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Abstract. This paper provides an expository account of Hecke operators in the theory of modular forms.

We begin by introducing modular forms and congruence subgroups, and describe how modular forms can

be viewed as functions on modular curves. Hecke operators are then defined via double cosets and studied

through their action on Fourier expansions, inner products, and eigenforms. Finally, we explore their

geometric interpretation as correspondences between modular curves.
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1. Introduction

The study of modular forms sits at the crossroads of analysis, algebra, and geometry. These holomorphic

functions on the upper half-plane, symmetric under the action of certain groups of matrices, and have

connections across number theory. A central theme in their theory is the action of Hecke operators, linear

operators that act on spaces of modular forms. Hecke operators and modular forms were pivotal to the proof

of the Taniyama-Shimura conjecture which implied Fermat’s Last Theorem.

A major historical motivation for understanding Hecke operators comes from Ramanujan’s ∆-function,

defined by the q-expansion

∆(τ) = q

∞∏
n=1

(1− qn)24 =

∞∑
n=1

τ(n)qn, where q = e2πiτ .

Ramanujan conjectured a number of remarkable properties of the Fourier coefficients τ(n), including multi-

plicativity and bounds of the form |τ(p)| ≤ 2p11/2. The first two parts were proved by Mordell in 1917 using

Hecke [Mor17], while the final bound was proven decades later by Deligne in 1974 as a consequence of his

proof of the Weil conjectures [Del74].
1
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In this paper, we explore the theory of Hecke operators on modular forms from both algebraic and

geometric perspectives. We begin in Section 2 by recalling the definitions of modular forms and congruence

subgroups, and interpreting modular forms as sections of line bundles over modular curves. In Section 3, we

derive the dimension formula for spaces of modular forms and cusp forms, using the Riemann-Roch theorem

on modular curves.

In Section 4, we introduce Hecke operators via their double coset construction and study their action on

q-expansions. We define the operators Tn and ⟨d⟩. Section 5 discusses the Petersson inner product and the

spectral theory of Hecke operators, ending with the diagonalizability of the Hecke algebra on spaces of cusp

forms. We also define the idea of a newform.

Finally, in Section 6, we give a geometric interpretation of Hecke operators in terms of correspondences

between modular curves. We define modular curves X0(N) as moduli spaces of elliptic curves with level

structure and construct the Hecke correspondence Tp via maps between X0(N) and X0(pN). We conclude

with a discussion of the Eichler–Shimura congruence relation, which expresses the Hecke operator Tp as the

sum of Frobenius and its transpose on the mod p reduction of the Jacobian of a modular curve.

2. Modular Forms, Congruence Subgroups, and Modular Curves

Before looking at the definition of a modular form, it is beneficial to take a look at the study of elliptic

functions, or doubly-periodic functions. These are functions f on C that satisfy

f(z + ω1) = f(z),

f(z + ω2) = f(z)

where ω1, ω2 are the two periods of the function, and their ratio is nonreal. These two periods generate a

lattice.

Definition 2.1. We define a complex lattice Λ as Λ = {nω1 + mω2 : m,n ∈ Z} where ω1/ω2 /∈ R and

ω1, ω2 are known as the fundamental periods.

Consider the function ℘(z), the Weierstrass ℘-function, which is doubly-periodic with fundamental periods

ω1, ω2, defined as

℘(z) =
1

z2
+
∑
ω∈Λ

′
(

1

(z − ω)2
− 1

ω2

)
(where the primed summation excludes 0). The − 1

ω2 term is added to make the sum converge as it makes

the summand approximately zω−3, which converges over a two dimensional sum.

Let’s look at the Laurent expansion of the ℘ function and to do that we first need to define something

called the Eisenstein series.

Definition 2.2. We define the Eisenstein series Gk(Λ) to be

Gk(Λ) =
∑
ω∈Λ

′ 1

ωk
.
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Notice that when k is odd, positive and negative terms cancel out causing Gk = 0. Since the sum is over a

lattice, it only converges when k > 2.

One can check that through some simplification we arrive at

℘(z) =
1

z2
+

∞∑
n=1

(2k + 1)G2k+2z
2k.

One interesting property that the Weierstrass ℘ function satisfies is its differential equation. We can show

by matching coefficients of the Laurent expansion of ℘ and ℘′ that

(℘′)2 = ℘3 − g2℘− g3

where g2 = 60G4 and g3 = 140G6.

Given a lattice Λ, we can form the quotient space C/Λ, which is a compact Riemann surface of genus 1

(meaning it has one hole). This quotient is known as a complex torus (think about gluing the edges of the

fundamental parallelogram into a cylinder and then gluing the ends to form a donut shape). Let Λ be a

lattice ⟨ω1, ω2⟩. Then for some nonzero complex number λ, C/(λΛ) is isomorphic to C/Λ meaning that we

only care about lattices up to scaling. From now on we’ll use Λ = Z+ τZ where τ ∈ H, the complex upper

half-plane. From a complex analysis viewpoint, these tori are known as elliptic curves. Algebraically an

elliptic curve is y2 = x3 + ax+ b. We can see that replacing (x, y) with (℘(z), ℘′(z)) does the trick.

The question now is when are two complex tori C/Λ and C/Λ′ isomorphic? We can transform the bases

of the lattices with a matrix in GL2(Z), and it will only work both ways when the matrix is invertible. Since

we can replace γ with −γ, we get the 2 × 2 matrices with integer entries and deteriminant 1. This means

the lattices are homothetic when

τ ′ =
aτ + b

cτ + d
, a, b, c, d ∈ Z and ad− bc = 1

The matrices of the form
(
a b
c d

)
belong to something called the special linear group.

Definition 2.3. The special linear group SL2(Z) is the set of matrices γ =

(
a b

c d

)
such that a, b, c, d ∈ Z

and det(γ) = 1. The matrix γ acts on a complex number z as γz = az+b
cz+d .

Now let’s see what happens when we plug in γτ to our Eisenstein series. We have

Gk

(
aτ + b

cτ + d

)
=
∑

m,n∈Z

′ 1

(m+ n(aτ + b)/(cτ + d))k
=
∑

m,n∈Z

′ (cτ + d)k

((mc+ na)τ + (nb+md))k
.

