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Abstract

The Erdős-Kac Theorem states that

Prob (
𝜔(𝑛) − log log 𝑛
√
log log 𝑛

∈ [𝑎, 𝑏] ∣ 𝑛 ∈ ℕ) = 1
√
2𝜋

∫
𝑏

𝑎
𝑒−𝑥2∕2 d𝑥.

In this paper we provide an accessible proof for this renowned theorem involving random
variables, moment generating functions, and complex analysis. We provide an introduction to
random variables and moment generating functions as well. Our argument is very similar to
that of Steve Fan’s. [2]

1 Introduction
Let 𝜔(𝑛) be the number of distinct prime factors of 𝑛. For example, 𝜔(12) = 2 and 𝜔(210) = 4.
So, a natural question one might ask: what are the asymptotics of 𝜔(𝑛)? Well, roughly speaking,

𝜔(𝑛) =
∑

𝑝∣𝑛
1 =

∑

𝑝<𝑛
𝜒𝑝,

where

𝜒𝑝 = {0 𝑝 ∤ 𝑛
1 𝑝 ∣ 𝑛

.

Loosely speaking, the “expected value” of 𝜒𝑝 where 𝑝 ≪ 𝑛 is 1
𝑝
, so

∑

𝑝<𝑛
𝜒𝑝 ≈

∑

𝑝<𝑛

1
𝑝 .

A famous theorem of Mertens ([4]) says that this quantity is about log log 𝑛 +𝑂(1), and therefore
𝜔(𝑛) should be close to log log 𝑛. A famous theorem of Túran states the following:

Theorem 1.1 (Túran, 1934).
∑

𝑛≤𝑥
(𝜔(𝑛) − log log 𝑛)2 = (1 + 𝑜(1))𝑥 log log 𝑥.

This suggests that 𝜔(𝑛) − log log 𝑛 ≈
√
log log 𝑥.

√
log log 𝑥 ≈

√
log log 𝑛 for "most" 𝑛 ≤ 𝑥.

So, the error is ≈
√
log log 𝑛 as well. In fact, we can say more. Much more, in fact.
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Theorem 1.2 (Erdős-Kac Theorem). Let 𝑎 < 𝑏 be reals. Then,

lim
𝑁→∞

1
𝑁 ⋅ # {𝑛 ≤ 𝑁 ∣ 𝑎 ≤

𝜔(𝑛) − log log 𝑛
√
log log 𝑛

≤ 𝑏} = 1
√
2𝜋

∫
𝑏

𝑎
𝑒−𝑥2∕2d𝑥.

In layman’s terms, 𝜔(𝑛)−log log 𝑛√
log log 𝑛

behaves like a normal distribution. We will now spend the
rest of the paper proving this statement using the machinery we have developed before the
introduction.

2 Preliminaries
Definition 2.1. Define the density of a set 𝐴 ⊆ ℕ as

𝑑(𝐴) ∶= lim
𝑁→∞

|𝐴 ∩ {1, 2,⋯ ,𝑁}|
𝑁 .

Simply put, this is the proportion of naturals that 𝐴 takes up. For example,

• The density of the evens is 1
2
.

• The density of any finite set is 0.

• The density of the perfect squares is 0.

• The density of the composites is 1.

• The density of the squarefree integers is 6
𝜋2
. (!!)

Now, let 𝑓, 𝑔 be two functions from ℂ to ℂ.

Definition 2.2. We say 𝑓(𝑧) = 𝑂(𝑔(𝑧)) if there exists some constant 𝑐 such that |𝑓(𝑧)| ≤ 𝑐|𝑔(𝑧)|
for all 𝑧 for which 𝑔(𝑧) ≠ 0.

Definition 2.3. We say 𝑓(𝑧) = 𝑜(𝑔(𝑧)) if lim𝑧→∞
𝑓(𝑧)
𝑔(𝑧)

exists and equals zero.

Now, assume 𝑓, 𝑔 are from ℕ to ℝ.

Definition 2.4. We say 𝑓(𝑛) ≪ 𝑔(𝑛) if 𝑓(𝑛) = 𝑂(𝑔(𝑛)). For constants 𝑎, 𝑏, we choose 𝑎 ≪ 𝑏 to
mean "if 𝑎 is sufficiently smaller than 𝑏."

Definition 2.5. We say 𝑓(𝑛) = 𝑂(𝑔(𝑛)) if there exists some constant 𝑐 for which |𝑓(𝑛)| ≤ 𝑐|𝑔(𝑛)|
for all naturals 𝑛.

Definition 2.6. We say 𝑓(𝑛) = 𝑜(𝑔(𝑛)) if lim𝑛→∞
𝑓(𝑛)
𝑔(𝑛)

exists and equals zero.

Now, later, we will talk about functions 𝑓(𝑁, 𝑘) of two positive integer variables.

Definition 2.7. We say
𝑓(𝑁, 𝑘) = 𝑂(𝑔(𝑁, 𝑘))

if there exists a constant 𝑐, independent of 𝑁 or 𝑘, such that 𝑓(𝑁, 𝑘) ≤ 𝑐𝑔(𝑁, 𝑘) for sufficiently
large 𝑁.
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Definition 2.8. We define
𝑓(𝑁, 𝑘) = 𝑜(𝑔(𝑁, 𝑘))

if for all naturals 𝑘,
lim
𝑁→∞

𝑓(𝑁, 𝑘)
𝑔(𝑁, 𝑘)

= 0.

3 Probability Theory
Usually, probability theory and definitions of probability and whatnot are very complicated and
hyper-general (see: the measure theoretic-definition involving sigma-algebras). In this paper,
however, the objects of study do not need this general definition, and are more of a special case.
Thus, we will try to keep it very simple and understandable.

3.1 Discrete Random Variables
This is the easy part of probability theory.

Definition 3.1. Adiscrete random variable𝑋 has a finite sample space𝑆 andfixedprobabilities
of being each element of 𝑆. For example, 𝑆 could be {1, 2, 3}, and Prob(𝑋 = 1) = 1

3
, Prob(𝑋 =

2) = 1
6
, Prob(𝑋 = 3) = 1

2
. We must have the following:

•
∑

𝑠∈𝑆 Prob(𝑋 = 𝑠) = 1

• ∀𝑠 ∈ 𝑆, Prob(𝑋 = 𝑠) ∈ [0, 1].

We will assume that 𝑆 ⊆ ℝ, since we will only be working with discrete random variables whose
sample space is a subset of ℝ.

Definition 3.2. The expected value of a discrete random variable 𝑋 is defined to be

𝔼[𝑋] ∶= 1
|𝑆|

∑

𝑠∈𝑆
𝑠 ⋅ Prob(𝑋 = 𝑠).

Definition 3.3. The 𝑘th moment of a discrete random variable 𝑋 is defined to be

𝔼[𝑋𝑘] ∶= 1
|𝑆|

∑

𝑠∈𝑆
𝑠𝑘 ⋅ Prob(𝑋 = 𝑠).

Definition 3.4. Let 𝑋 be a discrete random variable with sample space 𝑆. Let 𝑔 be a function
from 𝑆 to ℝ. Then,

𝔼[𝑔(𝑋)] ∶= 1
|𝑆|

∑

𝑠∈𝑆
𝑔(𝑠) ⋅ Prob(𝑋 = 𝑠)

and
Prob(𝑔(𝑋) = 𝑎) =

∑

𝑠∈𝑆
𝑔(𝑠)=𝑎

Prob(𝑋 = 𝑠).
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Definition 3.5. Let 𝑋 and 𝑌 be discrete random variables with sample spaces 𝑆 and 𝑇, respec-
tively, and let 𝑓 ∶ (𝑆, 𝑇) → ℝ be a function. Then, define 𝑍 = 𝑓(𝑋, 𝑌) to have sample space
𝑓(𝑆, 𝑇) = {𝑓(𝑠, 𝑡) ∣ 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇}, and for all 𝑥 ∈ 𝑓(𝑆, 𝑇),

Prob(𝑍 = 𝑥) =
∑

𝑠∈𝑆,𝑡∈𝑇
𝑓(𝑠,𝑡)=𝑥

Prob(𝑋 = 𝑠) ⋅ Prob(𝑌 = 𝑡).

