Class Field Theory and the Kronecker-Weber Theorem

Tanvir Ahmed

July 13, 2025

1853: Kronecker announced proof of the Kronecker-Weber Theorem:

1853: Kronecker announced proof of the Kronecker-Weber Theorem:

Theorem (Kronecker-Weber)

1853: Kronecker announced proof of the Kronecker-Weber Theorem:

Theorem (Kronecker-Weber)

Every finite abelian extension of \mathbb{Q} is contained within $\mathbb{Q}(\zeta_m)$ for some m > 0.

2 1886: Weber published "corrected" proof of KW.

1853: Kronecker announced proof of the Kronecker-Weber Theorem:

Theorem (Kronecker-Weber)

- 2 1886: Weber published "corrected" proof of KW.
- 1896: Hilbert published first correct proof of KW and made conjectures about class fields like the Hilbert class field.

1853: Kronecker announced proof of the Kronecker-Weber Theorem:

Theorem (Kronecker-Weber)

- 2 1886: Weber published "corrected" proof of KW.
- 1896: Hilbert published first correct proof of KW and made conjectures about class fields like the Hilbert class field.
- 1920: Takagi announced his Existence Theorem.

1853: Kronecker announced proof of the Kronecker-Weber Theorem:

Theorem (Kronecker-Weber)

- 2 1886: Weber published "corrected" proof of KW.
- 1896: Hilbert published first correct proof of KW and made conjectures about class fields like the Hilbert class field.
- 1920: Takagi announced his Existence Theorem.
- 1927: Artin made the isomorphism in the Existence Theorem explicit by proving Artin Reciprocity.

A number field K is a finite extension of \mathbb{Q} . If we have that L is a field extension of K, we write L/K.

A number field K is a finite extension of \mathbb{Q} . If we have that L is a field extension of K, we write L/K.

A number field K is a finite extension of \mathbb{Q} . If we have that L is a field extension of K, we write L/K.

- ② $\mathbb{Q}(\sqrt{3}, \sqrt{5})/\mathbb{Q} = \{a + b\sqrt{3} + c\sqrt{5} + d\sqrt{15} \mid a, b, c, d \in \mathbb{Q}\}.$

A number field K is a finite extension of \mathbb{Q} . If we have that L is a field extension of K, we write L/K.

- **3** $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q} = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\}.$

A number field K is a finite extension of \mathbb{Q} . If we have that L is a field extension of K, we write L/K.

- **3** $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q} = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\}.$

A number field K is a finite extension of \mathbb{O} . If we have that L is a field extension of K, we write L/K.

Example

- ② $\mathbb{O}(\sqrt{3}, \sqrt{5})/\mathbb{O} = \{a + b\sqrt{3} + c\sqrt{5} + d\sqrt{15} \mid a, b, c, d \in \mathbb{O}\}.$
- **3** $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q} = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\}.$

Each of these has a ring of integers, and they are $\mathbb{Z}[\sqrt{2}]$, $\mathbb{Z}[\sqrt{3}, \frac{1}{2}(1+\sqrt{5})], \mathbb{Z}[\sqrt[3]{2}], \text{ and } \mathbb{Z}[\zeta_p]$ respectively. The ring of integers of a number field K is denoted \mathcal{O}_K , and is always a free \mathbb{Z} -module of finite rank $[K:\mathbb{Q}]$ i.e. it looks like $\mathbb{Z}[\alpha_1,\ldots,\alpha_n]$ (but *n* isn't necessarily 1).

July 13, 2025

A key theorem in Algebraic Number Theory is that ideals in \mathcal{O}_K have unique factorization.

A key theorem in Algebraic Number Theory is that ideals in \mathcal{O}_K have unique factorization. That is, there is some set of prime ideals $\mathfrak{p}_1,\mathfrak{p}_2,\ldots$ such that all ideals are a unique product of powers of these ideals.

A key theorem in Algebraic Number Theory is that ideals in \mathcal{O}_K have unique factorization. That is, there is some set of prime ideals $\mathfrak{p}_1,\mathfrak{p}_2,\ldots$ such that all ideals are a unique product of powers of these ideals.

Let
$$K = \mathbb{Q}(i)$$
, $\mathcal{O}_K = \mathbb{Z}[i]$.

A key theorem in Algebraic Number Theory is that ideals in \mathcal{O}_K have unique factorization. That is, there is some set of prime ideals $\mathfrak{p}_1,\mathfrak{p}_2,\ldots$ such that all ideals are a unique product of powers of these ideals.