Factoring out the (cτ + d)k the remaining part is just Gk(τ) because since det(γ) = 1 there is a bijection

(m,n)→ (nb+md,mc+ na). This means we have

Gk(γτ) = (cτ + d)kGk(τ).

This is the first example of a modular form, which is a function that satisfies this kind of relation. Now,

we can finally give a formal definition.
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Definition 2.4. A meromorphic function f : H→ C is weakly modular of weight k if

f(γτ) = (cτ + d)kf(τ)

where τ ∈ H and γ ∈ SL2(Z).

We say that the factor of automorphy j(γ, τ) = cτ + d.

The matrices [ 1 1
0 1 ] and

[
0 −1
1 0

]
are generators for SL2(Z) so for a function to be weakly modular with

weight k it suffices to check that

f(τ + 1) = f(τ) and f

(
−1

τ

)
= τkf(τ)

Definition 2.5. A function f : H→ C is a modular form of weight k if it is

(1) holomorphic on H
(2) weakly modular of weight k

(3) holomorphic at ∞ (known as the cusp)

The space of modular forms of weight k is denoted asMk(SL2(Z)).

The spaceMk(SL2(Z)) forms a vector space over C and later on we will discuss ways to find the dimension

of such vector spaces and how to apply linear operators called Hecke operators.

Since we have that f(τ + 1) = f(τ), the function f is periodic with period 1. This means that we can

write its Fourier series as

f(τ) =

∞∑
n=0

anq
n

where q = e2πiτ .

Definition 2.6. A cusp form of weight k is a modular form where a0 = 0 in the Fourier expansion of f .

This can also be interpreted as the form vanishing at the cusp, limIm τ→∞ f(τ) = 0. The space of cusp forms

is denoted Sk(SL2(Z)).

One very important example of a cusp form that will show up later is the modular discriminant function.

This is defined as

∆(τ) = g32 − 27g23

where g2 and g3 are the coefficients from the ℘ differential equation. Since these are made up of g2, which is

weight 4, and g3 with weight 6, both terms are weight 12 giving us that ∆ is a weight 12 cusp form. Notice

that given forms f, g of weight k, l respectively we haveMk ×Ml →Mk+l given by f, g 7→ fg.

Sometimes it isn’t only interesting to study modular forms over the entirety of SL2(Z) but instead just a

portion of it. We denote certain subgroups of SL2(Z) called congruence subgroups as Γ.

Definition 2.7. The principle congruence subgroup of level N is defined as

Γ(N) =

{[
a b

c d

]
∈ SL2(Z) :

[
a b

c d

]
≡

[
1 0

0 1

]
(mod N)

}
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There are two other important congruence subgroups that arise which are Γ0 and Γ1 which are defined

as follows:

Γ0(N) =

{[
a b

c d

]
∈ SL2(Z) : c ≡ 0 (mod N)

}

Γ1(N) =

{[
a b

c d

]
∈ SL2(Z) : c ≡ 0 (mod N), a ≡ d ≡ 1 (mod N)

}
Definition 2.8. More generally, a subgroup Γ ⊂ SL2(Z) is called a congruence subgroup if for some

positive integer N , Γ(N) ⊂ Γ. We call Γ a congruence subgroup of level N .

Define the weight k operator [γ]k for γ ∈ SL2(Z) on a function f to be (f [γ]k)(τ) = j(γ, τ)−kf(γτ). Say

that a function is weight-k invariant with respect to Γ if f [γ]k = f for all γ ∈ Γ.

Now we can modify our definition of a modular form slightly to take congruence subgroups into account.

Definition 2.9. Let Γ be a congruence subgroup. A function f : H→ C is a modular form of weight k with

respect to Γ if

(1) f is holomorphic

(2) f is weight-k invariant with respect to Γ

(3) f [α]k is holomorphic at ∞ for all α ∈ SL2(Z)
If a0 = 0 in the Fourier expansion of f [α]k for all α ∈ SL2(Z) then f is a cusp form of weight k with respect

to Γ. The spaces of these forms are denoted Mk(Γ) and Sk(Γ) respectively. If Γ is a congruence subgroup

of level N the modular form is said to have level N .

Observe that not all congruence subgroups Γ will contain the matrix ( 1 1
0 1 ), which takes τ → τ +1, which

allows us to write the Fourier expansion with period 1. It is the case though that we will have a matrix

( 1 1
0 h ) ∈ Γ taking τ → τ + h for some minimal positive integer h. Then the Fourier expansion becomes

f(τ) =
∑∞

n=0 anq
n
h where qh = e2πiτ/h

Another important concept that will come up later is the idea of a modular curve. A modular curve is the

quotient space of the orbits of Γ, a congruence subgroup.

Definition 2.10. Given a congruence subgroup Γ two points τ, τ ′ ∈ H are considered Γ-equivalent if they’re

in the same orbit under the action of Γ. A modular curve Y (Γ) is defined as

Y (Γ) = Γ\H = {Γτ : τ ∈ H}.

We denote Y (N) = Y (Γ(N)), Y0(N) = Y (Γ0(N)), and Y1(N) = Y (Γ1(N)).

This is actually a Riemann surface. The issue is that a lot of nice theorems and results (like the Riemann-

Roch theorem used later to find the dimension ofMk) only show up when the Riemann surface is compact,

which these modular curves currently aren’t. Luckily, we can give modular curves the structure of a compact

Riemann surfaces by adding finitely many cusp points (think about adding ∞ to C to get the Riemann

sphere Ĉ, which is compact). We denote the compact Riemann surface associated with the modular curve

Y (Γ) as X(Γ).
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3. The Dimension Formula

We saw before thatMk and Sk are both vector spaces. One thing of interest to us when discussing vector

spaces is the dimension of the space.

In this section we will prove the dimension formula forMk(Γ) given some congruence subgroup Γ using

the Riemann-Roch Theorem. To do this we first need to define a few things.