Definition 3.6. Two discrete random variables𝑋 and𝑌 with sample spaces 𝑆 and 𝑇, respectively,
are said to be independent if

Prob(𝑋 = 𝑠 and 𝑌 = 𝑡) = Prob(𝑋 = 𝑠) ⋅ Prob(𝑌 = 𝑡)

for all 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇.

We have the following infamous lemma.

Lemma 3.7. Let 𝑋 and 𝑌 be discrete random variables with sample spaces 𝑆 and 𝑇, respectively,
both inℝ, and let 𝑐 ∈ ℝ. Then,

• 𝔼[𝑋 + 𝑌] = 𝔼[𝑋] + 𝔼[𝑌].

• 𝔼[𝑐𝑋] = 𝑐𝔼[𝑋].

Furthermore, if 𝑋 and 𝑌 are independent, then

𝔼[𝑋𝑌] = 𝔼[𝑋]𝔼[𝑌].

We state these without proof because they are classical.

3.2 Continuous Random Variables
We will only be talking about continuous random variables that have a probability density
function and a sample space that is a subset of ℝ. It is true that there exists continuous random
variables without probability density functions, but we need not worry about them,

Definition 3.8. A continuous random variable 𝑋 with an infinite sample space 𝑆 ⊆ ℝ and a
probability density function 𝑓 has

Prob(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫
𝑏

𝑎
𝑓(𝑥) d𝑥

for all 𝑎, 𝑏 ∈ ℝ ∪ {−∞,∞}. We must have the following:

• 𝑓 must be piecewise continuous.

• 𝑓 ≥ 0 on ℝ.

• ∫∞−∞ 𝑓(𝑥) d𝑥 = 1.

Definition 3.9. The expected value of a continuous random variable𝑋 with probability density
function 𝑓 is defined to be

𝔼[𝑋] = ∫
∞

−∞
𝑥𝑓(𝑥) d𝑥.
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Definition 3.10. The 𝑘th moment of a continuous random variable 𝑋 with probability density
function 𝑓 is defined to be

𝔼[𝑋𝑘] ∶= ∫
∞

−∞
𝑥𝑘𝑓(𝑥) d𝑥.

Definition 3.11. Let 𝑋 be a continuous random variable with sample space 𝑆 and probability
density function 𝑓. Let 𝑔 be a function from 𝑆 to ℝ. Then,

𝔼[𝑔(𝑋)] ∶= ∫
∞

−∞
𝑔(𝑥)𝑓(𝑥) d𝑥.

3.3 Moment Generating Functions
Definition 3.12. Suppose 𝑋 is a discrete random variable with sample space 𝑆 ⊆ ℝ. Define the
moment generating function𝑀𝑋(𝑧) ∶= 𝔼[𝑒𝑧𝑋]. First of all, note that

𝑀𝑋(𝑡) =
∑

𝑠∈𝑆
𝑒𝑧𝑠 ⋅ Prob(𝑋 = 𝑠),

so𝑀𝑋 is analytic on ℂ.

Lemma 3.13. For all 𝑘 ≥ 1, d𝑘

d𝑧𝑘
𝑀𝑋(𝑧)

|||||𝑧=0 = 𝔼[𝑋𝑘].

Proof. Note that from the Taylor Series expansion of 𝑒𝑥,

𝑀𝑋(𝑧) = 𝔼[𝑒𝑧𝑋] = 𝔼
⎡
⎢
⎣

∑

𝑘≥0

(𝑧𝑋)𝑘
𝑘!

⎤
⎥
⎦
=
∑

𝑘≥0
𝔼 [(𝑧𝑋)

𝑘

𝑘! ] =
∑

𝑘≥0

𝔼[𝑋𝑘]
𝑘! 𝑧𝑘.

Thus𝑀(𝑘)
𝑋 (0) = 𝔼[𝑋𝑘], as desired.

4 Simplifications
I claim that it suffices to show that

lim
𝑁→∞

1
𝑁 ⋅ # {𝑛 ≤ 𝑁 ∣ 𝑎 ≤

𝜔(𝑛) − log log𝑁
√
log log𝑁

≤ 𝑏} = 1
√
2𝜋

∫
𝑏

𝑎
𝑒−𝑥2∕2 d𝑥.

Now I will prove this claim. Suppose we knew the above. Let𝑁𝑠 = 𝑁1∕ log(
√
log log𝑁+3). Note that

for 𝑁𝑠 ≤ 𝑛 ≤ 𝑁,

log log𝑁 − log log 𝑛 ≤ log log𝑁 − log log𝑁𝑠

= log
log𝑁
log𝑁𝑠

= log
log𝑁

log𝑁 ⋅ 1
log(

√
log log𝑁+3)

= log(
√
log log𝑁 + 3)

= 𝑜(
√
log log𝑁).
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and for 𝑁 sufficiently large,

√
log log𝑁 −

√
log log 𝑛 =

log log𝑁 − log log 𝑛
√
log log𝑁 +

√
log log 𝑛

< log log𝑁 − log log 𝑛
= 𝑜(

√
log log𝑁).

Now, fix some 𝜀 > 0, and some 𝑎, 𝑏 for which the assumed statement is true. Then, note that for
sufficiently large 𝑁, we have that by the above computations, for all 𝑁𝑠 ≤ 𝑛 ≤ 𝑁,

log log𝑁 + (𝑎 − 𝜀)
√
log log𝑁 < log log 𝑛 + 𝑎

√
log log 𝑛 < log log𝑁 + (𝑎 + 𝜀)

√
log log𝑁

and

log log𝑁 + (𝑏 − 𝜀)
√
log log𝑁 < log log 𝑛 + 𝑏

√
log log 𝑛 < log log𝑁 + (𝑏 + 𝜀)

√
log log𝑁.

Therefore, for 𝑁 sufficiently large, since 𝑁𝑠
𝑁
= 𝑜(1), if we let

𝑑𝑁 = 1
𝑁 ⋅ # {𝑛 ≤ 𝑁 ∣ 𝑎 ≤

𝜔(𝑛) − log log 𝑛
√
log log 𝑛

≤ 𝑏} ,

then

𝑑𝑁 = 1
𝑁 ⋅ # {𝑁𝑠 ≤ 𝑛 ≤ 𝑁 ∣ 𝑎 ≤

𝜔(𝑛) − log log 𝑛
√
log log 𝑛

≤ 𝑏} + 𝑜(1)

= 1
𝑁 ⋅ #

{
𝑁𝑠 ≤ 𝑛 ≤ 𝑁 ∣ log log 𝑛 + 𝑎

√
log log 𝑛 ≤ 𝜔(𝑛) ≤ log log 𝑛 + 𝑏

√
log log 𝑛

}
+ 𝑜(1)

≤ 1
𝑁 ⋅ #

{
𝑁𝑠 ≤ 𝑛 ≤ 𝑁 ∣ log log𝑁 + (𝑎 − 𝜀)

√
log log𝑁 ≤ 𝜔(𝑛) ≤ log log𝑁 + (𝑏 + 𝜀)

√
log log𝑁

}
+ 𝑜(1)

= 1
𝑁 ⋅ #

{
𝑛 ≤ 𝑁 ∣ log log𝑁 + (𝑎 − 𝜀)

√
log log𝑁 ≤ 𝜔(𝑛) ≤ log log𝑁 + (𝑏 + 𝜀)

√
log log𝑁

}
+ 𝑜(1).