Example

Let $K = \mathbb{Q}(i)$, $\mathcal{O}_K = \mathbb{Z}[i]$. It turns out $\mathbb{Z}[i]$ is a PID, so ideals are essentially the same as elements of the ring.

A key theorem in Algebraic Number Theory is that ideals in \mathcal{O}_K have unique factorization. That is, there is some set of prime ideals $\mathfrak{p}_1,\mathfrak{p}_2,\ldots$ such that all ideals are a unique product of powers of these ideals.

Example

Let $K = \mathbb{Q}(i)$, $\mathcal{O}_K = \mathbb{Z}[i]$. It turns out $\mathbb{Z}[i]$ is a PID, so ideals are essentially the same as elements of the ring.

• (3) remains **inert** since it can't be factored further in $\mathbb{Z}[i]$.

A key theorem in Algebraic Number Theory is that ideals in \mathcal{O}_K have unique factorization. That is, there is some set of prime ideals $\mathfrak{p}_1,\mathfrak{p}_2,\ldots$ such that all ideals are a unique product of powers of these ideals.

Example

Let $K = \mathbb{Q}(i)$, $\mathcal{O}_K = \mathbb{Z}[i]$. It turns out $\mathbb{Z}[i]$ is a PID, so ideals are essentially the same as elements of the ring.

- (3) remains **inert** since it can't be factored further in $\mathbb{Z}[i]$.
- (5) **splits** as (5) = (1+2i)(1-2i).

Galois extensions of number fields are very nice. For simplicity, let's consider a general extension K/\mathbb{Q} . If p is a rational prime, we can factor the ideal $(p) = \{p\alpha \mid \alpha \in \mathcal{O}_K\}$ in \mathcal{O}_K , and we get something like this:

Galois extensions of number fields are very nice. For simplicity, let's consider a general extension K/\mathbb{Q} . If p is a rational prime, we can factor the ideal $(p) = \{p\alpha \mid \alpha \in \mathcal{O}_K\}$ in \mathcal{O}_K , and we get something like this:

$$(p)=\mathfrak{p}_1^{e_1}\cdots\mathfrak{p}_g^{e_g}$$

for distinct prime ideals $\mathfrak{p}_i \subset \mathcal{O}_K$. We say that \mathfrak{p}_i 's lie **above** the ideal (p).

Galois extensions of number fields are very nice. For simplicity, let's consider a general extension K/\mathbb{Q} . If p is a rational prime, we can factor the ideal $(p) = \{p\alpha \mid \alpha \in \mathcal{O}_K\}$ in \mathcal{O}_K , and we get something like this:

$$(p)=\mathfrak{p}_1^{e_1}\cdots\mathfrak{p}_g^{e_g}$$

for distinct prime ideals $\mathfrak{p}_i \subset \mathcal{O}_K$. We say that \mathfrak{p}_i 's lie **above** the ideal (p).

Now suppose K/\mathbb{Q} is Galois. Then, $Gal(K/\mathbb{Q})$ acts on the set $\{\mathfrak{p}_1,\ldots,\mathfrak{p}_g\}$ because if $\sigma\in Gal(K/\mathbb{Q})$, $\sigma(\mathfrak{p}_i)$ is also a prime ideal above (p).

Galois extensions of number fields are very nice. For simplicity, let's consider a general extension K/\mathbb{Q} . If p is a rational prime, we can factor the ideal $(p) = \{p\alpha \mid \alpha \in \mathcal{O}_K\}$ in \mathcal{O}_K , and we get something like this:

$$(p)=\mathfrak{p}_1^{e_1}\cdots\mathfrak{p}_g^{e_g}$$

for distinct prime ideals $\mathfrak{p}_i \subset \mathcal{O}_K$. We say that \mathfrak{p}_i 's lie **above** the ideal (p).

Now suppose K/\mathbb{Q} is Galois. Then, $\operatorname{Gal}(K/\mathbb{Q})$ acts on the set $\{\mathfrak{p}_1,\ldots,\mathfrak{p}_g\}$ because if $\sigma\in\operatorname{Gal}(K/\mathbb{Q})$, $\sigma(\mathfrak{p}_i)$ is also a prime ideal above (p). It turns out that it also acts *transitively* on this set. In particular, for $1\leq i,j\leq g$, there is $\sigma\in\operatorname{Gal}(K/\mathbb{Q})$ such that $\sigma(\mathfrak{p}_i)=\mathfrak{p}_j$.

This fact allows us to prove the following.