Definition 3.1. Define a k/2-fold differential form as f(z)(dz)k/2 for some function f . The space of these

is denoted as Ωk/2

Let f be a modular form of weight k. We already know that f(γτ) = j(γ, τ)kf(τ) but we also have that

d(γτ) = d

(
aτ + b

cτ + d

)
=

a(cτ + d)− c(aτ + b)

(cτ + d)2
dτ =

ad− bc

(cτ + d)2
dτ = j(γ, τ)−2dτ.

This means that if we take f(τ)(dτ)k/2 and apply γ we will get j(γ, τ)kf(τ)j(γ, τ)−kdτ = f(τ)(dτ)k/2

showing that the for a modular form of weight k, the k/2-fold differential form is Γ invariant.

Next we introduce the Riemann-Roch theorem; but first it is important to quote some facts from the

theory of Riemann surfaces.

Proposition 3.2. Let X be a compact Riemann surface. Then the following are true

(1) Holomorphic functions on X are constant,

(2) Meromorphic functions on X have finitely many poles and zeroes,

(3) Meromorphic functions on X have the same number of poles as zeroes.

Now we can define something called a divisor.

Definition 3.3. A divisor D on a compact Riemann surface X is defined as

D =
∑
xi∈X

ni · xi

where ni ∈ Z. There are few nonzero ni.

Note that when we ”add” each term we aren’t actually adding the mulitples of points but instead the

points are acting like basis vectors. When we compare two divisors D1 and D2 and say that D1 ≥ D2 we

are saying that every coefficient in D1 is greater than the coefficient for the same point in D2. This is called

a formal sum.

The group of divisors Div(X) is the free abelian group on the points of X.

Definition 3.4. The degree of a divisor D is defined as deg(D) =
∑

xi∈X ni.

We say that the order of a function at a point is the order of the pole or zero there. If a function f has

an order n zero at x we write ordx(f) = n. Likewise if f has a pole of order m at x we write ordx(f) = −m.

If f has neither a zero or a pole the order is 0.

Definition 3.5. The divisor of f , for a meromorphic function on X is defined as

div(f) =
∑
xi∈X

ordxi
(f) · xi
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Note that ordxi
(f) ̸= 0 for finitely many xi and that deg(div(f)) always equals 0 by Proposition 3.2. Let

C(X) be the set of meromorphic functions on X. For a divisor D define the vector space L(D) to be

L(D) = {f ∈ C(X),div(f) +D ≥ 0} ∪ {0}.

We denote the dimension of this vector space as ℓ(D). We also say that a canonical divisor is div(ω) for a

1-form ω. Recall that the genus of a Riemann surface is the number of holes. Now we have the necessary

background to state the Riemann-Roch Theorem.

Theorem 3.6 (Riemann-Roch Theorem). Let X be a compact Riemann surface and let g denote its genus.

Then for a divisor D and canonical divisor K we have

ℓ(D)− ℓ(K −D) = deg(D) + 1− g

From here, it will help us to extract some corollaries of this theorem to make it more applicable to our

purpose.

Corollary 3.6.1. The following statements follow from Riemann-Roch

(1) ℓ(K) = g

(2) deg(K) = 2g − 2

(3) If deg(D) < 0 then ℓ(D) = 0

(4) If deg(D) > 2g − 2 then ℓ(D) = deg(D) + 1− g

Proof. Taking D = 0, we see that L(D) is the space of holormorphic functions on X. Since X is compact

we know that ℓ(D) = 1. Plugging in we get 1− ℓ(K) = 0 + 1− g =⇒ ℓ(K) = 1.

Then if we take D = K we get ℓ(K)−ℓ(0) = deg(K)+1−g. Since ℓ(K) = g we will have deg(K) = 2g−2.
Suppose that ℓ(D) > 0. Then there’s some nonzero f ∈ L(D) so div(f) ≥ −D which shows that

deg(D) ≥ 0. This proves part (3).

If deg(D) > 2g− 2 then by part (2) we get deg(K −D) < 0 showing that ℓ(K −D) = 0 by part (3). This

proves part (4). □

Generally, for k/2-fold differential forms deg(ω) = k(g − 1).

The space of autormorphic forms (meromorphic modular forms) of weight k is denoted as Ak(Γ) and it is

true that this space is a one dimensional vector space over C(X(Γ)) meaning that for f ∈ Ak(Γ),

Ak(Γ) = C(X(Γ))f.

Then the subspaceMk are the holomorphic forms in Ak so we can say that

Mk(Γ) = {f0f for f0 ∈ C(X(Γ)) and f ∈ Ak(Γ) : div(f0f) ≥ 0} ∪ {0}
∼= {f0 ∈ C(X(Γ)) : div(f0) + div(f) ≥ 0} ∪ {0}

It looks this is just L(div(f)) allowing us to apply Riemann-Roch and get the dimension ofMk. The issue

here is that not all of the coefficients in the divisor are integers. This is because of elliptic points. Given the

stabilizer group Γτ = {γ ∈ Γ : γτ = τ}, τ is an elliptic point with period e equal to the order of γ in the
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quotient group Γ/{±I}. Due to the group structure of congruence subgroups we only ever get elliptic points

of order 2 or 3. A cusp on X(Γ) is a Γ-equivalence class of rationals gotten from applying γ ∈ Γ to ∞.

We will need the following lemma to help us get the final formula

Lemma 3.1. [DS05] Let f ∈ Ak(Γ) and let ω be the corresponding k/2-fold differential form on X(Γ). Let

π : H→ X(Γ) then

(1) If τ is an elliptic point with period e

ordτ (f) = ordπ(τ)(ω)e+
k

2
(e− 1).

(2) If τ is a cusp point then

ordτ (f) = ordπ(τ)(ω) +
k

2
.

(3) For all other τ

ordτ (f) = ordπ(τ)(ω).