Similarly, we can get that

𝑑𝑁 ≥ 1
𝑁 ⋅#

{
𝑛 ≤ 𝑁 ∣ log log𝑁 + (𝑎 + 𝜀)

√
log log𝑁 ≤ 𝜔(𝑛) ≤ log log𝑁 + (𝑏 − 𝜀)

√
log log𝑁

}
+𝑜(1).

Letting the RHS be 𝑑𝑁− , we may note that

lim
𝑁→∞

𝑑𝑁− = 1
√
2𝜋

∫
𝑏+𝜀

𝑎−𝜀
𝑒−𝑥2∕2 d𝑥,

but 𝜀 was arbitrary, so we can make it tend to 0, and lim𝜀→0 ∫
𝑏+𝜀
𝑎−𝜀 𝑒−𝑥

2∕2 d𝑥 = 1√
2𝜋
∫𝑏𝑎 𝑒−𝑥

2∕2.
Therefore, if we fix some 𝜀0 > 0, we can find some 𝜀 > 0 and some large 𝑁 for which

𝑑𝑁− ≥ 1
√
2𝜋

∫
𝑏

𝑎
𝑒−𝑥2∕2 d𝑥 − 𝜀0.
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Letting 𝜀0 → 0. Thus, for 𝑁 sufficiently large,

𝑑𝑁 ≥ 1
√
2𝜋

∫
𝑏

𝑎
𝑒−𝑥2∕2 d𝑥 − 𝜀0.

We can do a very similar thing with the upper bound to get that for 𝑁 sufficiently large,

𝑑𝑁 ≤ 1
√
2𝜋

∫
𝑏

𝑎
𝑒−𝑥2∕2 d𝑥 + 𝜀0.

Since the choice of 𝜀0 > 0 was arbitrary, it thus follows that

lim
𝑁→∞

𝑑𝑁 = 1
√
2𝜋

∫
𝑏

𝑎
𝑒−𝑥2∕2 d𝑥,

as desired. So our claim is proven. Now, let 𝐴(𝑁) = ∑
𝑝≤𝑁

1
𝑝
. I claim that it suffices to show that

lim
𝑁→∞

1
𝑁 ⋅ # {𝑛 ≤ 𝑁 ∣ 𝑎 ≤ 𝜔(𝑛) − 𝐴(𝑁)

𝐴(𝑁)1∕2
≤ 𝑏} = 1

√
2𝜋

∫
𝑏

𝑎
𝑒−𝑥2∕2 d𝑥.

By Mertens’ theorem ([4]), 𝐴(𝑁) is log log𝑁 +𝑂(1), and so 𝐴(𝑁)1∕2 is
√
log log𝑁 +𝑂(1) as well.

Since 𝑂(1) is 𝑜(
√
log log𝑁), we can just use the same logic as above to show this. Therefore, we

will show this statement instead.

5 Converting To Moments
Let 𝑃𝑁 denote the discrete random variable with sample space {1, 2,⋯ ,𝑁}, with each number
being chosen with probability 1

𝑁
. Let 𝑋𝑁 = 𝐴(𝑃𝑁) be another discrete random variable. Now,

let 𝜑(𝑥) = 1√
2𝜋
𝑒−𝑥2∕2. We have the following two lemmas:

Lemma 5.1. The standard normal distribution is completely determined by all its moments. That
is, if there exists some random variable 𝑋 with

𝔼[𝑋𝑘] = 1
√
2𝜋

∫
∞

−∞
𝑥𝑘𝑒−𝑥2∕2 d𝑥,

then the probability density function of 𝑋 must in fact be 1√
2𝜋
𝑒−𝑥2∕2.

Lemma 5.2. Suppose 𝑋1, 𝑋2,⋯ ,𝑋𝑛,⋯ is a sequence of random variables. Let 𝑋 be a random
variable that is completely determined by all its moments. Then, if 𝔼[𝑋𝑘

𝑛] → 𝔼[𝑋𝑘] for all 𝑘 ≥ 1,
then

Prob(𝑎 ≤ 𝑋𝑛 ≤ 𝑏) → Prob(𝑎 ≤ 𝑋 ≤ 𝑏)
for all 𝑎 < 𝑏 ∈ ℝ ∪ {−∞,∞}.
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The first one is well known, for the second one, see [1]. Now, how does this apply here? Well,
let 𝑋 be a random variable with probability density function 𝜑. By Lemma 5.1, 𝑋 is completely
determined by all its moments. Therefore, if we show that

lim
𝑁→∞

𝔼[𝑋𝑘
𝑁] = 𝔼[𝑋𝑘] = 1

√
2𝜋

∫
∞

−∞
𝑥𝑘𝑒−𝑥2∕2 d𝑥,

then by Lemma 5.2, we have that for all 𝑎 < 𝑏 ∈ ℝ ∪ {−∞,∞},

Prob(𝑎 ≤ 𝑋𝑁 ≤ 𝑏) → Prob(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫
𝑏

𝑎
𝜑(𝑥)d𝑥.

However, note that

lim
𝑁→∞

Prob(𝑎 ≤ 𝑋𝑁 ≤ 𝑏) = lim
𝑁→∞

[ 1𝑁 ⋅ # {𝜔(𝑛) − 𝐴(𝑁)
√
𝐴(𝑁)

∈ [𝑎, 𝑏] ∣ 𝑛 ≤ 𝑁} + 𝑂(1)
𝑁 ]

= lim
𝑁→∞

[ 1𝑁 ⋅ # {𝜔(𝑛) − 𝐴(𝑁)
√
𝐴(𝑁)

∈ [𝑎, 𝑏] ∣ 𝑛 ≤ 𝑁}]

= 𝑑 ({𝑎 ≤ 𝜔(𝑛) − 𝐴(𝑁)
√
𝐴(𝑁)

≤ 𝑏 ∣ 𝑛 ∈ ℕ}) ,

so it would imply

𝑑 ({𝑎 ≤ 𝜔(𝑛) − 𝐴(𝑁)
√
𝐴(𝑁)

≤ 𝑏 ∣ 𝑛 ∈ ℕ}) = ∫
𝑏

𝑎
𝜑(𝑥)d𝑥,

which is what we want. Note that the 𝑂(1) was because of 𝑛 = 1, 2. Thus, it suffices to show that
𝔼[𝑋𝑘

𝑁] → 𝔼[𝑋𝑘].

6 Further Simplifications
So, we wish to show that

𝔼[𝑋𝑘
𝑁] → 𝔼[𝑋𝑘].

From Lemma 8.2, we can get that 𝔼[𝑋𝑘] = 𝜇𝑘 =
⎧

⎨
⎩

(𝑘 − 1)!! 𝑘 even, 𝑘 > 0
0 𝑘 odd
1 𝑘 = 0

. Therefore, we

wish to show that 𝔼[𝑋𝑘
𝑁] → 𝜇𝑘, i.e. 𝔼[𝑋𝑘

𝑁] = 𝜇𝑘 + 𝑜(1). (Here the 𝑜(1) is with respect to 𝑁,
not 𝑘,meaning think of 1 as a function of 𝑁 and 𝑘 and apply the definition of little 𝑜
in that case.) Note that

𝔼[𝑋𝑘
𝑁] =

1
𝑁

∑

𝑛≤𝑁
(𝜔(𝑛) − 𝐴(𝑁)

𝐴(𝑁)1∕2
)
𝑘

= 1
𝑁𝐴(𝑁)𝑘∕2

∑

𝑛≤𝑁
(𝜔(𝑛) − 𝐴(𝑁))𝑘.