This fact allows us to prove the following.

Theorem

Let K/\mathbb{Q} be Galois and p a rational prime.

This fact allows us to prove the following.

Theorem

Let K/\mathbb{Q} be Galois and p a rational prime. Suppose

$$(p)=\mathfrak{p}_1^{e_1}\cdots\mathfrak{p}_g^{e_g}$$

where the \mathfrak{p}_i 's are distinct primes.

This fact allows us to prove the following.

Theorem

Let K/\mathbb{Q} be Galois and p a rational prime. Suppose

$$(p)=\mathfrak{p}_1^{e_1}\cdots\mathfrak{p}_g^{e_g}$$

where the \mathfrak{p}_i 's are distinct primes. Then, $e_1 = \cdots = e_g$.

This fact allows us to prove the following.

Theorem

Let K/\mathbb{Q} be Galois and p a rational prime. Suppose

$$(p)=\mathfrak{p}_1^{e_1}\cdots\mathfrak{p}_g^{e_g}$$

where the \mathfrak{p}_i 's are distinct primes. Then, $e_1 = \cdots = e_g$.

Proof.

Choose $\sigma \in Gal(K/\mathbb{Q})$ such that $\sigma(\mathfrak{p}_1) = \mathfrak{p}_i$.

This fact allows us to prove the following.

Theorem

Let K/\mathbb{Q} be Galois and p a rational prime. Suppose

$$(p)=\mathfrak{p}_1^{e_1}\cdots\mathfrak{p}_g^{e_g}$$

where the \mathfrak{p}_i 's are distinct primes. Then, $e_1 = \cdots = e_g$.

Proof.

Choose $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ such that $\sigma(\mathfrak{p}_1) = \mathfrak{p}_i$. We get

$$(p) = \sigma((p)) = \mathfrak{p}_i^{e_1} \cdots \sigma(\mathfrak{p}_g)^{e_g}.$$

This fact allows us to prove the following.

Theorem

Let K/\mathbb{Q} be Galois and p a rational prime. Suppose

$$(p)=\mathfrak{p}_1^{e_1}\cdots\mathfrak{p}_g^{e_g}$$

where the \mathfrak{p}_i 's are distinct primes. Then, $e_1 = \cdots = e_g$.

Proof.

Choose $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ such that $\sigma(\mathfrak{p}_1) = \mathfrak{p}_i$. We get

$$(p) = \sigma((p)) = \mathfrak{p}_i^{e_1} \cdots \sigma(\mathfrak{p}_g)^{e_g}.$$

 σ permutes the \mathfrak{p}_i 's, so each of the primes in this factorization is distinct. Therefore, we can compare the exponent of \mathfrak{p}_i in the two factorizations we have and conclude $e_1=e_i$.

We call $e = e_1 = \cdots = e_g$ the **ramification index** of p, and if e > 1, p is ramified.

We call $e = e_1 = \cdots = e_g$ the **ramification index** of p, and if e > 1, p is ramified. For example, 2 is ramified in $\mathbb{Q}(i)$ because $(2) = (1+i)^2$.

We call $e = e_1 = \cdots = e_g$ the **ramification index** of p, and if e > 1, p is ramified. For example, 2 is ramified in $\mathbb{Q}(i)$ because $(2) = (1+i)^2$.

Theorem

Let e and g be defined as before. Then, eg $| [K : \mathbb{Q}]$.

We call $e = e_1 = \cdots = e_g$ the **ramification index** of p, and if e > 1, p is ramified. For example, 2 is ramified in $\mathbb{Q}(i)$ because $(2) = (1+i)^2$.

Theorem

Let e and g be defined as before. Then, eg $| [K : \mathbb{Q}].$

We say a prime completely splits if $g = [K : \mathbb{Q}]$.

We call $e=e_1=\cdots=e_g$ the **ramification index** of p, and if e>1, p is ramified. For example, 2 is ramified in $\mathbb{Q}(i)$ because $(2)=(1+i)^2$.

Theorem

Let e and g be defined as before. Then, eg $| [K : \mathbb{Q}]$.

We say a prime completely splits if $g = [K : \mathbb{Q}]$.

Theorem

For an extension K/\mathbb{Q} , p ramifies $\iff p \mid \Delta_K$.

We call $e=e_1=\cdots=e_g$ the **ramification index** of p, and if e>1, p is ramified. For example, 2 is ramified in $\mathbb{Q}(i)$ because $(2)=(1+i)^2$.

Theorem

Let e and g be defined as before. Then, eg $| [K : \mathbb{Q}]$.