Proof sketch. The third part is clear so we only have to check the first 2. Locally, near an elliptic point,

π takes z 7→ ze. This means that ω = h(u)(du)k/2 where u = ze. Then ω = h(ze) · ek/2z(e−1)(k/2)(dz)k/2 so

f(z) = ek/2z(e−1)(k/2)h(ze). We will get ordz(f) = ordze(h) · e + k
2 (e − 1) = ordπ(z)(ω) · e + k

2 (e − 1). For

part (2) suppose f has the q-expansion anq
n + · · · . Then locally, ω = f(τ)(dτ)k/2 = anq

n (2πi)
−k/2 dqk/2

qk/2 =

anq
n−k/2 (2πi)

−k/2
(dq)k/2. From here we get that ordτ (f) = ordπ(τ)(ω) +

k
2 . □

The elliptic points make the divisor a Q-divisor instead of a Z-divisor, making it so that we cannot apply

Riemann-Roch. We fix this by taking ⌊div(f)⌋ instead. Notice that condition div(f0) + ⌊div(f)⌋ ≥ 0 will

still work to classify modular forms meaning we still have the isomoprhismMk(Γ) ∼= L(⌊div(f)⌋).
Take ω to be the k/2-fold differential associated with f . Then div(ω) = div(f(τ)(dτ)k/2) = div(f) +

(k/2) div(dτ). If {x2,i}, {x3,i}, and {xc,i} are the sets of elliptic points of period 2, elliptic points of period

3, and cusps respectively then by Lemma 3.1 we have

div(dτ) = −
∑
i

1

2
x2,i −

∑
i

2

3
x3,i −

∑
i

xc,i

Plugging back in we get

⌊div(f)⌋ = div(ω) +
∑
i

⌊
k

4

⌋
x2,i +

∑
i

⌊
k

3

⌋
x3,i +

∑
i

k

2
xc,i.

We don’t need the floor on the last one because we’re taking the case where k is even (even-weight modular

forms are more common).

We can check that deg(⌊div(f)⌋) > 2g−2. This allows us to apply part (4) from Corollary 3.6.1. Denoting

the number of elliptic points of period 2, the number of elliptic points of period 3, and the number of cusps

as ε2, ε3, and ε∞ repsectively Riemann-Roch finally gives us

dim(Mk(Γ)) = ℓ(⌊div(f)⌋) = (k − 1)(g − 1) +

⌊
k

4

⌋
ε2 +

⌊
k

3

⌋
ε3 +

k

2
ε∞.
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Similarly the space of cusp forms Sk can be shown to be isomorphic to L(⌊div(f) −
∑

i xc,i⌋). From there

applying Riemann-Roch gives

dim(Sk(Γ)) = ℓ(⌊div(f)−
∑
i

xc,i⌋) = dim(Mk(Γ))− ε∞.

Theorem 3.7 (Dimension Formula). [DS05] Let Γ be a congruence subgroup, let g denote the genus of

X(Γ) and let ε2, ε3, and ε∞ denote the number of elliptic points of orders 2 and 3, and the number of cusps,

respectively. Then for any even integer k ≥ 2, the space of modular forms of weight k satisfies

dimMk(Γ) = (k − 1)(g − 1) +

⌊
k

4

⌋
ε2 +

⌊
k

3

⌋
ε3 +

k

2
ε∞,

and the dimension of the space of cusp forms is

dimSk(Γ) = dimMk(Γ)− ε∞.

Example 3.8. The space of cusp forms S12(SL2(Z)) has dimension 1, and it is spanned by ∆, the discrim-

inant function.

4. Hecke Operators

To introduce the idea of a Hecke operator, we must first introduce the double coset operator, which takes

Mk(Γ1)→Mk(Γ2). For two congruence subgroups Γ1,Γ2 ⊂ SL2(Z) and matrix α ∈ GL+
2 (Q) the set

Γ1αΓ2 = {γ1αγ2 : γ1 ∈ Γ1, γ2 ∈ Γ2}

is a double coset. We take the orbit space Γ1/Γ1αΓ2, which is the set of {Γ1βj} where the βj are orbit

representatives βj = γj2αγj1 . This means that we can decompose the double coset as the disjoint union of

Γ1 acting on these orbit representatives (cosets of Γ1): Γ1αΓ2 =
⋃

j Γ1βj . One can check that this union is

finite.

Before defining the double coset operator we must first extend the weight-k operator to account for

matrices in GL+
2 (Q). For some matrix β ∈ GL+

2 (Q), the weight-k operator is defined as

f [β]k = (detβ)k−1(cτ + d)−kf(β(τ)).

Definition 4.1. We define the weight-k double coset operator as

f [Γ1αΓ2]k =
∑
j

f [βj ]k

where βj are orbit representatives.

Proposition 4.2. The weight-k double coset operator takesMk(Γ1)→Mk(Γ2).

Proof. To show that the double coset operator takes the space of modular forms with respect to Γ1 to

modular forms with respect to Γ2 we need to show that f [Γ1αΓ2]k is weight-k invariant with respect to all

γ2 ∈ Γ. Since Γ1β 7→ Γ1βγ2 is bijective, {βjγ2} is a set of orbit representatives if {βj} is. Then

(f [Γ1αΓ2]k)[γ2]k =
∑
j

f [βjγ2]k = f [Γ1αΓ2]k.
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□

We now define the Hecke operator, a special case of the double coset operator. There are two types that

we want to focus on: ⟨d⟩, the diamond operator and Tp.

This is the double coset where both subgroups are Γ1 and α ∈ Γ0. Since Γ1 < Γ0, α
−1Γ1(N)α = Γ1(N)

and there is only one coset, making the only orbit representative α. Furthermore two matrices in Γ0 with

bottom right element ≡ d (mod N) are equivalent up to left muliplication by a matrix in Γ1. Formally, there

is an isomoprhism

Γ0(N)/Γ1(N) ∼= Z/NZ×

Definition 4.3. Take α ∈ Γ0(N) and let Γ1 = Γ2 = Γ1(N). Define the diamond operator ⟨d⟩ as the

double coset operator [Γ1αΓ2]k. We have have

⟨d⟩f = f [α]k

where α ∈ Γ0(N) is any matrix

(
a b

c δ

)
with δ ≡ d (mod N).

