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History

1 1853: Kronecker announced proof of the Kronecker-Weber Theorem:

Theorem (Kronecker-Weber)

Every finite abelian extension of Q is contained within Q(ζm) for some
m > 0.

2 1886: Weber published “corrected” proof of KW.

3 1896: Hilbert published first correct proof of KW and made
conjectures about class fields like the Hilbert class field.

4 1920: Takagi announced his Existence Theorem.

5 1927: Artin made the isomorphism in the Existence Theorem explicit
by proving Artin Reciprocity.
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Number Fields

A number field K is a finite extension of Q. If we have that L is a field
extension of K , we write L/K .

Example

1 Q(
√
2)/Q = {a+ b

√
2 | a, b ∈ Q}.

2 Q(
√
3,
√
5)/Q = {a+ b

√
3 + c

√
5 + d

√
15 | a, b, c, d ∈ Q}.

3 Q( 3
√
2)/Q = {a+ b 3

√
2 + c 3

√
4 | a, b, c ∈ Q}.

4 Q(ζp)/Q = {a0 + a1ζp + · · ·+ ap−2ζ
p−2
p | ai ∈ Q}.

Each of these has a ring of integers, and they are Z[
√
2],

Z[
√
3, 12(1 +

√
5)], Z[ 3

√
2], and Z[ζp] respectively. The ring of integers of a

number field K is denoted OK , and is always a free Z-module of finite
rank [K : Q] i.e. it looks like Z[α1, . . . , αn] (but n isn’t necessarily 1).
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Number Fields continued

A key theorem in Algebraic Number Theory is that ideals in OK have
unique factorization.

That is, there is some set of prime ideals p1, p2, . . .
such that all ideals are a unique product of powers of these ideals.

Example

Let K = Q(i), OK = Z[i ]. It turns out Z[i ] is a PID, so ideals are
essentially the same as elements of the ring.

(3) remains inert since it can’t be factored further in Z[i ].
(5) splits as (5) = (1 + 2i)(1− 2i).
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Galois Extensions

Galois extensions of number fields are very nice. For simplicity, let’s
consider a general extension K/Q. If p is a rational prime, we can factor
the ideal (p) = {pα | α ∈ OK} in OK , and we get something like this:

(p) = pe11 · · · pegg

for distinct prime ideals pi ⊂ OK . We say that pi ’s lie above the ideal (p).

Now suppose K/Q is Galois. Then, Gal(K/Q) acts on the set
{p1, . . . , pg} because if σ ∈ Gal(K/Q), σ(pi ) is also a prime ideal above
(p). It turns out that it also acts transitively on this set. In particular, for
1 ≤ i , j ≤ g , there is σ ∈ Gal(K/Q) such that σ(pi ) = pj .
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Galois Extensions 2

This fact allows us to prove the following.

Theorem

Let K/Q be Galois and p a rational prime. Suppose

(p) = pe11 · · · pegg

where the pi ’s are distinct primes.Then, e1 = · · · = eg .

Proof.

Choose σ ∈ Gal(K/Q) such that σ(p1) = pi .We get

(p) = σ((p)) = pe1i · · ·σ(pg )eg .

σ permutes the pi ’s, so each of the primes in this factorization is distinct.
Therefore, we can compare the exponent of pi in the two factorizations we
have and conclude e1 = ei . ■
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Galois Extensions 3

We call e = e1 = · · · = eg the ramification index of p, and if e > 1, p is
ramified.

For example, 2 is ramified in Q(i) because (2) = (1 + i)2.

Theorem

Let e and g be defined as before. Then, eg | [K : Q].

We say a prime completely splits if g = [K : Q].

Theorem

For an extension K/Q, p ramifies ⇐⇒ p | ∆K .

For OK = Z[α], ∆K is the discriminant of the minimal polynomial of α.
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Cyclotomic Extensions

The cyclotomic extensions of Q are of the form Q(ζm)/Q for m > 1.

We
have Gal(Q(ζm)/Q) = (Z/mZ)×. Elements of the Galois Group look like

σr : ζm → ζrm, σrσs = σrs

where the indices of the σ’s are taken mod m. For p an odd prime, we can
calculate the discriminant of Q(ζp), which is a fun calculation to do:

∆Q(ζp) =
∏

1≤i<j≤p−1

(ζ ip − ζ jp)
2 = (−1)

p−1
2 pp−2.

