On Modular Forms and Hecke Operators

Vedant Valluri

July 11, 2025

Contents

- Define modular forms
- Vectors spaces and the dimension formula
- Define Hecke operators
- Ramanujan tau conjecture

Modular Forms

• A modular form is a holomorphic function $f : \mathbb{H} \to \mathbb{C}$ that satisfies symmetries over the special linear group $SL_2(\mathbb{Z})$.

- A modular form is a holomorphic function $f : \mathbb{H} \to \mathbb{C}$ that satisfies symmetries over the special linear group $SL_2(\mathbb{Z})$.
- A 2×2 matrix is in $SL_2(\mathbb{Z})$ if it has integer entries and determinant 1.

- A modular form is a holomorphic function $f : \mathbb{H} \to \mathbb{C}$ that satisfies symmetries over the special linear group $SL_2(\mathbb{Z})$.
- A 2×2 matrix is in $SL_2(\mathbb{Z})$ if it has integer entries and determinant 1.
- A matrix $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ acts on τ as $\gamma \tau = \frac{a\tau + b}{c\tau + d}$ for $\tau \in \mathbb{H}$.

- A modular form is a holomorphic function $f : \mathbb{H} \to \mathbb{C}$ that satisfies symmetries over the special linear group $SL_2(\mathbb{Z})$.
- A 2×2 matrix is in $SL_2(\mathbb{Z})$ if it has integer entries and determinant 1.
- A matrix $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ acts on τ as $\gamma \tau = \frac{a\tau + b}{c\tau + d}$ for $\tau \in \mathbb{H}$.
- A modular form of weight k satisfies $f(\gamma \tau) = (c\tau + d)^k f(\tau)$.

- A modular form is a holomorphic function $f : \mathbb{H} \to \mathbb{C}$ that satisfies symmetries over the special linear group $SL_2(\mathbb{Z})$.
- A 2×2 matrix is in $SL_2(\mathbb{Z})$ if it has integer entries and determinant 1.
- $\bullet \ \ \text{A matrix} \ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \ \text{acts on} \ \tau \ \text{as} \ \gamma \tau = \frac{a\tau + b}{c\tau + d} \ \text{for} \ \tau \in \mathbb{H}.$
- A modular form of weight k satisfies $f(\gamma \tau) = (c\tau + d)^k f(\tau)$.
- We denote the set of modular forms over Γ as $\mathcal{M}_k(\Gamma)$.

q-expansions

The matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$ gives the relation $f(\tau+1)=f(\tau)$ meaning each modular form is 1-periodic. We can write the Fourier expansion for f as

$$f(\tau) = \sum_{n=0}^{\infty} a_n q^n$$

where $q = e^{2\pi i \tau}$.

q-expansions

The matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$ gives the relation $f(\tau+1)=f(\tau)$ meaning each modular form is 1-periodic. We can write the Fourier expansion for f as

$$f(\tau) = \sum_{n=0}^{\infty} a_n q^n$$

where $q=e^{2\pi i\tau}$. A modular form with $a_0=0$ is called a *cusp* form.

q-expansions

The matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$ gives the relation $f(\tau+1)=f(\tau)$ meaning each modular form is 1-periodic. We can write the Fourier expansion for f as

$$f(\tau) = \sum_{n=0}^{\infty} a_n q^n$$

where $q=e^{2\pi i \tau}$. A modular form with $a_0=0$ is called a *cusp* form. We say that the set of cusp forms as $\mathcal{S}_k(\Gamma)$ where k is the weight in both cases.

Examples

Given a complex lattice $\Lambda \subset \mathbb{C}$ generated by $\langle 1, \tau \rangle$ we say that the *Eisenstein series* of weight $k \geq 2$ is

$$G_k(\tau) = \sum_{\omega \in \Lambda} \frac{1}{\omega^k}.$$

Examples

Given a complex lattice $\Lambda \subset \mathbb{C}$ generated by $\langle 1, \tau \rangle$ we say that the *Eisenstein series* of weight $k \geq 2$ is

$$G_k(\tau) = \sum_{\omega \in \Lambda} \frac{1}{\omega^k}.$$

This is modular form of weight k.