We say a prime completely splits if $g = [K : \mathbb{Q}]$.

Theorem

For an extension K/\mathbb{Q} , p ramifies $\iff p \mid \Delta_K$.

For $\mathcal{O}_K = \mathbb{Z}[\alpha]$, Δ_K is the discriminant of the minimal polynomial of α .

The cyclotomic extensions of \mathbb{Q} are of the form $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ for m>1.

The cyclotomic extensions of \mathbb{Q} are of the form $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ for m>1. We have $\mathrm{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})=(\mathbb{Z}/m\mathbb{Z})^{\times}$. Elements of the Galois Group look like

The cyclotomic extensions of \mathbb{Q} are of the form $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ for m>1. We have $\mathrm{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})=(\mathbb{Z}/m\mathbb{Z})^{\times}$. Elements of the Galois Group look like

$$\sigma_r:\zeta_m\to\zeta_m^r,$$

The cyclotomic extensions of \mathbb{Q} are of the form $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ for m>1. We have $\mathrm{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})=(\mathbb{Z}/m\mathbb{Z})^{\times}$. Elements of the Galois Group look like

$$\sigma_r: \zeta_m \to \zeta_m^r, \ \sigma_r \sigma_s = \sigma_{rs}$$

where the indices of the σ 's are taken mod m.

The cyclotomic extensions of \mathbb{Q} are of the form $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ for m>1. We have $\mathrm{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})=(\mathbb{Z}/m\mathbb{Z})^{\times}$. Elements of the Galois Group look like

$$\sigma_r: \zeta_m \to \zeta_m^r, \ \sigma_r \sigma_s = \sigma_{rs}$$

where the indices of the σ 's are taken mod m. For p an odd prime, we can calculate the discriminant of $\mathbb{Q}(\zeta_p)$, which is a fun calculation to do:

The cyclotomic extensions of \mathbb{Q} are of the form $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ for m>1. We have $\mathrm{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})=(\mathbb{Z}/m\mathbb{Z})^{\times}$. Elements of the Galois Group look like

$$\sigma_r: \zeta_m \to \zeta_m^r, \ \sigma_r \sigma_s = \sigma_{rs}$$

where the indices of the σ 's are taken mod m. For p an odd prime, we can calculate the discriminant of $\mathbb{Q}(\zeta_p)$, which is a fun calculation to do:

$$\Delta_{\mathbb{Q}(\zeta_p)} = \prod_{1 \leq i < j \leq p-1} (\zeta_p^i - \zeta_p^j)^2$$

The cyclotomic extensions of \mathbb{Q} are of the form $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ for m>1. We have $\mathrm{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})=(\mathbb{Z}/m\mathbb{Z})^{\times}$. Elements of the Galois Group look like

$$\sigma_r: \zeta_m \to \zeta_m^r, \ \sigma_r \sigma_s = \sigma_{rs}$$

where the indices of the σ 's are taken mod m. For p an odd prime, we can calculate the discriminant of $\mathbb{Q}(\zeta_p)$, which is a fun calculation to do:

$$\Delta_{\mathbb{Q}(\zeta_p)} = \prod_{1 \leq i < j \leq p-1} (\zeta_p^i - \zeta_p^j)^2 = (-1)^{\frac{p-1}{2}} p^{p-2}.$$

The cyclotomic extensions of \mathbb{Q} are of the form $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ for m>1. We have $\mathrm{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})=(\mathbb{Z}/m\mathbb{Z})^{\times}$. Elements of the Galois Group look like

$$\sigma_r: \zeta_m \to \zeta_m^r, \ \sigma_r \sigma_s = \sigma_{rs}$$

where the indices of the σ 's are taken mod m. For p an odd prime, we can calculate the discriminant of $\mathbb{Q}(\zeta_p)$, which is a fun calculation to do:

$$\Delta_{\mathbb{Q}(\zeta_p)} = \prod_{1 \leq i < j \leq p-1} (\zeta_p^i - \zeta_p^j)^2 = (-1)^{\frac{p-1}{2}} p^{p-2}.$$

Thus, only p ramifies in $\mathbb{Q}(\zeta_p)$. In general, only primes dividing m ramify in $\mathbb{Q}(\zeta_m)$.