Thus, only p ramifies in Q(ζp). In general, only primes dividing m ramify
in Q(ζm).

Example

In Z[ζ7], (7) = (7, ζ7 − 1)6 which comes from the factorization
x6 + x5 + x4 + x3 + x2 + x + 1 ≡ (x − 1)6 (mod 7).
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Cyclotomic Extensions 2

The only primes that completely split in Q(ζm) are (p) for p ≡ 1
(mod m). For example, in Q(ζ5), we have

(11) = (11, ζ5 − 3)(11, ζ5 − 4)(11, ζ5 − 5)(11, ζ5 − 9)

while
(19) = (19, ζ25 + 5ζ5 + 1)(19, ζ25 + 15ζ5 + 1)

which come from the factorizations

x4 + x3 + x2 + x + 1 ≡ (x − 3)(x − 4)(x − 5)(x − 9) (mod 11)

x4 + x3 + x2 + x + 1 ≡ (x2 + 5x + 1)(x2 + 15x + 1) (mod 19)
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Abelian Extesions

A Galois extension L/K is called abelian if Gal(L/K ) is abelian.

By Galois
Theory, the subextensions of Q(ζm)/Q have Galois groups corresponding
to the subgroups of (Z/mZ)×, which are all abelian.

For example, for p an odd prime, there is a quadratic extension of Q
contained in Q(ζp) (all quadratic extensions are abelian). This field is
Q(

√
p∗) where p∗ = ±p and p∗ ≡ 1 (mod 4). Some of you know this

better as Gauss sums.

Example

Q(
√
5) ⊂ Q(ζ5) and ζ5 − ζ25 − ζ35 + ζ45 =

√
5.

Q(
√
−7) ⊂ Q(ζ7) and ζ7 + ζ27 − ζ37 + ζ47 − ζ57 − ζ67 =

√
−7.

The Kronecker-Weber Theorem states that all finite abelian extensions of
Q arise from taking subextensions of the cyclotomic extensions.
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Statements of Class Field Theory: Moduli

For a number field K , a modulus m is a formal product of prime ideals of
OK and real embeddings of K . We write m = m0m∞ where:

The finite part m0 is just an ideal of OK .

The infinite part m∞ is a set of real embeddings (injective field
homomorphisms τ : K → R) of K .

Example

All moduli of Q are of the form m or m∞ for a positive integer m.

The moduli of Q(i) are just the ideals of Z[i ] because Q(i) has no
real embeddings.
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Statements of Class Field Theory: Ray Class Groups

The Ray Class Groups are generalizations of the normal class group. Let K
be a number field and m = m0m∞ a modulus in what continues.

Definition

Let ImK be the multiplicative group of fractional ideals of OK which
are relatively prime to m.

Let Pm
K be the multiplicative group of principal fractional ideals of the

form αOK (α ∈ K×) such that α ≡ 1 (mod m0) and for any
τ ∈ m∞, τ(α) > 0.

Then, we define ClmK = ImK /Pm
K . For m = (1), we get ClmK = Cl(K ), the

usual class group.

Example

ClmQ = (Z/mZ)×/{±1} and Clm∞
Q = (Z/mZ)× for m > 1.
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Statements of Class Field Theory: Existence Theorem

During WW1, Teiji Takagi proved the following (this is only a corollary of
the Existence Theorem):

Theorem (Existence Theorem)

Let K be a number field. For every modulus m, there is a unique ray class
field Km such that Gal(Km/K ) ∼= ClmK and the prime ideals that completely
split are those contained in Pm

K . Furthermore, every finite abelian
extension of K is a subfield of one of these Km’s.
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Kronecker-Weber Theorem

Let K = Q. We want to know what the ray class fields are. It turns out
Km∞ = Q(ζm). This is because

Gal(Q(ζm)/Q) ∼= Clm∞
Q

∼= (Z/mZ)×

and the primes that split in Q(ζm) are exactly the primes in
Pm∞
K = { a

bQ | a
b ≡ 1 (mod m)} (i.e. the primes that are 1 mod m). It

turns out that Km, the other possible type of ray class fields for Q, are of
the form Q(ζm + ζ−1

m ), which are index-2 subfields of Q(ζm). Either way,
we get the following:

Theorem (Kronecker-Weber)

Every finite abelian extension of Q is contained within Q(ζm) for some
m > 0.
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