Thus, it suffices to show that
∑

𝑛≤𝑁
(𝜔(𝑛) − 𝐴(𝑁))𝑘 = 𝑁(𝐴(𝑁))𝑘∕2(𝜇𝑘 + 𝑜(1)).
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7 Preliminary Lemmas
We start with a basic lemma from elementary number theory.

Lemma 7.1. Let𝑁,𝑚 be positive integers. Then,

#{𝑛 ≤ 𝑁 ∣ gcd(𝑛,𝑚) = 1} = 𝜙(𝑚)
𝑚 𝑁 + 𝑂(𝜏(𝑚)).

Proof. Let𝑁 = 𝑚𝑎+𝑏, where 𝑎, 𝑏 are nonnegative integers with 𝑏 < 𝑚. Let 𝑆 = {𝑝1, 𝑝2,⋯ , 𝑝𝑟}
be the set of prime divisors of𝑚. Then,

#{𝑛 ≤ 𝑁 ∣ gcd(𝑛,𝑚) = 1} = #{𝑛 ≤ 𝑚𝑎 ∣ gcd(𝑛,𝑚) = 1} + #{𝑚𝑎 < 𝑛 ≤ 𝑚𝑎 + 𝑏 ∣ gcd(𝑛,𝑚) = 1}
= 𝑎 ⋅ #{𝑛 ≤ 𝑚 ∣ gcd(𝑛,𝑚) = 1} + #{𝑛 ≤ 𝑏 ∣ gcd(𝑛,𝑚) = 1}

= 𝑎𝜙(𝑚) +
∑

𝑇⊆𝑆
(−1)|𝑇|

⎢
⎢
⎣

𝑏∏
𝑡∈𝑇 𝑡

⎥
⎥
⎦

= 𝑎𝜙(𝑚) +
∑

𝑇⊆𝑆
[(−1)|𝑇| 𝑏∏

𝑡∈𝑇 𝑡
+ 𝑂(1)]

= 𝑎𝜙(𝑚) + 𝑏 (1 − 1
𝑝1
) (1 − 1

𝑝2
)⋯(1 − 1

𝑝𝑟
) + 𝑂(𝜏(𝑚))

= 𝑎𝜙(𝑚) + 𝑏𝜙(𝑚)𝑚 + 𝑂(𝜏(𝑚))

= 𝜙(𝑚)
𝑚 𝑁 + 𝑂(𝜏(𝑚)),

as desired.

Lemma 7.2. 𝜇𝑘 =
⎧

⎨
⎩

(𝑘 − 1)!! 𝑘 even, 𝑘 > 0
0 𝑘 odd
1 𝑘 = 0

.

Proof. Let𝑋 be a continuous random variable with probability density function 1√
2𝜋
𝑒−𝑥2∕2. Then,

𝜇𝑘 ∶= 𝔼[𝑋𝑘] = 1
√
2𝜋

∫
∞

−∞
𝑥𝑘𝑒−𝑥2∕2d𝑥.

For 𝑘 odd, 𝑥𝑘𝑒−𝑥2∕2 is an odd function, so the integral is zero. For 𝑘 even, we will use induction

to show that 𝜇𝑘 = {(𝑘 − 1)!! 𝑘 > 0
1 𝑘 = 0

. Our base case is 𝑘 = 0, which works because 𝔼[𝑋0] = 1.

Now, assume the result is true for some even 𝑘 ≥ 0. We will prove it true for 𝑘 + 2. Note that by
integration by parts,

1
√
2𝜋

∫
∞

−∞
𝑥𝑘𝑒−𝑥2∕2d𝑥 = [ 1

√
2𝜋

𝑥𝑘+1
𝑘 + 1𝑒

−𝑥2∕2]
∞

−∞

− ∫
∞

−∞

1
√
2𝜋

𝑥𝑘+1
𝑘 + 1(−𝑥𝑒

−𝑥2∕2)d𝑥

= 0 + 1
𝑘 + 1 (

1
√
2𝜋

∫
∞

−∞
𝑥𝑘+2𝑒−𝑥2∕2d𝑥) ,
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so
1

√
2𝜋

∫
∞

−∞
𝑥𝑘+2𝑒−𝑥2∕2d𝑥 = (𝑘 + 1) ⋅ 1

√
2𝜋

∫
∞

−∞
𝑥𝑘𝑒−𝑥2∕2d𝑥.

If 𝑘 = 0, then this implies 𝜇2 = 1 = (2− 1)!!. Else, this implies 𝜇𝑘+2 = (𝑘 + 1)𝜇𝑘 = (𝑘 + 1) ⋅ (𝑘 −
1)!! = (𝑘 + 1)!!, as desired.

Definition 7.3. For each prime 𝑝, define

𝐿𝑝(𝑛) ∶= {−1∕𝑝 + 1 𝑝 ∣ 𝑛
−1∕𝑝 𝑝 ∤ 𝑛

.

For any natural𝑚 = 𝑝𝑒11 𝑝
𝑒2
2 ⋯𝑝𝑒𝑘𝑘 , define

𝐿𝑚(𝑛) ∶=
𝑘∏

𝑖=1
(𝐿𝑝𝑖 (𝑛))

𝑒𝑖 .

The key here is that
∑

𝑝≤𝑁 𝐿𝑝(𝑛) = 𝜔(𝑛) − 𝐴(𝑁).

Lemma 7.4. We have ∑

𝑁𝑠<𝑝≤𝑁
𝐿𝑝(𝑛) = 𝑂(log(

√
log log𝑁 + 3)),

for all 𝑛 ≤ 𝑁.

Proof. Note
∑

𝑁𝑠<𝑝≤𝑁
𝐿𝑝(𝑛) =

∑

𝑁𝑠<𝑝≤𝑁
𝑝∣𝑛

1 −
∑

𝑁𝑠<𝑝≤𝑁

1
𝑝

from the same logic as above. By Mertens ([4]),

𝑂
⎛
⎜
⎝

∑

𝑁𝑠<𝑝≤𝑁

1
𝑝
⎞
⎟
⎠
= 𝑂(log log𝑁 − log log𝑁𝑠)

= 𝑂 (log
log𝑁
log𝑁𝑠

)

= 𝑂(log log(
√
log log𝑁 + 3)).

Now, suppose there were 𝑘 primes in (𝑁𝑠, 𝑁] dividing 𝑛. Then, 𝑁 > 𝑁𝑘
𝑆 , and since 𝑛 ≤ 𝑁,

𝑁 > 𝑁𝑘
𝑆 . So 𝑘 < log𝑁𝑆

𝑁 = log(
√
log log𝑁 + 3). Thus,
∑

𝑁𝑆<𝑝≤𝑁
𝑝∣𝑛

1 = 𝑂(
√
log log𝑁 + 3),

so the result now follows.
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Definition 7.5. Define the sequence of independent discrete random variables {𝐿(𝑝)}𝑝 prime
such that 𝐿(𝑝) = −1∕𝑝 with probability 1 − 1

𝑝
and 𝐿(𝑝) = −1∕𝑝 + 1 with probability 1

𝑝
. Note

that 𝐿(𝑝) "mimics" 𝐿𝑝, since 𝐿𝑝(𝑛) = −1∕𝑝 + 1 when 𝑝 ∣ 𝑛, which has "probability" 1
𝑝
, and

𝐿𝑝(𝑛) = −1∕𝑝 when 𝑝 ∤ 𝑛, which has "probability" 1 − 1
𝑝
. So the following result should not be

so surprising.

Lemma 7.6. Suppose𝑚 = 𝑝𝑒11 𝑝
𝑒2
2 ⋯𝑝𝑒𝑘𝑘 is fixed. Then,

∑

𝑛≤𝑁
𝐿𝑚(𝑛) = 𝑁𝔼

⎡
⎢
⎣

𝑘∏

𝑖=1
(𝐿(𝑝𝑖))

𝑒𝑖⎤⎥
⎦
+ 𝑂(3𝑘)

for all𝑁 ≥ 1.

