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|
History

© 1853: Kronecker announced proof of the Kronecker-Weber Theorem:

Theorem (Kronecker-Weber)

Every finite abelian extension of Q is contained within Q((my) for some
m > 0.

@ 1886: Weber published “corrected” proof of KW.

© 1896: Hilbert published first correct proof of KW and made
conjectures about class fields like the Hilbert class field.

@ 1920: Takagi announced his Existence Theorem.

© 1927: Artin made the isomorphism in the Existence Theorem explicit
by proving Artin Reciprocity.
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A number field K is a finite extension of Q. If we have that L is a field
extension of K, we write L/K.

Example

0 Q(v2)/Q={a+bv2|abeQ}
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Number Fields

A number field K is a finite extension of Q. If we have that L is a field
extension of K, we write L/K.

Example

Q@ Q(v2)/Q={a+bv2|abeQ}
@ Q(v3,v5)/Q={a+bV3+cV5+dVi5]a,b,c,d€Q}.
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N
Number Fields

A number field K is a finite extension of Q. If we have that L is a field
extension of K, we write L/K.

Example

Q Q(v2)/Q={a+bVv2]|abecQ}.
@ Q(V3,v5)/Q={a+bV3+cV5+dV15]a,b,c,d cQ}.
Q@ Q(v2)/Q={a+bV2+cV4|a,b,cecQ}
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Number Fields

A number field K is a finite extension of Q. If we have that L is a field
extension of K, we write L/K.

Example

Q Q(v2)/Q={a+bv2|abecQ}

@ Q(v3,v5)/Q={a+bV3+cV5+dVi5]a,b,c,d€Q}.
© Q(v2)/Q = {a+b¥2+ /| ab,ceq).

Q Q)/Q="{a0+ a1+ +ap2(f | 2 € Q).
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N
Number Fields

A number field K is a finite extension of Q. If we have that L is a field
extension of K, we write L/K.

Example

Q Q(v2)/Q={a+bv2|abecQ}

@ Q(v3,v5)/Q={a+bV3+cV5+dVi5]a,b,c,d€Q}.
© Q(v2)/Q = {a+b¥2+ /| ab,ceq).

Q Q)/Q="{a0+ a1+ +ap2(f | 2 € Q).

Each of these has a ring of integers, and they are Z[/2],

Z[V3, 3(1+/5)], Z[V/2], and Z[(,] respectively. The ring of integers of a
number field K is denoted Ok, and is always a free Z-module of finite
rank [K : Q] i.e. it looks like Z[a, ..., a,] (but nisn't necessarily 1).
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A key theorem in Algebraic Number Theory is that ideals in Ok have
unique factorization.
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Number Fields continued

A key theorem in Algebraic Number Theory is that ideals in Ok have
unique factorization. That is, there is some set of prime ideals p1, p2,
such that all ideals are a unique product of powers of these ideals.
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Number Fields continued

A key theorem in Algebraic Number Theory is that ideals in Ok have
unique factorization. That is, there is some set of prime ideals p1,po,. ..
such that all ideals are a unique product of powers of these ideals.

Example
Let K = Q(i), Ok = Z][i].
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such that all ideals are a unique product of powers of these ideals.

Example

Let K = Q(i), Ok = Z][i]. It turns out Z[i] is a PID, so ideals are
essentially the same as elements of the ring.

@ (3) remains inert since it can't be factored further in Z[i].
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Number Fields continued

A key theorem in Algebraic Number Theory is that ideals in Ok have
unique factorization. That is, there is some set of prime ideals p1,po,. ..
such that all ideals are a unique product of powers of these ideals.

Example

Let K = Q(i), Ok = Z][i]. It turns out Z[i] is a PID, so ideals are
essentially the same as elements of the ring.