Examples

Given a complex lattice $\Lambda \subset \mathbb{C}$ generated by $\langle 1, \tau \rangle$ we say that the *Eisenstein series* of weight $k \geq 2$ is

$$G_k(\tau) = \sum_{\omega \in \Lambda} \frac{1}{\omega^k}.$$

This is modular form of weight k.

Another important modular form is the *discriminant function*. This is defined as

$$\Delta(\tau) = (40\,G_4)^3 - 27(140\,G_6)^2$$

This is a weight 12 cusp form.

Congruence subgroups

Sometimes we want to study modular forms that satisfy the $(c\tau+d)^k$ relation only for a subgroup $\Gamma\subset SL_2(\mathbb{Z})$ instead of the whole thing. These are called *congruence subgroups*.

$$\Gamma(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z}) : \begin{bmatrix} a & b \\ c & d \end{bmatrix} \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \pmod{N} \right\}$$

$$\Gamma(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z}) : \begin{bmatrix} a & b \\ c & d \end{bmatrix} \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \pmod{N} \right\}$$

$$\Gamma_0(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z}) : c \equiv 0 \pmod{N} \right\}$$

$$\Gamma(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z}) : \begin{bmatrix} a & b \\ c & d \end{bmatrix} \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \pmod{N} \right\}$$

$$\Gamma_0(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z}) : c \equiv 0 \pmod{N} \right\}$$

$$\Gamma_1(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z}) : c \equiv 0 \pmod{N}, a \equiv d \equiv 1 \pmod{N} \right\}$$

The main ones of importantance are:

$$\Gamma(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z}) : \begin{bmatrix} a & b \\ c & d \end{bmatrix} \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \pmod{N} \right\}$$

$$\Gamma_0(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z}) : c \equiv 0 \pmod{N} \right\}$$

$$\Gamma_1(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z}) : c \equiv 0 \pmod{N}, a \equiv d \equiv 1 \pmod{N} \right\}$$

A modular form defined over $\Gamma \supset \Gamma(N)$ is said to have *level N*. Modular forms over $SL_2(\mathbb{Z}) = \Gamma(1)$ have level 1.

Modular curves

A modular curve $Y(\Gamma)$ for congruence subgroup Γ is defined as the orbit space $\Gamma \backslash \mathbb{H} = \{ \Gamma \tau : \tau \in \mathbb{H} \}$. These modular curves can be given the structure of a compact Riemann surface when we add the *cusps* to it and these compact Riemann surfaces are denoted as $X(\Gamma)$.

The space of modular forms and cusp forms actually form vector spaces over \mathbb{C} . We can use modular curves and the Riemann-Roch theorem to derive a formula for the dimension of these vector spaces.

The space of modular forms and cusp forms actually form vector spaces over \mathbb{C} . We can use modular curves and the Riemann-Roch theorem to derive a formula for the dimension of these vector spaces.

Theorem (Dimension Formula)

Let Γ be a congruence subgroup, let g denote the genus of $X(\Gamma)$ and let ε_2 , ε_3 , and ε_∞ denote the number of "elliptic points" of orders 2 and 3, and the number of cusps, respectively. Then for any even integer $k \geq 2$, the space of modular forms of weight k satisfies

$$\dim \mathcal{M}_k(\Gamma) = (k-1)(g-1) + \left\lfloor \frac{k}{4} \right\rfloor \varepsilon_2 + \left\lfloor \frac{k}{3} \right\rfloor \varepsilon_3 + \frac{k}{2} \varepsilon_\infty,$$

The space of modular forms and cusp forms actually form vector spaces over \mathbb{C} . We can use modular curves and the Riemann-Roch theorem to derive a formula for the dimension of these vector spaces.