Definition 4.4. Let Γ1 = Γ2 = Γ1(N) and let α =
(
1 0
0 p

)
where p is prime. Define Tp = [Γ1αΓ2]k which

takesMk(Γ1(N))→Mk(Γ1(N)). After selecting orbit representatives we get the following:

Tpf =


∑p−1

j=0 f
[(

1 j
0 p

)]
k

if p | N∑p−1
j=0 f

[(
1 j
0 p

)]
k
+ f

[
(m n
N p )

(
p 0
0 1

)]
k

if p ∤ N and mp− nN = 1

Something that will become useful in some of the proofs later on will be defining the space of modular

forms with a Dirichlet character called the nebentypus. For a Dirichlet character χ mod N we define the

χ-eigenspace ofMk(Γ1(N)) as

Mk(N,χ) = {f ∈Mk(Γ1(N)) : f [γ]k = χ(dγ)f, ∀γ ∈ Γ0(N)}

where dγ is the lower right element of γ. The full space of modular forms can be expressed as a direct sum

over the eigenspaces or

Mk(Γ1(N)) =
⊕
i

Mk(N,χi).

This means that if f =
∑

i fχi then ⟨d⟩f =
∑

i χ(d)fχi .

Proposition 4.5. [DS05] Let f ∈Mk(Γ1(N)) and f has Fourier expansion f(τ) =
∑∞

n=0 an(f)q
n then

(Tpf)(τ) =

∞∑
n=0

(anp(f) + 1N (p)pk−1an/p(⟨p⟩f))qn

and if f ∈Mk(N,χ) then

(Tpf)(τ) =

∞∑
n=0

(anp(f) + χ(p)pk−1an/p(f))q
n

where an/p = 0 if p ∤ n and 1N (p) = 0 if p | N and 1 otherwise.
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Proof. Whether p | N or not we have the term
∑p−1

j=0 f
[(

1 j
0 p

)]
k
. Expanding, we get

pk−1 · p−k

p−1∑
j=0

f

(
τ + j

p

)
=

1

p

p−1∑
j=0

∞∑
n=0

an(f)e
2πin(τ+j)/p

=
1

p

p−1∑
j=0

∞∑
n=0

an(f)
(
e2πiτ/p

)n (
e2πi/p

)nj
=

1

p

∞∑
n=0

an(f)
(
e2πiτ/p

)n p−1∑
j=0

(
e2πin/p

)j
The geometric series on the right becomes p if p | n and 0 otherwise. Then we will just have∑

n≡0 mod p

an(f)q
n/p =

∞∑
n=0

anp(f)q
n.

If p ∤ N then we also have to deal with the f
[
(m n
N p )

(
p 0
0 1

)]
k
term. Notice that (m n

N p ) ∈ Γ0(N). Then this

term is equivalent to saying (⟨p⟩f)
[(

p 0
0 1

)]
k
(τ) which will be

pk−1(⟨p⟩f)(pτ) = pk−1
∞∑

n=0

an(⟨p⟩f)qnp.

Putting these two together we get the first formula (⟨p⟩ = 0 when p | N). Notice that if f ∈Mk(N,χ) then

⟨p⟩f = χ(p)f so the χ(p) just factors out to give the second one. □

Proposition 4.6. Let d, e ∈ Z/NZ and let p, q be primes. Then

(1) ⟨d⟩Tp = Tp⟨d⟩
(2) ⟨d⟩⟨e⟩ = ⟨e⟩⟨d⟩ = ⟨de⟩
(3) TpTq = TqTp

These can be easily checked from previous formulas. Now let’s look at Tn for n not prime. First let’s

define Tpr , where p is a prime, recursively as follows:

Tpr = TpTpr−1 − pk−1⟨p⟩Tpr−2 .

From here we can extend the definition to Tn where T1 is the identity and

Tn =
∏

Tpi
ei where pi are prime and n =

∏
peii

Notice this means that we have TnTm = Tnm when (n,m) = 1.

Proposition 4.7. [DS05] Let f ∈Mk(Γ1(N)) and f has Fourier expansion f(τ) =
∑∞

n=0 an(f)q
n then

(Tnf)(τ) =

∞∑
m=0

am(Tnf)q
m
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where

am(Tnf) =
∑

d|(m,n)

dk−1amn/d2(⟨d⟩f)

and if f ∈Mk(N,χ) then

am(Tnf) =
∑

d|(m,n)

χ(d)dk−1amn/d2(f)

Proof. Since the space decomposes as a direct sum of χ-eigenspaces we only have to consider the second case,

as the first case is implied by it. Assume f ∈Mk(N,χ). We prove this with induction on r with Tpr . Our base

case is r = 1 because this formula agrees with the formula for Tp. Then since Tpr = TpTpr−1 − pk−1⟨p⟩Tpr−2 ,

am(Tpr ) + χ(p)pk−1am(Tpr−2) = am(Tp(Tpr−1f))

Using the Fourier coefficient formula for Tp we get

am(Tpr ) = amp(Tpr−1f) + χ(p)pk−1am/p(Tpr−1f)− χ(p)pk−1am(Tpr−2)

Assuming the formula holds for r − 1, r − 2 we will have

am(Tpr ) =
∑

d|(mp,pr−1)

χ(d)dk−1ampr/d2(f) + χ(p)pk−1
∑

d|(m/p,pr−1)

χ(d)dk−1ampr−2/d2(f)

−χ(p)pk−1
∑

d|(m,pr−2)

χ(d)dk−1ampr−2/d2(f)

We can rewrite the first term as

ampr (f) +
∑

d|(mp,pr−1), d>1

χ(d)dk−1ampr/d2(f).

Compare these terms with those in the sum in the subtraction term. Every d′ in the first sum will be pd

with d in the third sum. If we re-index, this will result in an extra factor χ(p)pk−1 in the first sum, causing

the two to cancel. We are left with

am(Tpr ) = ampr (f) + χ(p)pk−1
∑

d|(m/p,pr−1)

χ(d)dk−1ampr−2/d2(f).

If we re-index by multiplying every d by p and bring in the first term as the d = 1 term then we get our

desired form.