@ (3) remains inert since it can't be factored further in Z[i].

o (5) splits as (5) = (1 +2/)(1 — 2/).
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Galois Extensions

Galois extensions of number fields are very nice. For simplicity, let's
consider a general extension K/Q. If p is a rational prime, we can factor
the ideal (p) = {pa | @ € Ok} in Ok, and we get something like this:
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the ideal (p) = {pa | @ € Ok} in Ok, and we get something like this:

(p) = pT g

for distinct prime ideals p; C Ok. We say that p;'s lie above the ideal (p).
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Galois Extensions

Galois extensions of number fields are very nice. For simplicity, let's
consider a general extension K/Q. If p is a rational prime, we can factor
the ideal (p) = {pa | @ € Ok} in Ok, and we get something like this:

(p) = b pg
for distinct prime ideals p; C Ok. We say that p;'s lie above the ideal (p).
Now suppose K/Q is Galois. Then, Gal(K/Q) acts on the set
{p1,...,pg} because if o € Gal(K/Q), o(p;) is also a prime ideal above

(p). It turns out that it also acts transitively on this set. In particular, for
1<i,j < g, thereis o € Gal(K/Q) such that o(p;) = p;.
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Galois Extensions 2

This fact allows us to prove the following.
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This fact allows us to prove the following.

Theorem

Let K/Q be Galois and p a rational prime. Suppose

(p) =pf - pg

where the p;’s are distinct primes. Then, e = - - - =
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Choose o € Gal(K/Q) such that o(p1) = p;.
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Galois Extensions 2

This fact allows us to prove the following.

Theorem

Let K/Q be Galois and p a rational prime. Suppose

(p) =pf - pg

where the p;’s are distinct primes. Then, e; = --- = eg.

Proof.
Choose o € Gal(K/Q) such that o(p1) = p;.We get

(p) = o((p)) = pi* -~ o(bg)*.
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N
Galois Extensions 2

This fact allows us to prove the following.
Theorem

Let K/Q be Galois and p a rational prime. Suppose

(p) =pf - pg

where the p;’s are distinct primes. Then, e; = --- = eg.

Proof.
Choose o € Gal(K/Q) such that o(p1) = p;.We get

(p) = o((p)) = pi* -~ o(bg)*.

o permutes the p;'s, so each of the primes in this factorization is distinct.
Therefore, we can compare the exponent of p; in the two factorizations we
have and conclude e; = ¢;. |
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Galois Extensions 3

We call e = e; = - - - = ¢; the ramification index of p, andif e > 1, p is
ramified.
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We call e = e; = - - - = ¢; the ramification index of p, andif e > 1, p is
ramified. For example, 2 is ramified in Q(i) because (2) = (1 + ).

Theorem

Let e and g be defined as before. Then, eg | [K : Q).
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We call e = e; = - - - = ¢; the ramification index of p, andif e > 1, p is
ramified. For example, 2 is ramified in Q(i) because (2) = (1 + ).

Theorem
Let e and g be defined as before. Then, eg | [K : Q). ‘

We say a prime completely splits if g = [K : Q).
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N
Galois Extensions 3

We call e = e; = - - - = ¢; the ramification index of p, andif e > 1, p is
ramified. For example, 2 is ramified in Q(i) because (2) = (1 + ).

Theorem
Let e and g be defined as before. Then, eg | [K : Q). ‘

We say a prime completely splits if g = [K : Q).

Theorem

For an extension K/Q, p ramifies < p | Ak. ‘

For Ok = Z[a], Ak is the discriminant of the minimal polynomial of «.
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Cyclotomic Extensions

The cyclotomic extensions of Q are of the form Q(()/Q for m > 1.
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Cyclotomic Extensions

The cyclotomic extensions of Q are of the form Q(¢m)/Q for m > 1. We
have Gal(Q(¢m)/Q) = (Z/mZ)*. Elements of the Galois Group look like

O'r:Cmg)Crrna
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Cyclotomic Extensions

The cyclotomic extensions of Q are of the form Q(¢m)/Q for m > 1. We
have Gal(Q(¢m)/Q) = (Z/mZ)*. Elements of the Galois Group look like
0 Cm = Cmy Or0s = Oys

where the indices of the o's are taken mod m.
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The cyclotomic extensions of Q are of the form Q(¢m)/Q for m > 1. We
have Gal(Q(¢m)/Q) = (Z/mZ)*. Elements of the Galois Group look like
0 Cm = Cmy Or0s = Oys

where the indices of the ¢'s are taken mod m. For p an odd prime, we can
calculate the discriminant of Q((,), which is a fun calculation to do:
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Cyclotomic Extensions
The cyclotomic extensions of Q are of the form Q(¢m)/Q for m > 1. We
have Gal(Q(¢m)/Q) = (Z/mZ)*. Elements of the Galois Group look like
0 Cm = Cmy Or0s = Oys

where the indices of the ¢'s are taken mod m. For p an odd prime, we can
calculate the discriminant of Q((,), which is a fun calculation to do:

Doy = I (G —a)

1<i<j<p—1
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have Gal(Q(¢m)/Q) = (Z/mZ)*. Elements of the Galois Group look like
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Cyclotomic Extensions
The cyclotomic extensions of Q are of the form Q(¢m)/Q for m > 1. We
have Gal(Q(¢m)/Q) = (Z/mZ)*. Elements of the Galois Group look like
0 Cm = Cmy Or0s = Oys

where the indices of the ¢'s are taken mod m. For p an odd prime, we can
calculate the discriminant of Q((,), which is a fun calculation to do:

Aoy = I @G- =(1%p2

1<i<j<p—1

Thus, only p ramifies in Q((p). In general, only primes dividing m ramify

in Q(¢m).
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Cyclotomic Extensions

The cyclotomic extensions of Q are of the form Q(¢m)/Q for m > 1. We
have Gal(Q(¢m)/Q) = (Z/mZ)*. Elements of the Galois Group look like

or:Cm— Crrna 0r0s = Ors
where the indices of the ¢'s are taken mod m. For p an odd prime, we can
calculate the discriminant of Q((,), which is a fun calculation to do:
p—1

Mgy = I (G -&)P=(1)7p 2

1<i<j<p—1

Thus, only p ramifies in Q((p). In general, only primes dividing m ramify
in Q(Cm).
Example

In Z[¢7], (7) = (7,¢7 — 1)® which comes from the factorization
XX x4 x2 +x+1=(x—1)° (mod 7).

—r = — SaRe:
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Cyclotomic Extensions 2

The only primes that completely split in Q(¢n) are (p) for p=1
(mod m). For example, in Q({5), we have
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Cyclotomic Extensions 2
The only primes that completely split in Q(¢n) are (p) for p=1

(mod m). For example, in Q({5), we have

(11) = (11,¢5 — 3)(11,¢s — 4)(11,¢5 — 5)(11,¢5 — 9)
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Cyclotomic Extensions 2

The only primes that completely split in Q(¢n) are (p) for p=1
(mod m). For example, in Q({5), we have
(11) = (117 C5 - 3)(117 <5 - 4)(117 C5 - 5)(117 C5 - 9)

while

(19) = (19, ¢2 +5Cs + 1)(19, ¢Z + 15¢s + 1)
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Cyclotomic Extensions 2

The only primes that completely split in Q(¢n) are (p) for p=1
(mod m). For example, in Q({5), we have
(11) = (117 C5 - 3)(117 <5 - 4)(117 C5 - 5)(117 C5 - 9)
while
(19) = (19, ¢Z + 5¢s + 1)(19, (5 + 15¢5 + 1)

which come from the factorizations
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Cyclotomic Extensions 2

The only primes that completely split in Q(¢n) are (p) for p=1
(mod m). For example, in Q({5), we have
(11) = (117 C5 - 3)(117 <5 - 4)(117 C5 - 5)(117 C5 - 9)
while
(19) = (19, ¢Z + 5¢s + 1)(19, (5 + 15¢5 + 1)

which come from the factorizations

A+ x+1=(x-3)(x—4)(x—-5)(x—9) (mod 11)
XA x+1= (2 +5x+1)(x* +15x +1)  (mod 19)
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Abelian Extesions

A Galois extension L/K is called abelian if Gal(L/K) is abelian.
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Abelian Extesions

A Galois extension L/K is called abelian if Gal(L/K) is abelian. By Galois
Theory, the subextensions of Q((,)/Q have Galois groups corresponding
to the subgroups of (Z/mZ)*, which are all abelian.
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Abelian Extesions

A Galois extension L/K is called abelian if Gal(L/K) is abelian. By Galois
Theory, the subextensions of Q((,)/Q have Galois groups corresponding
to the subgroups of (Z/mZ)*, which are all abelian.

For example, for p an odd prime, there is a quadratic extension of Q
contained in Q((p) (all quadratic extensions are abelian). This field is

Q(v/p*) where p* = £p and p* =1 (mod 4). Some of you know this
better as Gauss sums.
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N
Abelian Extesions

A Galois extension L/K is called abelian if Gal(L/K) is abelian. By Galois
Theory, the subextensions of Q((,)/Q have Galois groups corresponding
to the subgroups of (Z/mZ)*, which are all abelian.