The cyclotomic extensions of \mathbb{Q} are of the form $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ for m>1. We have $\mathrm{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})=(\mathbb{Z}/m\mathbb{Z})^{\times}$. Elements of the Galois Group look like

$$\sigma_r: \zeta_m \to \zeta_m^r, \ \sigma_r \sigma_s = \sigma_{rs}$$

where the indices of the σ 's are taken mod m. For p an odd prime, we can calculate the discriminant of $\mathbb{Q}(\zeta_p)$, which is a fun calculation to do:

$$\Delta_{\mathbb{Q}(\zeta_p)} = \prod_{1 \leq i < j \leq p-1} (\zeta_p^i - \zeta_p^j)^2 = (-1)^{\frac{p-1}{2}} p^{p-2}.$$

Thus, only p ramifies in $\mathbb{Q}(\zeta_p)$. In general, only primes dividing m ramify in $\mathbb{Q}(\zeta_m)$.

Example

In $\mathbb{Z}[\zeta_7]$, $(7) = (7, \zeta_7 - 1)^6$ which comes from the factorization $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \equiv (x - 1)^6 \pmod{7}$.

The only primes that completely split in $\mathbb{Q}(\zeta_m)$ are (p) for $p \equiv 1 \pmod{m}$. For example, in $\mathbb{Q}(\zeta_5)$, we have

The only primes that completely split in $\mathbb{Q}(\zeta_m)$ are (p) for $p \equiv 1 \pmod{m}$. For example, in $\mathbb{Q}(\zeta_5)$, we have

$$(11) = (11, \zeta_5 - 3)(11, \zeta_5 - 4)(11, \zeta_5 - 5)(11, \zeta_5 - 9)$$

The only primes that completely split in $\mathbb{Q}(\zeta_m)$ are (p) for $p \equiv 1 \pmod{m}$. For example, in $\mathbb{Q}(\zeta_5)$, we have

$$(11) = (11, \zeta_5 - 3)(11, \zeta_5 - 4)(11, \zeta_5 - 5)(11, \zeta_5 - 9)$$

while

$$(19) = (19, \zeta_5^2 + 5\zeta_5 + 1)(19, \zeta_5^2 + 15\zeta_5 + 1)$$

The only primes that completely split in $\mathbb{Q}(\zeta_m)$ are (p) for $p \equiv 1 \pmod{m}$. For example, in $\mathbb{Q}(\zeta_5)$, we have

$$(11) = (11, \zeta_5 - 3)(11, \zeta_5 - 4)(11, \zeta_5 - 5)(11, \zeta_5 - 9)$$

while

$$(19) = (19, \zeta_5^2 + 5\zeta_5 + 1)(19, \zeta_5^2 + 15\zeta_5 + 1)$$

which come from the factorizations

The only primes that completely split in $\mathbb{Q}(\zeta_m)$ are (p) for $p \equiv 1 \pmod{m}$. For example, in $\mathbb{Q}(\zeta_5)$, we have

$$(11) = (11, \zeta_5 - 3)(11, \zeta_5 - 4)(11, \zeta_5 - 5)(11, \zeta_5 - 9)$$

while

$$(19) = (19, \zeta_5^2 + 5\zeta_5 + 1)(19, \zeta_5^2 + 15\zeta_5 + 1)$$

which come from the factorizations

$$x^{4} + x^{3} + x^{2} + x + 1 \equiv (x - 3)(x - 4)(x - 5)(x - 9) \pmod{11}$$
$$x^{4} + x^{3} + x^{2} + x + 1 \equiv (x^{2} + 5x + 1)(x^{2} + 15x + 1) \pmod{19}$$

A Galois extension L/K is called abelian if Gal(L/K) is abelian.

A Galois extension L/K is called abelian if $\operatorname{Gal}(L/K)$ is abelian. By Galois Theory, the subextensions of $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ have Galois groups corresponding to the subgroups of $(\mathbb{Z}/m\mathbb{Z})^{\times}$, which are all abelian.

A Galois extension L/K is called abelian if $\operatorname{Gal}(L/K)$ is abelian. By Galois Theory, the subextensions of $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ have Galois groups corresponding to the subgroups of $(\mathbb{Z}/m\mathbb{Z})^{\times}$, which are all abelian.

For example, for p an odd prime, there is a quadratic extension of $\mathbb Q$ contained in $\mathbb Q(\zeta_p)$ (all quadratic extensions are abelian). This field is $\mathbb Q(\sqrt{p^*})$ where $p^*=\pm p$ and $p^*\equiv 1\pmod 4$. Some of you know this better as Gauss sums.

A Galois extension L/K is called abelian if $\operatorname{Gal}(L/K)$ is abelian. By Galois Theory, the subextensions of $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ have Galois groups corresponding to the subgroups of $(\mathbb{Z}/m\mathbb{Z})^{\times}$, which are all abelian.