Proof. Note that

𝐿𝑚(𝑛) =
𝑘∏

𝑖=1
(𝐿𝑝𝑖 (𝑛))

𝑒𝑖 .

Let 𝐹𝑝(𝑛) = {1 − 𝑝 𝑝 ∣ 𝑛
1 𝑝 ∤ 𝑛,

then 𝐿𝑝𝑖 (𝑛) = − 1
𝑝𝑖
𝐹𝑝𝑖 (𝑛). Then,

𝐿𝑚(𝑛) =
(−1)

∑𝑒𝑖

𝑚

𝑘∏

𝑖=1
(𝐹𝑝𝑖 (𝑛))

𝑒𝑖 .

Therefore,
∑

𝑛≤𝑁
𝐿𝑚(𝑛) =

(−1)
∑𝑒𝑖

𝑚
∑

𝑛≤𝑁

𝑘∏

𝑖=1
(𝐹𝑝𝑖 (𝑛))

𝑒𝑖 .

Let 𝑃 = {𝑝1, 𝑝2,⋯ , 𝑝𝑘}. Then, suppose 𝑆 ⊆ 𝑃. The amount of 𝑛 ≤ 𝑁 such that the set of prime

divisors of 𝑛 in 𝑃 is exactly 𝑆 is the number of integers less than or equal to
⎢
⎢
⎣

𝑁
∏

𝑠∈𝑆 𝑠

⎥
⎥
⎦
relatively

prime to all primes in 𝑇 ∶= 𝑃 ⧵ 𝑆. By Lemma 8.1, this is

𝜙
(∏

𝑡∈𝑇 𝑡
)

∏
𝑡∈𝑇 𝑡

⎢
⎢
⎣

𝑁∏
𝑠∈𝑆 𝑠

⎥
⎥
⎦
+ 𝑂(𝜏 (

∏

𝑡∈𝑇
𝑡)) =

∏
𝑡∈𝑇(𝑡 − 1)
∏

𝑡∈𝑇 𝑡
⋅ 𝑁∏

𝑠∈𝑆 𝑠
+ 𝑂(2|𝑇|)

=
𝑁∏

𝑡∈𝑇(𝑡 − 1)
∏

𝑝∈𝑃 𝑝
+ 𝑂(2𝑘−|𝑆|).
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Now, if 𝑠 = 𝑝𝑖 , let 𝑒𝑠 = 𝑒𝑖 . Then,

∑

𝑛≤𝑁
𝐿𝑚(𝑛) =

(−1)
∑𝑒𝑖

𝑚
∑

𝑛≤𝑁

𝑘∏

𝑖=1
(𝐹𝑝𝑖 (𝑛))

𝑒𝑖

= (−1)
∑𝑒𝑖

𝑚
∑

𝑆⊆𝑃
[
𝑁∏

𝑡∈𝑇(𝑡 − 1)
rad(𝑚)

+ 𝑂(2𝑘−|𝑆|)]
∏

𝑠∈𝑆
(1 − 𝑠)𝑒𝑠

= 𝑁(−1)
∑𝑒𝑖

𝑚 rad(𝑚)
∑

𝑆⊆𝑃
(
∏

𝑝∈𝑃(𝑝 − 1)
∏

𝑠∈𝑆(𝑠 − 1)
∏

𝑠∈𝑆
(1 − 𝑠)𝑒𝑠) +

∑

𝑆⊆𝑃
𝑂(2𝑘−|𝑆|)

∏
𝑠∈𝑆(1 − 𝑠)𝑒𝑠

𝑚(−1)
∑𝑒𝑖

= 𝑁(−1)
∑𝑒𝑖𝜙(𝑚)
𝑚2

∑

𝑆⊆𝑃
(−1)|𝑆|

∏

𝑠∈𝑆
(𝑠 − 1)𝑒𝑠−1 +

∑

𝑆⊆𝑃
𝑂(2𝑘−|𝑆|)

= 𝑁(−1)
∑𝑒𝑖𝜙(𝑚)
𝑚2

𝑘∏

𝑖=1
(1 − (𝑝𝑖 − 1)𝑒𝑖−1) +

𝑘∑

𝑖=0
𝑂(2𝑘−𝑖

(𝑘
𝑖
)
)

= 𝑁(−1)
∑𝑒𝑖𝜙(𝑚)
𝑚2

𝑘∏

𝑖=1
(1 − (𝑝𝑖 − 1)𝑒𝑖−1) + 𝑂(3𝑘).

On the other hand, note that

𝑁𝔼
⎡
⎢
⎣

𝑘∏

𝑖=1
(𝐿(𝑝𝑖))𝑒𝑖

⎤
⎥
⎦
= 𝑁

𝑘∏

𝑖=1
𝔼[(𝐿(𝑝𝑖)𝑒𝑖 ]

= 𝑁
𝑘∏

𝑖=1
[(1 − 1

𝑝𝑖
) (− 1

𝑝𝑖
)
𝑒𝑖
+ 1
𝑝𝑖
(1 − 1

𝑝𝑖
)
𝑒𝑖
]

= 𝑁
𝑘∏

𝑖=1

(𝑝𝑖 − 1)(−1)𝑒𝑖 + (𝑝𝑖 − 1)𝑒𝑖

𝑝𝑒𝑖+1𝑖

= 𝑁
𝑚 rad(𝑚)

𝑘∏

𝑖=1

[
((−1)𝑒𝑖 (𝑝𝑖 − 1))

(
1 − (𝑝𝑖 − 1)𝑒𝑖−1

)]

= 𝑁(−1)
∑𝑒𝑖

𝑚 ⋅
∏𝑘

𝑖=1(𝑝𝑖 − 1)
rad(𝑚)

𝑘∏

𝑖=1
(1 − (𝑝𝑖 − 1)𝑒𝑖−1)

= 𝑁(−1)
∑𝑒𝑖𝜙(𝑚)
𝑚

𝑘∏

𝑖=1
(1 − (𝑝𝑖 − 1)𝑒𝑖−1),

so the result follows.

Lemma 7.7. Let 𝜋(𝑛) be the number of primes ≤ 𝑛. Then, for any positive integers 𝑘, we have

∑

𝑛≤𝑁

⎛
⎜
⎝

∑

𝑝≤𝑁𝑆

𝐿𝑝(𝑛)
⎞
⎟
⎠

𝑘

= 𝑁𝔼
⎡
⎢
⎢
⎣

⎛
⎜
⎝

∑

𝑝≤𝑁𝑆

𝐿(𝑝)
⎞
⎟
⎠

𝑘⎤
⎥
⎥
⎦

+ 𝑂(3𝑘𝜋(𝑁𝑆)𝑘)
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Proof. Note that
⎛
⎜
⎝

∑

𝑝≤𝑁𝑆

𝐿𝑝(𝑛)
⎞
⎟
⎠

𝑘

=
∑

𝑝1,𝑝2,⋯,𝑝𝑘≤𝑁𝑆

𝐿𝑝1𝑝2⋯𝑝𝑘 (𝑛),

since 𝐿𝑚(𝑛) is completely multiplicative in 𝑚. Note that the 𝑝𝑖 are not necessarily distinct or
ordered or anything like that. Therefore,

∑

𝑛≤𝑁

⎛
⎜
⎝

∑

𝑝≤𝑁𝑆

𝐿𝑝(𝑛)
⎞
⎟
⎠

𝑘

=
∑

𝑛≤𝑁

∑

𝑝1,𝑝2,⋯,𝑝𝑘≤𝑁𝑆

𝐿𝑝1𝑝2⋯𝑝𝑘 (𝑛) =
∑

𝑝1,𝑝2,⋯,𝑝𝑘≤𝑁𝑆

∑

𝑛≤𝑁
𝐿𝑝1𝑝2⋯𝑝𝑘 (𝑛).