For example, for p an odd prime, there is a quadratic extension of Q
contained in Q((p) (all quadratic extensions are abelian). This field is
Q(v/p*) where p* = £p and p* =1 (mod 4). Some of you know this
better as Gauss sums.

Example

o Q(v5) C Q(¢s) and (s — (2 — (3 + (& = V5.
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N
Abelian Extesions

A Galois extension L/K is called abelian if Gal(L/K) is abelian. By Galois
Theory, the subextensions of Q((,)/Q have Galois groups corresponding
to the subgroups of (Z/mZ)*, which are all abelian.

For example, for p an odd prime, there is a quadratic extension of Q
contained in Q((p) (all quadratic extensions are abelian). This field is

Q(v/p*) where p* = £p and p* =1 (mod 4). Some of you know this
better as Gauss sums.

Example

° Q(v5) CQ(¢s) and G5 — ¢ — 2+ ¢F = V5.
o QW=7 CQ)and G+E -EG+@F -G - =V-T.
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Abelian Extesions

A Galois extension L/K is called abelian if Gal(L/K) is abelian. By Galois
Theory, the subextensions of Q((,)/Q have Galois groups corresponding
to the subgroups of (Z/mZ)*, which are all abelian.

For example, for p an odd prime, there is a quadratic extension of Q
contained in Q((p) (all quadratic extensions are abelian). This field is
Q(v/p*) where p* = £p and p* =1 (mod 4). Some of you know this
better as Gauss sums.

Example
° Q(v5) CQ(¢s) and G5 — ¢ — 2+ ¢F = V5.
o QW=7 CQ)and G+E -EG+@F -G - =V-T.

The Kronecker-Weber Theorem states that all finite abelian extensions of
Q arise from taking subextensions of the cyclotomic extensions.
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-
Statements of Class Field Theory: Moduli

For a number field K, a modulus m is a formal product of prime ideals of
Ok and real embeddings of K. We write m = mgm,, where:
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Statements of Class Field Theory: Moduli

For a number field K, a modulus m is a formal product of prime ideals of
Ok and real embeddings of K. We write m = mgm,, where:

@ The finite part mg is just an ideal of Ok.
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Statements of Class Field Theory: Moduli

For a number field K, a modulus m is a formal product of prime ideals of
Ok and real embeddings of K. We write m = mgm,, where:

@ The finite part mg is just an ideal of Ok.

@ The infinite part my, is a set of real embeddings (injective field
homomorphisms 7 : K — R) of K.
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Statements of Class Field Theory: Moduli

For a number field K, a modulus m is a formal product of prime ideals of
Ok and real embeddings of K. We write m = mgm,, where:

@ The finite part mg is just an ideal of Ok.

@ The infinite part my, is a set of real embeddings (injective field
homomorphisms 7 : K — R) of K.

Example

@ All moduli of Q are of the form m or moo for a positive integer m.
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-
Statements of Class Field Theory: Moduli

For a number field K, a modulus m is a formal product of prime ideals of
Ok and real embeddings of K. We write m = mgm,, where:

@ The finite part mg is just an ideal of Ok.

@ The infinite part my, is a set of real embeddings (injective field
homomorphisms 7 : K — R) of K.

Example
@ All moduli of Q are of the form m or moo for a positive integer m.

@ The moduli of Q(/) are just the ideals of Z[i] because Q(i) has no
real embeddings.
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Statements of Class Field Theory: Ray Class Groups

The Ray Class Groups are generalizations of the normal class group. Let K
be a number field and m = mgmy, a modulus in what continues.
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Statements of Class Field Theory: Ray Class Groups

The Ray Class Groups are generalizations of the normal class group. Let K

be a number field and m = mgmy, a modulus in what continues.
Definition

o Let /¢ be the multiplicative group of fractional ideals of O which
are relatively prime to m.
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Statements of Class Field Theory: Ray Class Groups

The Ray Class Groups are generalizations of the normal class group. Let K
be a number field and m = mgmy, a modulus in what continues.
Definition
o Let /¢ be the multiplicative group of fractional ideals of O which
are relatively prime to m.

o Let P2 be the multiplicative group of principal fractional ideals of the
form aOk (o € K*) such that @« =1 (mod mg) and for any
T € My, T(a) > 0.
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-
Statements of Class Field Theory: Ray Class Groups

The Ray Class Groups are generalizations of the normal class group. Let K
be a number field and m = mgmy, a modulus in what continues.
Definition
o Let /¢ be the multiplicative group of fractional ideals of O which
are relatively prime to m.

o Let P2 be the multiplicative group of principal fractional ideals of the
form aOk (o € K*) such that @« =1 (mod mg) and for any
T € My, T(a) > 0.