For example, for p an odd prime, there is a quadratic extension of \mathbb{Q} contained in $\mathbb{Q}(\zeta_p)$ (all quadratic extensions are abelian). This field is $\mathbb{Q}(\sqrt{p^*})$ where $p^*=\pm p$ and $p^*\equiv 1\pmod 4$. Some of you know this better as Gauss sums.

Example

 $\bullet \ \mathbb{Q}(\sqrt{5}) \subset \mathbb{Q}(\zeta_5) \ \text{and} \ \zeta_5 - \zeta_5^2 - \zeta_5^3 + \zeta_5^4 = \sqrt{5}.$

A Galois extension L/K is called abelian if $\operatorname{Gal}(L/K)$ is abelian. By Galois Theory, the subextensions of $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ have Galois groups corresponding to the subgroups of $(\mathbb{Z}/m\mathbb{Z})^{\times}$, which are all abelian.

For example, for p an odd prime, there is a quadratic extension of \mathbb{Q} contained in $\mathbb{Q}(\zeta_p)$ (all quadratic extensions are abelian). This field is $\mathbb{Q}(\sqrt{p^*})$ where $p^*=\pm p$ and $p^*\equiv 1\pmod 4$. Some of you know this better as Gauss sums.

Example

- $\bullet \ \mathbb{Q}(\sqrt{5}) \subset \mathbb{Q}(\zeta_5) \ \text{and} \ \zeta_5 \zeta_5^2 \zeta_5^3 + \zeta_5^4 = \sqrt{5}.$
- $\bullet \ \mathbb{Q}(\sqrt{-7}) \subset \mathbb{Q}(\zeta_7) \text{ and } \zeta_7 + \zeta_7^2 \zeta_7^3 + \zeta_7^4 \zeta_7^5 \zeta_7^6 = \sqrt{-7}.$

A Galois extension L/K is called abelian if $\operatorname{Gal}(L/K)$ is abelian. By Galois Theory, the subextensions of $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ have Galois groups corresponding to the subgroups of $(\mathbb{Z}/m\mathbb{Z})^{\times}$, which are all abelian.

For example, for p an odd prime, there is a quadratic extension of \mathbb{Q} contained in $\mathbb{Q}(\zeta_p)$ (all quadratic extensions are abelian). This field is $\mathbb{Q}(\sqrt{p^*})$ where $p^*=\pm p$ and $p^*\equiv 1\pmod 4$. Some of you know this better as Gauss sums.

Example

- $\mathbb{Q}(\sqrt{5}) \subset \mathbb{Q}(\zeta_5)$ and $\zeta_5 \zeta_5^2 \zeta_5^3 + \zeta_5^4 = \sqrt{5}$.
- $\bullet \ \mathbb{Q}(\sqrt{-7}) \subset \mathbb{Q}(\zeta_7) \text{ and } \zeta_7 + \zeta_7^2 \zeta_7^3 + \zeta_7^4 \zeta_7^5 \zeta_7^6 = \sqrt{-7}.$

The Kronecker-Weber Theorem states that all finite abelian extensions of \mathbb{Q} arise from taking subextensions of the cyclotomic extensions.

July 13, 2025

For a number field K, a modulus $\mathfrak m$ is a formal product of prime ideals of $\mathcal O_K$ and real embeddings of K. We write $\mathfrak m=\mathfrak m_0\mathfrak m_\infty$ where:

For a number field K, a modulus $\mathfrak m$ is a formal product of prime ideals of $\mathcal O_K$ and real embeddings of K. We write $\mathfrak m=\mathfrak m_0\mathfrak m_\infty$ where:

• The finite part \mathfrak{m}_0 is just an ideal of \mathcal{O}_K .

For a number field K, a modulus \mathfrak{m} is a formal product of prime ideals of \mathcal{O}_K and real embeddings of K. We write $\mathfrak{m} = \mathfrak{m}_0 \mathfrak{m}_\infty$ where:

- The finite part \mathfrak{m}_0 is just an ideal of \mathcal{O}_K .
- The infinite part \mathfrak{m}_{∞} is a set of real embeddings (injective field homomorphisms $\tau: \mathcal{K} \to \mathbb{R}$) of \mathcal{K} .