Now, by Lemma 8.6,
∑

𝑛≤𝑁
𝐿𝑝1𝑝2⋯𝑝𝑘 (𝑛) = 𝑁𝔼

⎡
⎢
⎣

𝑘∏

𝑖=1
𝐿(𝑝𝑖)

⎤
⎥
⎦
+ 𝑂(3𝑘).

So the LHS is equivalent to

∑

𝑝1,𝑝2,⋯,𝑝𝑘≤𝑁𝑆

⎡
⎢
⎣
𝑁𝔼

⎡
⎢
⎣

𝑘∏

𝑖=1
𝐿(𝑝𝑖)

⎤
⎥
⎦
+ 𝑂(3𝑘)

⎤
⎥
⎦
= 𝑁𝔼

⎡
⎢
⎣

∑

𝑝1,𝑝2,⋯,𝑝𝑘≤𝑁𝑆

𝑘∏

𝑖=1
𝐿(𝑝𝑖)

⎤
⎥
⎦
+ 𝑂(3𝑘𝜋(𝑁𝑆)𝑘)

= 𝑁𝔼
⎡
⎢
⎢
⎣

⎛
⎜
⎝

∑

𝑝≤𝑁𝑆

𝐿(𝑝)
⎞
⎟
⎠

𝑘⎤
⎥
⎥
⎦

+ 𝑂(3𝑘𝜋(𝑁𝑆)𝑘),

as desired.

The next lemma will involve complex analysis (Sorry, it’s too vast a topic for me to make a
section about the fundamentals. Try Rudin or something.)

Lemma 7.8. Let 𝑓𝑛 ∶ ℂ → ℂ for 𝑛 = 1, 2,⋯ be a sequence of functions which are analytic on an
open disk 𝐷. Furthermore, suppose that 𝑓𝑛 → 𝑓 uniformly. Then, 𝑓 is analytic on 𝐷 as well and
𝑓′𝑛 → 𝑓′ uniformly on any open subdisk 𝐸 ⊆ 𝐷 that has the same center as 𝐷 and smaller radius
than 𝐷.

Proof. Let Γ be a closed contour in 𝐷. Note that since each 𝑓𝑛 is analytic in 𝐷,

∮
Γ
𝑓𝑛 = 0

for all 𝑛 ≥ 1. Note that since all 𝑓𝑛 are continuous, so is 𝑓 due to a well known theorem: [3]. So
𝑓 is integrable. Now fix an 𝜀 > 0. Then, there exists some𝑁 such that for all 𝑛 ≥ 𝑁, |𝑓 − 𝑓𝑛| < 𝜀
on 𝐷. Now, note that

||||||||
∮

Γ
𝑓
||||||||
=
||||||||
∮

Γ
𝑓 −∮

Γ
𝑓𝑛
||||||||

=
||||||||
∮

Γ
(𝑓𝑛 − 𝑓)

||||||||
< 𝓁(Γ) ⋅ 𝜀,
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where 𝓁 denotes arc length. Thus, it follows that ∫Γ 𝑓 = 0, for all closed contours Γ in 𝐷, so by
Morera’s theorem ([5]), 𝑓 is analytic as well. Now, fix some 𝑧0 ∈ 𝐸, and let 𝑟 be the difference
in radii of 𝐸 and 𝐷. Then, 𝐶𝑟 ∶= {𝑧 ∣ |𝑧 − 𝑧0| < 𝑟} lies completely within 𝐷. Then by Cauchy’s
Generalized Integral Formula,

𝑓′(𝑧0) =
1
2𝜋𝑖 ∮𝐶𝑟

𝑓(𝑧)
(𝑧 − 𝑧0)2

d𝑧

= 1
2𝜋𝑖 ∮𝐶𝑟

𝑓𝑛(𝑧)
(𝑧 − 𝑧0)2

d𝑧 + 1
2𝜋𝑖 ∮𝐶𝑟

𝑓(𝑧) − 𝑓𝑛(𝑧)
(𝑧 − 𝑧0)2

d𝑧

= 𝑓′𝑛(𝑧0) +
1
2𝜋𝑖 ∮𝐶𝑟

𝑓(𝑧) − 𝑓𝑛(𝑧)
(𝑧 − 𝑧0)2

d𝑧.

Thus,
𝑓′(𝑧0) − 𝑓′𝑛(𝑧0) =

1
2𝜋𝑖 ∮𝐶𝑟

𝑓(𝑧) − 𝑓𝑛(𝑧)
(𝑧 − 𝑧0)2

.

Now, fix some 𝜀 > 0, then for sufficiently large 𝑛, |𝑓(𝑧) − 𝑓𝑛(𝑧)| < 𝜀. Then, for sufficiently large
𝑛,

|𝑓′(𝑧0) − 𝑓′𝑛(𝑧0)| =
|||||||||

1
2𝜋𝑖 ∮𝐶𝑟

𝑓(𝑧) − 𝑓𝑛(𝑧)
(𝑧 − 𝑧0)2

|||||||||
< 1
2𝜋

𝜀
𝑟2 ⋅ 2𝜋𝑟

= 𝜀
𝑟 .

Since 𝑟 is fixed over all 𝑧0, it follows that 𝑓′𝑛 → 𝑓′ uniformly on 𝐸, as desired.

Corollary 7.9. Let 𝑓𝑛 ∶ ℂ → ℂ for 𝑛 = 1, 2,⋯ be a sequence of functions which are analytic on
an open disk 𝐷, and let 𝑘 ≥ 1. Furthermore, suppose that 𝑓𝑛 → 𝑓 uniformly. Then, 𝑓 is analytic
on 𝐷 as well and 𝑓(𝑘)𝑛 → 𝑓(𝑘) uniformly on any open subdisk 𝐸 ⊆ 𝐷 that has the same center as 𝐷
and smaller radius than 𝐷.

8 Moment Generating Functions
Our aim in this section will be to compute the moments of 𝐸𝑁 = ∑

𝑝≤𝑁 𝐿(𝑝). We will do this
by computing the moment generating function𝑀𝐸𝑁 (𝑧) = 𝔼[𝑒𝑧𝐸𝑛 ], and then computing the 𝑘th
derivatives of this and then using Lemma 3.14. Note that

𝑀𝐸𝑁 (𝑧) = 𝔼[𝑒𝑧𝐸𝑛 ]

= 𝔼
[
𝑒𝑧

∑
𝑝≤𝑁 𝐿(𝑝)]

=
∏

𝑝≤𝑁
𝔼
[
𝑒𝑧𝐿(𝑝)

]
.

Note that from Taylor Series, we have for |𝑧| ≤ 1
2
,

𝑒𝑧𝐿(𝑝) = 1 + 𝑧𝐿(𝑝) + 𝑧2
2 𝐿(𝑝)

2 + 𝑂
(
|𝑧|3|𝐿(𝑝)|3

)
,
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since
||||||||||

∑

𝑘≥3

1
𝑘!𝑧

𝑘𝐿(𝑝)𝑘
||||||||||
≤
∑

𝑘≥3

1
𝑘! |𝑧|

𝑘|𝐿(𝑝)|𝑘

≤
∑

𝑘≥3
|𝑧|𝑘|𝐿(𝑝)|𝑘

= |𝑧|3|𝐿(𝑝)|3
1 − |𝑧|3|𝐿(𝑝)|3

≤ |𝑧|3|𝐿(𝑝)|3

1 − 1
8

= 𝑂(|𝑧|3|𝐿(𝑝)|3).