Now we set n = n1n2 and we have to check am(Tn1
(Tn2

f)) where (n1, n2) = 1. Assuming the formula works

for Tn1
and Tn2

we get

am(Tn1(Tn2f)) =
∑

d|(m,n1)

χ(d)dk−1amn1/d2(Tn2f)

=
∑

d|(m,n1)

χ(d)dk−1
∑

e|(mn1/d2,n2)

χ(e)ek−1amn1n2/d2e2(f)
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Since (n1, n2) = 1, we must have that (d, e) = 1. Then setting ℓ = de we get

am(Tnf) =
∑

ℓ|(m,n)

χ(ℓ)ℓk−1amn/ℓ2(f),

completing the proof. □

Now we can take a look at an application of Hecke operators. Recall the discriminant function

∆ = g32 − 27g23 .

This is given the Fourier expansion ∆(z) =
∑∞

n=1 τ(n)q
n where τ is the Ramanujan tau function. While

calculating coefficients of the series Ramanujan noticed a few interesting phenomena. This led him to his

conjecture about these values.

Theorem 4.8 (Ramanujan tau conjecture). Given the modular discriminant function

∆(z) =

∞∑
n=1

τ(n)qn = q

∞∏
n=0

(1− qn)
24

= q − 24q2 + 252q3 − 1472q4 + 4830q5 − . . .

(a) τ(n)τ(m) = τ(mn) if (m,n) = 1

(b) For prime p and j ∈ N we have τ(pj+1) = τ(p)τ(pj)− p11τ(pj−1)

(c) For prime p, |τ(p)| ≤ 2p11/2

The third part of the conjecture follows from the Weil conjectures which were proved by Deligne in 1974

[Del74]. This is much more involved and cannot be included in this paper. However, the first two statements

were proved by Mordell in 1917 [Mor17], with what are now known as Hecke operators. That is the proof

that will be shown.

Proof. Recall that ∆(z) is a modular form of weight 12 but also notice that the coefficient a0 in the Fourier

series is 0. This means that it is also a cusp form. Recall that the space of weight 12 cusp forms S12(SL2(Z))
has dimension 1. We know that the Hecke operator takes S12(SL2(Z))→ S12(SL2(Z)). This means that if

we apply Tn to this function, we must have Tn∆ = λn∆ because every cusp form in S12(SL2(Z)) must be a

scalar multiple of ∆. Apply Tn to ∆ and see what effect it has on its first coefficient. We get

a1(Tn∆) =
∑

d|(1,n)

dk−1an/d2(⟨d⟩∆) = an(∆).

This means that

Tn∆ = τ(n)q + · · · .

Since this must be a scalar multiple of ∆ we must have that Tn∆ = τ(n)∆. Since TmTn = Tmn if (m,n) = 1

and we know that the eigenvalue of Tn is τ(n) we get that τ(m)τ(n)∆ = TnTm∆ = Tmn∆ = τ(mn)∆ which

implies τ(m)τ(n) = τ(mn) when (m,n) = 1.

For the second part let’s apply Tp to ∆. If we look at the coefficient of pr(which is τ(p)τ(pr) because τ(p)

is the eigenvalue) we get

τ(p)τ(pr) = apr+1(∆) + p11apr−1(⟨p⟩∆)
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Since we’re dealing with SL2(Z), the diamond operator is trivial and is just the identity, meaning that

apr−1(⟨p⟩∆) = apr−1(∆) = τ(pr−1). Rearranging, we get the formula

τ(pr+1) = τ(p)τ(pr)− p11τ(pr−1).

□

Since we have these two relations we can now say something about the associated L-function with the τ

function, which is that its Euler product is given as

L(∆, s) =

∞∑
n=1

τ(n)

ns
=

∏
p prime

1

1− τ(p)p−s + p11−2s
.

5. Inner Products, Eigenforms, and Newforms

We’ve already seen that the space of modular forms and the space of cusp forms are both vector spaces.

To study the the space of cusp forms further (specifically Sk(Γ1(N))) we want to make it an inner product

space by defining an inner product operator between two cusp forms.

We first define the hyperbolic measure for τ = x+ iy ∈ H as

dµ(τ) =
dx dy

y2

One can check that acting on τ with a matrix γ ∈ SL2(Z) doesn’t change the differential; in other words

dµ(γτ) = dµ(τ). We want to integrate this over the modular curve X(Γ) given a congruence subgroup Γ.

Let the volume of X(Γ) be VΓ =
∫
X(Γ)

dµ(τ). We define the inner product as the integral φdµ(τ) where

φ(τ) = f(τ)g(τ)(Im(τ))k

. We’re able to integrate this over X(Γ) because φ is Γ-invariant.

Definition 5.1. The Petersson inner product ⟨f, g⟩ : Sk(Γ)× Sk(Γ)→ C is defined by

⟨f, g⟩Γ =
1

VΓ

∫
XΓ

f(τ)g(τ)(Im(τ))kdµ(τ)

Now that we’ve made the space of cusp forms an inner product space we can define adjoint operators.

Recall that given a linear operator T and ”vectors” u, v the adjoint operator T ∗ satisfies the condition

⟨Tu, v⟩ = ⟨u, T ∗v⟩.

An operator is considered normal if it commutes with its adjoint (TT ∗ = T ∗T ). We will now prove some

results showing when a Hecke operator is normal and an important consequence of it.

We first need a lemma describing the adjoints of ⟨p⟩ and Tp.

Lemma 5.1. [DS05] For congruence subgroup Γ and matrix α ∈ GL+
2 (Q) set α′ as det(α)α−1. Then

(a) If α−1Γα ⊂ SL2(Z) then for f ∈ Sk(Γ) and g ∈ Sk(α−1Γα),

⟨f [α]k, g⟩α−1Γα = ⟨f, g[α′]k⟩Γ
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(b) For f, g ∈ Sk(Γ),
⟨f [ΓαΓ]k, g⟩ = ⟨f, g[Γα′Γ]k⟩.