For a number field K, a modulus \mathfrak{m} is a formal product of prime ideals of \mathcal{O}_K and real embeddings of K. We write $\mathfrak{m} = \mathfrak{m}_0 \mathfrak{m}_\infty$ where:

- The finite part \mathfrak{m}_0 is just an ideal of \mathcal{O}_K .
- The infinite part \mathfrak{m}_{∞} is a set of real embeddings (injective field homomorphisms $\tau: K \to \mathbb{R}$) of K.

Example

• All moduli of $\mathbb Q$ are of the form m or $m\infty$ for a positive integer m.

For a number field K, a modulus \mathfrak{m} is a formal product of prime ideals of \mathcal{O}_K and real embeddings of K. We write $\mathfrak{m}=\mathfrak{m}_0\mathfrak{m}_\infty$ where:

- The finite part \mathfrak{m}_0 is just an ideal of \mathcal{O}_K .
- The infinite part \mathfrak{m}_{∞} is a set of real embeddings (injective field homomorphisms $\tau: K \to \mathbb{R}$) of K.

Example

- All moduli of $\mathbb Q$ are of the form m or $m\infty$ for a positive integer m.
- The moduli of $\mathbb{Q}(i)$ are just the ideals of $\mathbb{Z}[i]$ because $\mathbb{Q}(i)$ has no real embeddings.

The Ray Class Groups are generalizations of the normal class group. Let K be a number field and $\mathfrak{m} = \mathfrak{m}_0 \mathfrak{m}_\infty$ a modulus in what continues.

The Ray Class Groups are generalizations of the normal class group. Let K be a number field and $\mathfrak{m}=\mathfrak{m}_0\mathfrak{m}_\infty$ a modulus in what continues.

Definition

• Let $I_K^{\mathfrak{m}}$ be the multiplicative group of fractional ideals of \mathcal{O}_K which are relatively prime to \mathfrak{m} .

The Ray Class Groups are generalizations of the normal class group. Let K be a number field and $\mathfrak{m}=\mathfrak{m}_0\mathfrak{m}_\infty$ a modulus in what continues.

Definition

- Let $I_K^{\mathfrak{m}}$ be the multiplicative group of fractional ideals of \mathcal{O}_K which are relatively prime to \mathfrak{m} .
- Let $P_K^{\mathfrak{m}}$ be the multiplicative group of principal fractional ideals of the form $\alpha \mathcal{O}_K$ ($\alpha \in K^{\times}$) such that $\alpha \equiv 1 \pmod{\mathfrak{m}_0}$ and for any $\tau \in \mathfrak{m}_{\infty}$, $\tau(\alpha) > 0$.

The Ray Class Groups are generalizations of the normal class group. Let K be a number field and $\mathfrak{m}=\mathfrak{m}_0\mathfrak{m}_\infty$ a modulus in what continues.

Definition

- Let $I_K^{\mathfrak{m}}$ be the multiplicative group of fractional ideals of \mathcal{O}_K which are relatively prime to \mathfrak{m} .
- Let $P_K^{\mathfrak{m}}$ be the multiplicative group of principal fractional ideals of the form $\alpha \mathcal{O}_K$ ($\alpha \in K^{\times}$) such that $\alpha \equiv 1 \pmod{\mathfrak{m}_0}$ and for any $\tau \in \mathfrak{m}_{\infty}$, $\tau(\alpha) > 0$.

Then, we define $Cl_K^{\mathfrak{m}} = l_K^{\mathfrak{m}}/P_K^{\mathfrak{m}}$. For $\mathfrak{m} = (1)$, we get $Cl_K^{\mathfrak{m}} = Cl(K)$, the usual class group.

The Ray Class Groups are generalizations of the normal class group. Let K be a number field and $\mathfrak{m}=\mathfrak{m}_0\mathfrak{m}_\infty$ a modulus in what continues.

Definition

- Let $I_K^{\mathfrak{m}}$ be the multiplicative group of fractional ideals of \mathcal{O}_K which are relatively prime to \mathfrak{m} .
- Let $P_K^{\mathfrak{m}}$ be the multiplicative group of principal fractional ideals of the form $\alpha \mathcal{O}_K$ ($\alpha \in K^{\times}$) such that $\alpha \equiv 1 \pmod{\mathfrak{m}_0}$ and for any $\tau \in \mathfrak{m}_{\infty}$, $\tau(\alpha) > 0$.

Then, we define $Cl_K^{\mathfrak{m}} = l_K^{\mathfrak{m}}/P_K^{\mathfrak{m}}$. For $\mathfrak{m} = (1)$, we get $Cl_K^{\mathfrak{m}} = Cl(K)$, the usual class group.