Note that

𝔼 [𝐿(𝑝)] = (1 − 1
𝑝) (−

1
𝑝) +

1
𝑝 (1 − 1

𝑝) = 0

𝔼
[
𝐿(𝑝)2

]
= (1 − 1

𝑝) (−
1
𝑝)

2
+ 1
𝑝 (1 − 1

𝑝)
2
= 𝑝 − 1

𝑝2 ,

and 𝔼
[
|𝐿(𝑝)|3

]
= (1 − 1

𝑝) (
1
𝑝)

3
+ 1
𝑝 (1 − 1

𝑝)
3
= 𝑂( 1𝑝) .

Therefore,

𝔼[𝑒𝑧𝐿(𝑝)] = 1 + 𝑝 − 1
2𝑝2 𝑧2 + 𝑂(|𝑧|

3

𝑝 ) .

Note that

1 + 𝑝 − 1
2𝑝2 𝑧2 + 𝑂(|𝑧|

3

𝑝 ) = 𝑒
𝑝−1
2𝑝2

𝑧2+𝑂( |𝑧|
3

𝑝
)
,

since by Taylor Series

𝑒
𝑝−1
2𝑝2

𝑧2+𝑂( |𝑧|
3

𝑝
)
= 1 + 𝑝 − 1

2𝑝2 𝑧2 + 𝑂(|𝑧|
3

𝑝 ) +
∑

𝑛≥2
[
𝑝 − 1
2𝑝2 𝑧2 + 𝑂(|𝑧|

3

𝑝 )]
𝑛

= 1 + 𝑝 − 1
2𝑝2 𝑧2 + 𝑂(|𝑧|

3

𝑝 ) + 𝑂
⎛
⎜
⎝

∑

𝑛≥2

|𝑧|2𝑛
𝑝𝑛

⎞
⎟
⎠

= 1 + 𝑝 − 1
2𝑝2 𝑧2 + 𝑂(|𝑧|

3

𝑝 ) + 𝑂(
|𝑧|4∕𝑝2

1 − |𝑧|2∕𝑝)

= 1 + 𝑝 − 1
2𝑝2 𝑧2 + 𝑂(|𝑧|

3

𝑝 ) + 𝑂(|𝑧|
4

𝑝2 )

= 1 + 𝑝 − 1
2𝑝2 𝑧2 + 𝑂(|𝑧|

3

𝑝 ) .
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We now write 𝑒𝑥 as exp(𝑥) for easier readability. Note that the sum of 1
𝑝2
for 𝑝 prime converges

since
∑∞

𝑛=1
1
𝑛2
does.

𝑀𝐸𝑁 (𝑧) =
∏

𝑝≤𝑁
𝔼[𝑒𝑧𝐿(𝑝)]

=
∏

𝑝≤𝑁
exp (

𝑝 − 1
2𝑝2 𝑧2 + 𝑂(|𝑧|

3

𝑝 ))

= exp
⎛
⎜
⎝
𝑧2

∑

𝑝≤𝑁
(
𝑝 − 1
2𝑝2 ) + 𝑂

⎛
⎜
⎝
|𝑧|3

∑

𝑝≤𝑁

1
𝑝
⎞
⎟
⎠

⎞
⎟
⎠

= exp
⎛
⎜
⎝

1
2𝑧

2 ∑

𝑝≤𝑁

1
𝑝 − 1

2𝑧
2 ∑

𝑝≤𝑁

1
𝑝2 + 𝑂

⎛
⎜
⎝
|𝑧|3

∑

𝑝≤𝑁

1
𝑝
⎞
⎟
⎠

⎞
⎟
⎠

= exp (12𝑧
2 log log𝑁 + 𝑂(|𝑧|2 + |𝑧|3 log log𝑁))

= exp (12𝑧
2 log log𝑁) ⋅ exp

(
𝑂(|𝑧|2 + |𝑧|3 log log𝑁)

)
.

Let𝑀1𝐸𝑁 (𝑧) = 𝑀𝐸𝑁 (
𝑧√

log log𝑁
). Then, for |𝑧| ≤ 1

2

√
log log𝑁,

𝑀1𝐸𝑁 (𝑧) = exp (12𝑧
2) ⋅ exp (𝑂( |𝑧|2

log log𝑁 + |𝑧|3
√
log log𝑁

)) .

Now, suppose |𝑧| < 1. Then, since |𝑒𝑧| ≤ 𝑒|𝑧|, we have that

𝑀1𝐸𝑁 (𝑧) = exp (12𝑧
2) ⋅ exp (𝑂( 1

log log𝑁 + 1
√
log log𝑁

))

= exp (12𝑧
2) ⋅ exp (𝑂( 1

√
log log𝑁

))

= exp (12𝑧
2) + exp (12𝑧

2) ⋅ (exp (𝑂( 1
√
log log𝑁

)) − 1)

= exp (12𝑧
2) + 𝑂(1) ⋅ (exp (𝑂( 1

√
log log𝑁

)) − 1) .

Fix some 𝜀 > 0. Then, for 𝑁 sufficiently large,
|||||||||
𝑂(1) ⋅ (exp (𝑂( 1

√
log log𝑁

)) − 1)
|||||||||
< 𝜀.

Thus, for all |𝑧| < 1 and all 𝑁 sufficiently large,
|||||||
𝑀1𝐸𝑁 (𝑧) − 𝑒

1
2
𝑧2 |||||||

< 𝜀.
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Thus,𝑀1𝐸𝑁 (𝑧) converges uniformly to 𝑒
1
2
𝑧2 on |𝑧| < 1. Thus, by Corollary 8.9, it follows that

𝑀(𝑘)
1𝐸𝑁 (𝑧) converges uniformly to

d𝑘

d𝑧𝑘
𝑒
1
2
𝑧2 on |𝑧| < 1

2
. Therefore,𝑀(𝑘)

1𝐸𝑁 (0) = [ d𝑘

d𝑧𝑘
𝑒
1
2
𝑧2]

𝑧=0
. Note

that from the Taylor Series of 𝑒𝑧, we have

𝑒
1
2
𝑧2 =

∑

𝑛≥0

(𝑧2∕2)𝑛
𝑛! =

∑

𝑛≥0

𝑧2𝑛
2𝑛 ⋅ 𝑛! .

Therefore, for 𝑘 odd, the 𝑘th derivative of 𝑒
1
2
𝑧2 is zero, for 𝑘 = 0, the 𝑘th derivative of it is 1, and

if 𝑘 is even, then the 𝑘th derivative of it is
𝑘!

(𝑘∕2)!2𝑘∕2
= 𝑘!
𝑘!! = (𝑘 − 1)!!.

So in fact, the 𝑘th derivative of 𝑒
1
2
𝑧2 is 𝜇𝑘. Thus, we have that

𝔼[𝐸𝑘𝑁] = 𝑀(𝑘)
𝐸𝑁 (0)

=
(√

log log𝑁
)𝑘
𝑀(𝑘)
1𝐸𝑁 (0)

= (
√
log log𝑁)𝑘(𝜇𝑘 + 𝑜(1)).

9 The Finish
Note here: when we use small 𝑜 notation here, it will always be with respect to 𝑁, not 𝑘.
Plugging the above into Lemma 8.7, we have

∑

𝑛≤𝑁

⎛
⎜
⎝

∑

𝑝≤𝑁𝑆

𝐿𝑝(𝑛)
⎞
⎟
⎠

𝑘

= 𝑁𝔼
⎡
⎢
⎢
⎣

⎛
⎜
⎝

∑

𝑝≤𝑁𝑆

𝐿(𝑝)
⎞
⎟
⎠

𝑘⎤
⎥
⎥
⎦

+ 𝑂(3𝑘𝜋(𝑁𝑆)𝑘)

= 𝑁
(√

log log𝑁𝑆
)𝑘
(𝜇𝑘 + 𝑜(1)) + 𝑂(3𝑘𝜋(𝑁𝑆)𝑘).

