it equals µk + o(1), where the o(1)
is with respect to N , not k.
So, we want to show that

1

N

∑
n≤N

(
ω(n)−A(N)

A(N)1/2

)k

= µk + o(1).
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Lp(n)

Upon rearrangement, we want to show that∑
n≤N

(ω(n)−A(N))k = N(A(N))k/2µk(1 + o(1)).

Ok, how are we supposed to approximate the left hand side?

Theorem

Define Lp(n) :=

{
−1/p+ 1 p | n
−1/p p ∤ n

.

The important thing here is that
∑

p≤N Lp(n) = ω(n)−A(N).
Therefore, we wish to show that

∑
n≤N

∑
p≤N

Lp(n)

k

= N(A(N))k/2µk(1 + o(1)).
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L(p)

Now, for each prime p, let L(p) be a random variable for which
L(p) = −1

p with probability 1
p and L(p) = 1− 1

p with probability 1− 1
p .

The following two theorems are not very hard to prove, for the sake of
time I won’t be going over their proofs.

Theorem
Suppose N ≥ 1, and NS = N1/ log(

√
log logN+3). Then,∑

p≤N

Lp(n) =
∑
p≤NS

Lp(n) +O(log(
√
log logN + 3)),

for all n ≤ N .
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Relating Lp to L(p)

Theorem
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So we have expressed something very similar to what we want (the
LHS) as something relating the random variable L(p). Right now, the
right hand side is not very useful since the main expression is stuck in
an expected value. So we need a good way to approximate it.
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Moment Generating Functions

We will approximating it using moment generating functions.
Suppose X is a discrete random variable and let MX(z) = E[ezX ].
for z ∈ C.

Theorem

For all k ≥ 1, dk

dzk
MX(z)

∣∣∣
z=0

= E[Xk].

Proof
It is clear that MX is analytic on C. Note that from the Taylor Series
expansion of ex,

MX(z) = E[ezX ] = E

∑
k≥0

(zX)k

k!

 =
∑
k≥0

E
[
(zX)k

k!

]
=

∑
k≥0

E[Xk]

k!
zk.

Thus M
(k)
X (0) = E[Xk], as desired.

Vikram Sarkar The Erdős–Kac Theorem 21 / 27



imagens/logomarca_profmat.png

Moment Generating Functions

We will approximating it using moment generating functions.

Suppose X is a discrete random variable and let MX(z) = E[ezX ].
for z ∈ C.

Theorem

For all k ≥ 1, dk

dzk
MX(z)

∣∣∣
z=0

= E[Xk].

Proof
It is clear that MX is analytic on C. Note that from the Taylor Series
expansion of ex,

MX(z) = E[ezX ] = E

∑
k≥0

(zX)k

k!

 =
∑
k≥0

E
[
(zX)k

k!

]
=

∑
k≥0

E[Xk]

k!
zk.

Thus M
(k)
X (0) = E[Xk], as desired.

Vikram Sarkar The Erdős–Kac Theorem 21 / 27



imagens/logomarca_profmat.png

Moment Generating Functions

We will approximating it using moment generating functions.
Suppose X is a discrete random variable and let MX(z) = E[ezX ].
for z ∈ C.

Theorem

For all k ≥ 1, dk

dzk
MX(z)

∣∣∣
z=0

= E[Xk].

Proof
It is clear that MX is analytic on C. Note that from the Taylor Series
expansion of ex,

MX(z) = E[ezX ] = E

∑
k≥0

(zX)k

k!

 =
∑
k≥0

E
[
(zX)k

k!

]
=

∑
k≥0

E[Xk]

k!
zk.

Thus M
(k)
X (0) = E[Xk], as desired.

Vikram Sarkar The Erdős–Kac Theorem 21 / 27



imagens/logomarca_profmat.png

Moment Generating Functions

We will approximating it using moment generating functions.
Suppose X is a discrete random variable and let MX(z) = E[ezX ].
for z ∈ C.

Theorem

For all k ≥ 1, dk

dzk
MX(z)

∣∣∣
z=0

= E[Xk].

Proof
It is clear that MX is analytic on C. Note that from the Taylor Series
expansion of ex,

MX(z) = E[ezX ] = E

∑
k≥0

(zX)k

k!

 =
∑
k≥0

E
[
(zX)k

k!

]
=

∑
k≥0

E[Xk]

k!
zk.

Thus M
(k)
X (0) = E[Xk], as desired.

Vikram Sarkar The Erdős–Kac Theorem 21 / 27



imagens/logomarca_profmat.png

Moment Generating Functions

We will approximating it using moment generating functions.
Suppose X is a discrete random variable and let MX(z) = E[ezX ].
for z ∈ C.

Theorem

For all k ≥ 1, dk

dzk
MX(z)

∣∣∣
z=0

= E[Xk].

Proof
It is clear that MX is analytic on C. Note that from the Taylor Series
expansion of ex,

MX(z) = E[ezX ] = E

∑
k≥0

(zX)k

k!

 =
∑
k≥0

E
[
(zX)k

k!

]
=

∑
k≥0

E[Xk]

k!
zk.

Thus M
(k)
X (0) = E[Xk], as desired.

Vikram Sarkar The Erdős–Kac Theorem 21 / 27



imagens/logomarca_profmat.png

Approximating RHS

Now, let BN =
∑

p≤N L(p). Then, let MBN
(t) := E[etBN ] for some

t ∈ C.
Then,

MBN
(t) = E

[
et
∑

p≤N L(p)
]

=
∏
p≤N

E
[
etL(p)

]
.