Proof. First note that the integral of φ(α(τ)) over α−1Γα\H is the same as the integral of φ(τ) over X(Γ)

due to a change of variables and the fact that the hyperbolic measure is invariant. We have∫
α−1Γα\H

(f [α]k)(τ)(g(τ))(Im τ)kdµ(τ) =

∫
α−1Γα\H

(detα)k−1f(α(τ))(j(α, τ))−kg(τ)(Im τ)kdµ(τ)

To switch the integral to be over X(Γ) we need to make the transformation α(τ) 7→ τ . This is the same

thing as τ 7→ α′(τ). We get∫
X(Γ)

(detα)k−1f(τ)(j(α, α′(τ)))−kg(α′(τ))(Imα′(τ))kdµ(τ).

Remember that that Im(α′(τ)) = (detα′) Im(τ)(j(α′, τ))−2 and notice that detα′ = detα. We also have

that

j(α, α′(τ)) = c(α′(τ)) + d =
(ca′ + dc′)τ + (cb′ + dd′)

c′τ + d′
=

j(αα′, τ)

j(α′, τ)
=

det(α)

j(α′, τ)
.

Putting all of these together and simplifying we get∫
X(Γ)

f(τ)(g[α′]k)(τ)(Im(τ))kdµ(τ).

Since the volumes of α−1Γα\H and X(Γ) will be the same, part (a) is proven.

For the second part realize that if βj are orbit representatives for ΓαΓ then we can use β′
j = det(βj)β

−1
j as

orbit representatives for Γα′Γ. Remember that f [βj ]k is invariant on β−1
j Γβj

⋂
Γ so when we decompose the

double coset operator within the inner product we get

⟨f [ΓαΓ]k, g⟩Γ =
∑
j

⟨f [βj ]k, g⟩β−1
j Γβj

⋂
Γ

Using part (a) this becomes ∑
j

⟨f, g[β′
j ]k⟩Γ⋂

βΓ
j β−1

j
= ⟨f, g[Γα′Γ]k⟩Γ,

which proves part (b). □

Using this we can show the normality of the operators.

Theorem 5.2. [DS05] For the inner product space Sk(Γ1(N)) and p ∤ N the Hecke operators ⟨p⟩ and Tp are

normal operators.

Proof. Recall that ⟨p⟩ is [α]k where α ∈ Γ0(N) and the bottom right element is p (mod N). Since Γ1(N)

is a normal subgroup of Γ0(N) we know that α−1Γα = Γ. Then we have ⟨p⟩∗ = ([α]k)
∗ = ([α′]k). Since

det(α) = 1, α′ = α−1 meaning ([α]k)
∗ = [α−1]k so ⟨p⟩∗ = ⟨p⟩−1 so ⟨p⟩ is normal.

For Tp we have

T ∗
p = [Γ1(N)

[
1 0
0 p

]
Γ1(N)]∗k = [Γ1(N)

[
p 0
0 1

]
Γ1(N)]k.
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We need to get this as a product of
[
1 0
0 p

]
and other matrices to get it into a form similar to that of Tp.

It is true that for mp− nN = 1, [
p 0
0 1

]
=
[

1 n
N mp

]−1 [ 1 0
0 p

]
[ p n
N m ]

Note that the first matrix in the product is part of Γ1(N) and the third is part of Γ0(N). Substituting and

simplifying, we get

Γ1(N)
[
p 0
0 1

]
Γ1(N) = Γ1(N)

[
1 n
N mp

]−1 [ 1 0
0 p

]
[ p n
N m ] Γ1(N)

= Γ1(N)
[
1 0
0 p

]
[ p n
N m ] [ p n

N m ]
−1

Γ1(N) [ p n
N m ]

= Γ1(N)
[
1 0
0 p

]
Γ1(N) [ p n

N m ] .

We can split this into Tp acting on [ p n
N m ]k acting on f . Realize that since mp − nN = 1, it must be that

mp ≡ 1 (mod N) so p−1 ≡ m (mod N). This means that [ p n
N m ] is the diamond operator ⟨p⟩−1. Thus we

have shown that T ∗
p = ⟨p⟩−1Tp. One can check that this commutes with Tp meaning that Tp is normal. □

Now that we have that the Hecke operators Tp and ⟨p⟩ are normal we can invoke the Spectral Theorem.

Recall the Spectral Theorem from linear algebra states that if there is a family of commuting normal operators

on a vector space then there exists an orthonormal basis of simultaneous eigenvectors for all operators in

said family. Furthermore, each operator is diagonalizable.

In our case, the commuting normal operators are the Hecke operators and the eigenvectors are called

eigenforms.

Theorem 5.3. The space of cusp forms Sk(Γ1(N)) has an orthogonal basis of simultaneous eigenforms for

the Hecke operators {⟨n⟩, Tn : (n,N) = 1}.

One thing we can do is look at what happens to forms when we change levels. A simple observation we

can make is that if we have M | N then Sk(Γ1(M)) ⊃ Sk(Γ1(N)). Our goal here is to introduce the idea of

oldforms and newforms. Essentially, oldforms are those forms coming from a lower level and newforms are

forms that don’t arise from smaller levels.

Definition 5.4. For d | N let φd be the map

φd : Sk(Γ1(N/d))→ Sk(Γ1(N))

given by

f 7→ f [αd]k

where

αd =

(
d 0

0 1

)
.

One can check that for a matrix γ ∈ Γ1(M), αdγ ∈ Γ1(N). From here we can define the space of oldforms.

Definition 5.5. For Sk(Γ1(N)), the subspace of oldforms Sk(Γ1(N))old is given as

Sk(Γ1(N))old = {φd(f) for d | N, d ̸= N, f ∈ Sk(Γ1(N/d))}



ON MODULAR FORMS AND HECKE OPERATORS 17

The new space Sk(Γ1(N))new is the orthogonal complement of the oldforms. Formally,

Sk(Γ1(N))new = {f ∈ Sk(Γ1(N)), ⟨f, g⟩ = 0 for all g ∈ Sk(Γ1(N))old}

We can now make the definition for an eigenform.

Definition 5.6. A modular formMk(Γ1(N)) that is an eigenform for the operators Tn and ⟨n⟩ is a Hecke

eigenform. When a1(f) = 1, it is called a normalized eigenform. A newform is a normalized eigenform

in Sk(Γ1(N))new.