Note that
3𝑘𝜋(𝑁𝑆)𝑘 = 𝑜(𝑁(

√
log log𝑁𝑆)𝑘).

So in fact,
∑

𝑛≤𝑁

⎛
⎜
⎝

∑

𝑝≤𝑁𝑆

𝐿𝑝(𝑛)
⎞
⎟
⎠

𝑘

= 𝑁(
√
log log𝑁𝑆)𝑘(𝜇𝑘 + 𝑜(1)).

Now, note that
√
log log𝑁 −

√
log log𝑁𝑆 ≤

√
log log𝑁 − log log𝑁𝑆

=
√
log

log𝑁
log𝑁𝑆

=
√
log log(

√
log log𝑁 + 3),
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so

(
√
log log𝑁)𝑘 − (

√
log log𝑁𝑆)𝑘 ≤ (

√
log log𝑁)𝑘 − (

√
log log𝑁 −

√
log log(

√
log log𝑁 + 3))

𝑘

= 𝑂(2𝑘(
√
log log𝑁)𝑘−1

√
log log(

√
log log𝑁 + 3)) ,

since log log(
√
log log𝑁 + 3) = 𝑜(

√
log log𝑁). Therefore,

∑

𝑛≤𝑁

⎛
⎜
⎝

∑

𝑝≤𝑁𝑆

𝐿𝑝(𝑛)
⎞
⎟
⎠

𝑘

= 𝑁 [(
√
log log𝑁)𝑘 + 𝑂(2𝑘(

√
log log𝑁)𝑘−1

√
log log(

√
log log𝑁 + 3)] (𝜇𝑘 + 𝑜(1))

= 𝑁(
√
log log𝑁)𝑘(𝜇𝑘 + 𝑜(1)) + 𝑁𝑂(2𝑘(

√
log log𝑁)𝑘−1

√
log log(

√
log log𝑁 + 3)) .

Note that
2𝑘(

√
log log𝑁)𝑘−1

√
log log(

√
log log𝑁 + 3) = 𝑜((

√
log log𝑁)𝑘).

Therefore, we obtain that

∑

𝑛≤𝑁

⎛
⎜
⎝

∑

𝑝≤𝑁𝑆

𝐿𝑝(𝑛)
⎞
⎟
⎠

𝑘

= 𝑁(
√
log log𝑁)𝑘(𝜇𝑘 + 𝑜(1)).

Now, note that by Lemma 8.4 and the 𝑘 = 1 case from above,

∑

𝑛≤𝑁

⎛
⎜
⎝

∑

𝑝≤𝑁
𝐿𝑝(𝑛)

⎞
⎟
⎠

𝑘

=
∑

𝑛≤𝑁

⎛
⎜
⎝

∑

𝑝≤𝑁𝑆

𝐿𝑝(𝑛) +
∑

𝑁𝑆<𝑝≤𝑁
𝐿𝑝(𝑛)

⎞
⎟
⎠

𝑘

=
∑

𝑛≤𝑁

⎛
⎜
⎝

∑

𝑝≤𝑁𝑆

𝐿𝑝(𝑛) + log(
√
log log𝑁 + 3)

⎞
⎟
⎠

𝑘

=
∑

𝑛≤𝑁

⎛
⎜
⎝

∑

𝑝≤𝑁𝑆

𝐿𝑝(𝑛)
⎞
⎟
⎠

𝑘

+
∑

𝑛≤𝑁

𝑘−1∑

𝑗=0

(𝑘
𝑗
) ⎛
⎜
⎝

∑

𝑝≤𝑁𝑆

𝐿𝑝(𝑛)
⎞
⎟
⎠

𝑗

(log(
√
log log𝑁 + 3))𝑘−𝑗

=
∑

𝑛≤𝑁

⎛
⎜
⎝

∑

𝑝≤𝑁𝑆

𝐿𝑝(𝑛)
⎞
⎟
⎠

𝑘

+
𝑘−1∑

𝑗=0

(𝑘
𝑗
)
(log(

√
log log𝑁 + 3))𝑘−𝑗

∑

𝑛≤𝑁

⎛
⎜
⎝

∑

𝑝≤𝑁𝑆

𝐿𝑝(𝑛)
⎞
⎟
⎠

𝑗

=
∑

𝑛≤𝑁

⎛
⎜
⎝

∑

𝑝≤𝑁𝑆

𝐿𝑝(𝑛)
⎞
⎟
⎠

𝑘

+ 𝑂(𝑘2𝑘(log(
√
log log𝑁 + 3))𝑘) max

0≤𝑗≤𝑘−1

∑

𝑛≤𝑁

||||||||||

∑

𝑝≤𝑁𝑆

𝐿𝑝(𝑛)
||||||||||

𝑗

.

Note that by QM-AM,
√
√√√√

∑
𝑛≤𝑁

(∑
𝑝≤𝑁𝑆

𝐿𝑝(𝑛)
)2𝑗

𝑁 ≥
∑

𝑛≤𝑁
|||||
∑

𝑝≤𝑁𝑆
𝐿𝑝(𝑛)

|||||
𝑗

𝑁 .
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By our above work,

∑

𝑛≤𝑁

⎛
⎜
⎝

∑

𝑝≤𝑁𝑆

𝐿𝑝(𝑛)
⎞
⎟
⎠

2𝑗

= 𝑁(
√
log log𝑁)2𝑗(𝜇2𝑗 + 𝑜(1)).

Thus,

∑

𝑛≤𝑁

||||||||||

∑

𝑝≤𝑁𝑆

𝐿𝑝(𝑛)
||||||||||

𝑗

≤ 𝑁(
√
log log𝑁)𝑗

√
𝜇2𝑗 + 𝑜(1) = 𝑁(

√
log log𝑁)𝑘−1

√
𝜇2𝑘.

Thus,

∑

𝑛≤𝑁

⎛
⎜
⎝

∑

𝑝≤𝑁
𝐿𝑝(𝑛)

⎞
⎟
⎠

𝑘

=
∑

𝑛≤𝑁

⎛
⎜
⎝

∑

𝑝≤𝑁𝑆

𝐿𝑝(𝑛)
⎞
⎟
⎠

𝑘

+ 𝑂
(
𝑘2𝑘(log(

√
log log𝑁 + 3)𝑘𝑁(

√
log log𝑁)𝑘−1

)

= 𝑁(
√
log log𝑁)𝑘(𝜇𝑘 + 𝑜(1)) + 𝑂

(
𝑘2𝑘(log(

√
log log𝑁 + 3)𝑘𝑁(

√
log log𝑁)𝑘−1

√
𝜇2𝑘

)
.

Now, note that

𝑘2𝑘(log(
√
log log𝑁 + 3)𝑘𝑁(

√
log log𝑁)𝑘−1

√
𝜇2𝑘 = 𝑜(𝑁(

√
log log𝑁)𝑘),

so
∑

𝑛≤𝑁

⎛
⎜
⎝

∑

𝑝≤𝑁
𝐿𝑝(𝑛)

⎞
⎟
⎠

𝑘

= 𝑁(
√
log log𝑁)𝑘(𝜇𝑘 + 𝑜(1)) = 𝑁(𝐴(𝑁))𝑘∕2(𝜇𝑘 + 𝑜(1)),

as𝐴(𝑁)1∕2 =
√
log log𝑁 +𝑂(1) (so the difference, which is 𝑂(𝑁(

√
log log𝑁)𝑘−12𝑘), gets sucked

into the 𝑜(1)), so we have proved the Erdos-Kac theorem. ■
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