Now, for |t| ≤ 1
2 , we can say by Taylor Series that

etL(p)=1+tL(p)+ t2

2
L(p)2+O(|t|3|L(p)|3),

so
E[etL(p)]=1+ p−1

2p2
t2+O

(
|t|3
p

)
.
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Approximating RHS (Continued)

One can then take the product over all p ≤ N and then bound to
obtain that

MBN

(
t√

log logN

)
→ et

2/2

uniformly on some disk centered at 0. Then, by complex analysis
magic, the derivatives converge uniformly as well.
Then we can compute

E[Bk
N ] = M

(k)
BN

(0) = (1 + o(1))µk(log logN)k/2,

since the kth derivative of ex2/2 at 0 is µk (!!) from the Taylor
Series expansion of ex.

Vikram Sarkar The Erdős–Kac Theorem 23 / 27



imagens/logomarca_profmat.png

Approximating RHS (Continued)

One can then take the product over all p ≤ N and then bound to
obtain that

MBN

(
t√

log logN

)
→ et

2/2

uniformly on some disk centered at 0. Then, by complex analysis
magic, the derivatives converge uniformly as well.
Then we can compute

E[Bk
N ] = M

(k)
BN

(0) = (1 + o(1))µk(log logN)k/2,

since the kth derivative of ex2/2 at 0 is µk (!!) from the Taylor
Series expansion of ex.

Vikram Sarkar The Erdős–Kac Theorem 23 / 27



imagens/logomarca_profmat.png

Approximating RHS (Continued)

One can then take the product over all p ≤ N and then bound to
obtain that

MBN

(
t√

log logN

)
→ et

2/2

uniformly on some disk centered at 0. Then, by complex analysis
magic, the derivatives converge uniformly as well.

Then we can compute

E[Bk
N ] = M

(k)
BN

(0) = (1 + o(1))µk(log logN)k/2,

since the kth derivative of ex2/2 at 0 is µk (!!) from the Taylor
Series expansion of ex.

Vikram Sarkar The Erdős–Kac Theorem 23 / 27



imagens/logomarca_profmat.png

Approximating RHS (Continued)

One can then take the product over all p ≤ N and then bound to
obtain that

MBN

(
t√

log logN

)
→ et

2/2

uniformly on some disk centered at 0. Then, by complex analysis
magic, the derivatives converge uniformly as well.
Then we can compute

E[Bk
N ] = M

(k)
BN

(0) = (1 + o(1))µk(log logN)k/2,

since the kth derivative of ex2/2 at 0 is µk (!!) from the Taylor
Series expansion of ex.

Vikram Sarkar The Erdős–Kac Theorem 23 / 27



imagens/logomarca_profmat.png

The Finish

Combining this with the previous theorem we obtain the following:

∑
n≤N

 ∑
p≤NS

Lp(n)

k

= (1+o(1))N(log logNS)
k/2µk+O(3kπ(NS)

k).

Now, let NS = N1/ log(
√
log logN+3). It’s just bounding from here – split

into p ≤ NS and NS < p ≤ N .

Theorem

∑
n≤N

∑
p≤N

Lp(n)

k

−
∑
n≤N

 ∑
p≤NS

Lp(n)

k

= o(N(log logN)k/2).

Now, we can use the result we obtained above to get the sum for p ≤ z.
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The Finish (Continued)

Note that

(log logN)1/2−(log logNS)
1/2≤(log logN−log logNS)

1/2

=
(
log logN−log

(
logN

log(
√

log logN+3)

))1/2
=(log log(

√
log logN+3))1/2

so by the Binomial Theorem,

(log logN)k/2−(log logNS)
k/2=O

(
k(log logNS)

k−1
2 (log log(

√
log logN+3))

)
,

Vikram Sarkar The Erdős–Kac Theorem 25 / 27



imagens/logomarca_profmat.png

The Finish (Continued)

Note that

(log logN)1/2−(log logNS)
1/2≤(log logN−log logNS)

1/2

=
(
log logN−log

(
logN

log(
√
log logN+3)

))1/2
=(log log(

√
log logN+3))1/2

so by the Binomial Theorem,

(log logN)k/2−(log logNS)
k/2=O

(
k(log logNS)

k−1
2 (log log(

√
log logN+3))

)
,

Vikram Sarkar The Erdős–Kac Theorem 25 / 27



imagens/logomarca_profmat.png

The Finish (Continued)

Note that

(log logN)1/2−(log logNS)
1/2≤(log logN−log logNS)

1/2

=
(
log logN−log

(
logN

log(
√
log logN+3)

))1/2
=(log log(

√
log logN+3))1/2

so by the Binomial Theorem,

(log logN)k/2−(log logNS)
k/2=O

(
k(log logNS)

k−1
2 (log log(

√
log logN+3))

)
,

Vikram Sarkar The Erdős–Kac Theorem 25 / 27



imagens/logomarca_profmat.png

The Finale

Putting it altogether, we have

∑
n≤N(

∑
p≤N Lp(n))

k
=(1+o(1))N(log log z)k/2µk+O(3kπ(NS)

k)

+o(N(log logN)k/2)

=(1+o(1))N(log logN)k/2µk+O(k(log log z)
k−1
2 )+···

=(1+o(1))N(log logN)k/2µk

=(1+o(1))N(A(N))k/2µk,

so we are done. ■
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Thanks!

Any questions?
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