Then, we define Clg = I2/PR. For m = (1), we get Clg = CI(K), the
usual class group.
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-
Statements of Class Field Theory: Ray Class Groups

The Ray Class Groups are generalizations of the normal class group. Let K
be a number field and m = mgmy, a modulus in what continues.
Definition
o Let /¢ be the multiplicative group of fractional ideals of O which
are relatively prime to m.

o Let P2 be the multiplicative group of principal fractional ideals of the
form aOk (o € K*) such that @« =1 (mod mg) and for any
T € My, T(a) > 0.

Then, we define Clg = I2/PR. For m = (1), we get Clg = CI(K), the
usual class group.

Example

Clg = (Z/mZ)* /{£1} and CIF*> = (Z/mZ)* for m > 1.
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Statements of Class Field Theory: Existence Theorem

During WW1, Teiji Takagi proved the following (this is only a corollary of
the Existence Theorem):
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During WW1, Teiji Takagi proved the following (this is only a corollary of
the Existence Theorem):

Theorem (Existence Theorem)

Let K be a number field. For every modulus m, there is a unique ray class
field Ky such that Gal(Kn/K) = Cl%
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Statements of Class Field Theory: Existence Theorem

During WW1, Teiji Takagi proved the following (this is only a corollary of
the Existence Theorem):

Theorem (Existence Theorem)

Let K be a number field. For every modulus m, there is a unique ray class

field Ky such that Gal(Kn/K) = Cl% and the prime ideals that completely
split are those contained in P}.

Tanvir Ahmed CFT and the Kronecker-Weber Theorem July 13, 2025 13 /14



Statements of Class Field Theory: Existence Theorem

During WW1, Teiji Takagi proved the following (this is only a corollary of
the Existence Theorem):

Theorem (Existence Theorem)

Let K be a number field. For every modulus m, there is a unique ray class
field Ky such that Gal(Kn/K) = Cl% and the prime ideals that completely
split are those contained in P. Furthermore, every finite abelian
extension of K is a subfield of one of these Ky 's.
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Kronecker-Weber Theorem

Let K = Q. We want to know what the ray class fields are. It turns out
Kmoo = Q((m). This is because

Tanvir Ahmed CFT and the Kronecker-Weber Theorem July 13, 2025 14 /14



Kronecker-Weber Theorem

Let K = Q. We want to know what the ray class fields are. It turns out
Kmoo = Q((m). This is because

Gal(Q(¢m)/Q) = CIg™ = (Z/mZ)”
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Kronecker-Weber Theorem

Let K = Q. We want to know what the ray class fields are. It turns out
Kmoo = Q((m). This is because

Gal(Q(¢m)/Q) = CIg™ = (Z/mZ)”

and the primes that split in Q({s) are exactly the primes in
PR ={2Q| 2 =1 (mod m)} (i.e. the primes that are 1 mod m).
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Kronecker-Weber Theorem

Let K = Q. We want to know what the ray class fields are. It turns out
Kmoo = Q((m). This is because

Gal(Q(¢m)/Q) = CIg™ = (Z/mZ)”

and the primes that split in Q({s) are exactly the primes in

PR ={2Q]| 2 =1 (mod m)} (i.e. the primes that are 1 mod m). It
turns out that K, the other possible type of ray class fields for @, are of
the form Q(¢m + ¢,t), which are index-2 subfields of Q((,). Either way,
we get the following:
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Kronecker-Weber Theorem

Let K = Q. We want to know what the ray class fields are. It turns out
Kmoo = Q((m). This is because

Gal(Q(¢m)/Q) = CIg™ = (Z/mZ)”

and the primes that split in Q({s) are exactly the primes in
PR ={2Q]| 2 =1 (mod m)} (i.e. the primes that are 1 mod m). It
turns out that K, the other possible type of ray class fields for @, are of

the form Q(¢m + ¢,t), which are index-2 subfields of Q((,). Either way,
we get the following:

Theorem (Kronecker-Weber)

Every finite abelian extension of Q is contained within Q((m) for some
m > 0.
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