Theorem (Dimension Formula)

Let Γ be a congruence subgroup, let g denote the genus of $X(\Gamma)$ and let ε_2 , ε_3 , and ε_∞ denote the number of "elliptic points" of orders 2 and 3, and the number of cusps, respectively. Then for any even integer $k \geq 2$, the space of modular forms of weight k satisfies

$$\dim \mathcal{M}_k(\Gamma) = (k-1)(g-1) + \left\lfloor \frac{k}{4} \right\rfloor \varepsilon_2 + \left\lfloor \frac{k}{3} \right\rfloor \varepsilon_3 + \frac{k}{2} \varepsilon_\infty,$$

and the dimension of the space of cusp forms is

$$\dim \mathcal{S}_k(\Gamma) = \dim \mathcal{M}_k(\Gamma) - \varepsilon_{\infty}.$$

The space of modular forms and cusp forms actually form vector spaces over \mathbb{C} . We can use modular curves and the Riemann-Roch theorem to derive a formula for the dimension of these vector spaces.

Theorem (Dimension Formula)

Let Γ be a congruence subgroup, let g denote the genus of $X(\Gamma)$ and let ε_2 , ε_3 , and ε_∞ denote the number of "elliptic points" of orders 2 and 3, and the number of cusps, respectively. Then for any even integer $k \geq 2$, the space of modular forms of weight k satisfies

$$\dim \mathcal{M}_k(\Gamma) = (k-1)(g-1) + \left\lfloor \frac{k}{4} \right\rfloor \varepsilon_2 + \left\lfloor \frac{k}{3} \right\rfloor \varepsilon_3 + \frac{k}{2} \varepsilon_\infty,$$

and the dimension of the space of cusp forms is

$$\dim \mathcal{S}_k(\Gamma) = \dim \mathcal{M}_k(\Gamma) - \varepsilon_{\infty}.$$

For example the space of cusp forms of weight 12 has dimension 1.

Hecke Operators

What is a Hecke operator?

A Hecke operator is a linear operator from $\mathcal{M}_k \to \mathcal{M}_k$. It acts as a kind of "averaging operator". For simplicity's sake we'll only look at Hecke operators on level 1 modular forms. We define the operators T_p and T_n where p is a prime and n is just a positive integer.

What is a Hecke operator?

A Hecke operator is a linear operator from $\mathcal{M}_k \to \mathcal{M}_k$. It acts as a kind of "averaging operator". For simplicity's sake we'll only look at Hecke operators on level 1 modular forms. We define the operators T_p and T_n where p is a prime and n is just a positive integer. We get that T_p acts on f as

$$T_p f(\tau) = p^{k-1} f(p\tau) + \frac{1}{p} \sum_{j=0}^{p-1} f\left(\frac{\tau+j}{p}\right).$$

What is a Hecke operator?

A Hecke operator is a linear operator from $\mathcal{M}_k \to \mathcal{M}_k$. It acts as a kind of "averaging operator". For simplicity's sake we'll only look at Hecke operators on level 1 modular forms. We define the operators T_p and T_n where p is a prime and n is just a positive integer. We get that T_p acts on f as

$$T_{p}f(\tau) = p^{k-1}f(p\tau) + \frac{1}{p}\sum_{j=0}^{p-1}f\left(\frac{\tau+j}{p}\right).$$

It can be shown that T_p acts on the Fourier coefficients in the following way:

$$a_n(T_p f) = a_{pn}(f) + p^{k-1} a_{n/p}(f).$$

Hecke operators - continued

Let's define T_{p^r} , where p is a prime, recursively as follows:

$$T_{p^r} = T_p T_{p^{r-1}} - p^{k-1} T_{p^{r-2}}.$$

From here we can extend the definition to T_n where T_1 is the identity and

$$T_n = \prod T_{p_i^{e_i}}$$
 where p_i are prime and $n = \prod p_i^{e_i}$.

Notice this means that we have $T_nT_m=T_{nm}$ when (n,m)=1.

Hecke operators - continued

Let's define T_{p^r} , where p is a prime, recursively as follows:

$$T_{p^r} = T_p T_{p^{r-1}} - p^{k-1} T_{p^{r-2}}.$$

From here we can extend the definition to T_n where T_1 is the identity and

$$T_n = \prod T_{p_i^{e_i}}$$
 where p_i are prime and $n = \prod p_i^{e_i}$.