Furthermore, because of these eigenvalues we get a general statement about L-functions of these normal-

ized newforms.

Theorem 5.7. Given normalized newform f ∈ Sk(N,χ), where f =
∑∞

n=0 anq
n, the associated L-function

L(f, s) =
∑∞

n=1 ann
−s has Euler product expansion

L(f, s) =
∏
p

(1− ap(f)p
−s + χ(p)pk−1−2s)−1

Proof. Since f ∈ Sk(N,χ) is a normalized newform, it is a Hecke eigenform with multiplicative Fourier

coefficients:

amn = aman if (m,n) = 1, and apr = apapr−1 − χ(p)pk−1apr−2 .

This recurrence matches the expansion of(
1− app

−s + χ(p)pk−1−2s
)−1

=

∞∑
r=0

aprp−rs.

By multiplicativity, we obtain the Euler product:

L(f, s) =

∞∑
n=1

an
ns

=
∏
p

(
1− app

−s + χ(p)pk−1−2s
)−1

. □

6. Correspondences and the Eichler-Shimura Relation

Now let’s focus on Hecke operators’ geometric aspect through correspondences. [RS17]

Definition 6.1. Given curves X and X ′ a correspondence T : X ⇝ X ′ is a pair of surjective morphisms

α and β such that

X
α←−Y

β−→X ′

We will think about Hecke operators as Hecke correspondences Tp : X0(N) ⇝ X0(N) where p ∤ N . The

diagram for this correspondence will be

X0(N)
α←−X0(pN)

β−→X0(N)

The curve X0(N) can be viewed as a set of isomorphism classes for elliptic curves (called a moduli space),

specifically pairs (E,C) where E is an elliptic curve and C ⊂ E is a cyclic subgroup of order N . Likewise,
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X0(pN) classifies isomorphism classes of (E,G) where G = C ⊕D and D ⊂ E is a cyclic subgroup of order

p. Since (p,N) = 1 we know that G is a cyclic subgroup of order pN . We can define the maps α and β as

α : (E,G)→ (E,C)

β : (E,G)→ (E, (C +D)/D)

The map α is given by Γ0(pN)\H→ Γ0(N)\H (note that it is a subset so it’s the identity map). Likewise

the map β is given by the isomorphism

Γ0(pN)\H ∼=

(
p 0

0 1

)
Γ0(N)

(
p 0

0 1

)−1

\H

which sends z 7→

(
p 0

0 1

)
z = pz due to conjugation. Both α and β induce pullback maps on 1-forms. These

are just taking a function from one space and putting onto another via composition. In this case it is X0(N)

and X0(pN). α gives us the pullback maps

α∗ : H0(X0(N),Ω1)→ H0(X0(pN),Ω1).

where H0(X,Ω1) is just the space of 1-forms on X (called the sheaf cohomology group). Recall that weight k

modular forms correspond to k/2-fold differential forms, meaning we can identify S2(Γ) with H0(X(Γ),Ω1).

This means that α∗ is taking S2(X0(N))→ S2(X0(pN)). Then we define Tp as the map that first pulls back

with α∗ and then pushes forward with β∗ giving us Tp = β∗ ◦ α∗. We define the pushforward

β∗ : H0(X0(pN),Ω1)→ H0(X0(N),Ω1)

to be the unique differential β∗(ω) ∈ H0(X0(N),Ω1) given ω ∈ H0(X0(pN),Ω1) such that∫
γ

ω =

∫
β−1(γ)

β∗(ω)

for all paths γ.

Recall the idea of a divisor from before. It’s true that the operator Tp also gives us a map between

divisors. Say that the degree of a map α is the number of points in the preimage for a generic point in the

image (for example the map x 7→ x2 has degree 2). Say that α has degree d. The pullback map α∗ on a

divisor D =
∑

i ni · xi will give α∗(D) =
∑

i ni

(∑
j ej · zj

)
where zj is in the preimage of α and ej is the

multiplicity of that point. Then we see that this takes degree n divisors on X to degree dn divisors on Y . If

we apply β∗ to this we get a divisor on X ′. If we set n = 0, only focusing on degree 0 divisors on X we get

a map to degree 0 divisors on X ′. Going back to Tp we see that

Tp : Div0(X0(N))→ Div0(X0(N)).

Furthermore this induces a map on Jacobians, which are abelian varieties. The Jacobian of a curve is the

quotient

J(X0(N)) = J0(N) =
Div0(X0(N))

principal divisors
,
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where principal divisors are divisors of the form div(f) for some function f . We know from Proposition 3.2

that for compact Riemann surfaces these always have degree 0. We get

Tp : J0(N)→ J0(N).

This is an endomorphism (map to itself). To understand the Eichler–Shimura congruence relation, we

must study how this map behaves when we reduce modulo a prime p ∤ N . It is true X0(N) has good reduction

at p when p ∤ N . It turns out that you can consider J0(N) as an abelian variety over the finite field Fp.

Note that this has characteristic p (we have to add the multiplicative identity p times to get the additive

identity). To state the relation we need to introduce the Frobenius endomorphism denoted as ”Frob” and

its transpose Verschiebung denoted as ”Ver”.

Definition 6.2. For an abelian variety of characteristic p the operator Frobp is induced by the map x 7→ xp.

In our case the variety in question J0(N)Fp . Now we can state the Eichler-Shimura Congruence Relation.

Theorem 6.3 (Eichler-Shimura Congruence Relation). Let N be a positive integer let p ∤ N be a prime.

Then

Tp = Frobp +Verp ∈ End(J0(N)Fp
)

Remark. The Eichler–Shimura relation implies that, for a newform f ∈ S2(Γ0(N)), the eigenvalue of the

Hecke operator Tp equals the trace of Frobenius acting on a certain 2-dimensional ℓ-adic Galois representation

ρf : Gal(Q/Q)→ GL2(Qℓ)

attached to f [Del71]. That is,

tr(ρf (Frobp)) = ap(f) and det(ρf (Frobp)) = p

where ap(f) is the p-th Fourier coefficient of f . In this way, the arithmetic of modular forms becomes encoded

in the Galois action on torsion points of Jacobians of modular curves.
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