Notice this means that we have $T_n T_m = T_{nm}$ when (n, m) = 1.

With some simplification we can see that T_n acts on the Fourier coefficients of f as

$$a_m(T_n f) = \sum_{d \mid (m,n)} d^{k-1} a_{mn/d^2}(f)$$

Hecke operators - continued

Let's define T_{p^r} , where p is a prime, recursively as follows:

$$T_{p^r} = T_p T_{p^{r-1}} - p^{k-1} T_{p^{r-2}}.$$

From here we can extend the definition to T_n where T_1 is the identity and

$$T_n = \prod T_{p_i^{e_i}}$$
 where p_i are prime and $n = \prod p_i^{e_i}$.

Notice this means that we have $T_n T_m = T_{nm}$ when (n, m) = 1.

With some simplification we can see that T_n acts on the Fourier coefficients of f as

$$a_m(T_n f) = \sum_{d \mid (m,n)} d^{k-1} a_{mn/d^2}(f)$$

From this we get that $a_1(T_n f) = a_n(f)$

Ramanujan tau conjecture

Theorem (Ramanujan tau conjecture)

Given the modular discriminant function

$$\Delta(z) = \sum_{n=1}^{\infty} \tau(n)q^n = q \prod_{n=0}^{\infty} (1 - q^n)^{24} = q - 24q^2 + 252q^3 - 1472q^4 + \dots$$

- (a) $\tau(n)\tau(m) = \tau(mn)$ if (m, n) = 1
- (b) For prime p and $j \in \mathbb{N}$ we have $au(p^{j+1}) = au(p) au(p^j) p^{11} au(p^{j-1})$
- (c) For prime $p, |\tau(p)| \le 2p^{11/2} *$

Ramanujan tau conjecture

Theorem (Ramanujan tau conjecture)

Given the modular discriminant function

$$\Delta(z) = \sum_{n=1}^{\infty} \tau(n)q^n = q \prod_{n=0}^{\infty} (1 - q^n)^{24} = q - 24q^2 + 252q^3 - 1472q^4 + \dots$$

(a)
$$\tau(n)\tau(m) = \tau(mn)$$
 if $(m, n) = 1$

(b) For prime p and
$$j \in \mathbb{N}$$
 we have $\tau(p^{j+1}) = \tau(p)\tau(p^j) - p^{11}\tau(p^{j-1})$

(c) For prime
$$p, |\tau(p)| \le 2p^{11/2} *$$

^{*}This was proved as a result of the Weil conjectures and is beyond the scope of this paper.

Ramanujan tau conjecture - continued

Proof.

We know that the Hecke operator takes $S_{12}(SL_2(\mathbb{Z})) \to S_{12}(SL_2(\mathbb{Z}))$ and recall that dim $S_{12}(SL_2(\mathbb{Z})) = 1$. This means that if we apply T_n to this function, we must have $T_n\Delta = \lambda_n\Delta$. Recall from before that $a_1(T_nf) = a_n$ so we get

$$a_1(T_n\Delta)=a_n(\Delta).$$

This means that

$$T_n\Delta = \tau(n)q + \cdots$$
.

We must have that $T_n\Delta = \tau(n)\Delta$. Since $T_mT_n = T_{mn}$ if (m,n) = 1 and we know that the *eigenvalue* of T_n is $\tau(n)$ we get that $\tau(m)\tau(n) = \tau(mn)$ when (m,n) = 1.

Ramanujan tau conjecture - continued

Let's apply T_p to Δ . If we look at the coefficient of p^r (which is $\tau(p)\tau(p^r)$ because $\tau(p)$ is the eigenvalue) we get

$$\tau(p)\tau(p^r)=a_{p^{r+1}}(\Delta)+p^{11}a_{p^{r-1}}(\Delta)$$

Rearranging, we get the formula

$$\tau(p^{r+1}) = \tau(p)\tau(p^r) - p^{11}\tau(p^{r-1}).$$

Conclusion

Thank you for listening!