Example

$$\mathsf{Cl}^m_\mathbb{Q} = (\mathbb{Z}/m\mathbb{Z})^{ imes}/\{\pm 1\}$$
 and $\mathsf{Cl}^{m\infty}_\mathbb{Q} = (\mathbb{Z}/m\mathbb{Z})^{ imes}$ for $m>1$.

During WW1, Teiji Takagi proved the following (this is only a corollary of the Existence Theorem):

During WW1, Teiji Takagi proved the following (this is only a corollary of the Existence Theorem):

Theorem (Existence Theorem)

Let K be a number field. For every modulus \mathfrak{m} , there is a unique ray class field $K_{\mathfrak{m}}$ such that $Gal(K_{\mathfrak{m}}/K) \cong Cl_K^{\mathfrak{m}}$

During WW1, Teiji Takagi proved the following (this is only a corollary of the Existence Theorem):

Theorem (Existence Theorem)

Let K be a number field. For every modulus \mathfrak{m} , there is a unique ray class field $K_{\mathfrak{m}}$ such that $Gal(K_{\mathfrak{m}}/K) \cong Cl_K^{\mathfrak{m}}$ and the prime ideals that completely split are those contained in $P_K^{\mathfrak{m}}$.

During WW1, Teiji Takagi proved the following (this is only a corollary of the Existence Theorem):

Theorem (Existence Theorem)

Let K be a number field. For every modulus \mathfrak{m} , there is a unique ray class field $K_{\mathfrak{m}}$ such that $Gal(K_{\mathfrak{m}}/K) \cong Cl_K^{\mathfrak{m}}$ and the prime ideals that completely split are those contained in $P_K^{\mathfrak{m}}$. Furthermore, every finite abelian extension of K is a subfield of one of these $K_{\mathfrak{m}}$'s.

Let $K = \mathbb{Q}$. We want to know what the ray class fields are. It turns out $K_{m\infty} = \mathbb{Q}(\zeta_m)$. This is because

Let $K = \mathbb{Q}$. We want to know what the ray class fields are. It turns out $K_{m\infty} = \mathbb{Q}(\zeta_m)$. This is because

$$\mathsf{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q}) \cong \mathsf{Cl}_\mathbb{Q}^{m\infty} \cong (\mathbb{Z}/m\mathbb{Z})^{\times}$$

Let $K=\mathbb{Q}$. We want to know what the ray class fields are. It turns out $K_{m\infty}=\mathbb{Q}(\zeta_m)$. This is because

$$\mathsf{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})\cong \mathsf{Cl}^{m\infty}_\mathbb{Q}\cong (\mathbb{Z}/m\mathbb{Z})^{ imes}$$

and the primes that split in $\mathbb{Q}(\zeta_m)$ are exactly the primes in $P_K^{m\infty} = \{\frac{a}{b}\mathbb{Q} \mid \frac{a}{b} \equiv 1 \pmod{m}\}$ (i.e. the primes that are $1 \mod m$).

Let $K = \mathbb{Q}$. We want to know what the ray class fields are. It turns out $K_{m\infty} = \mathbb{Q}(\zeta_m)$. This is because

$$\mathsf{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})\cong \mathsf{Cl}_\mathbb{Q}^{m\infty}\cong (\mathbb{Z}/m\mathbb{Z})^{ imes}$$

and the primes that split in $\mathbb{Q}(\zeta_m)$ are exactly the primes in $P_K^{m\infty} = \{ \frac{a}{b} \mathbb{Q} \mid \frac{a}{b} \equiv 1 \pmod{m} \}$ (i.e. the primes that are $1 \mod m$). It turns out that K_m , the other possible type of ray class fields for \mathbb{Q} , are of the form $\mathbb{Q}(\zeta_m + \zeta_m^{-1})$, which are index-2 subfields of $\mathbb{Q}(\zeta_m)$. Either way, we get the following:

Let $K = \mathbb{Q}$. We want to know what the ray class fields are. It turns out $K_{m\infty} = \mathbb{Q}(\zeta_m)$. This is because

$$\mathsf{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})\cong \mathsf{Cl}_\mathbb{Q}^{m\infty}\cong (\mathbb{Z}/m\mathbb{Z})^{ imes}$$

and the primes that split in $\mathbb{Q}(\zeta_m)$ are exactly the primes in $P_K^{m\infty}=\{\frac{a}{b}\mathbb{Q}\mid \frac{a}{b}\equiv 1\pmod{m}\}$ (i.e. the primes that are $1\pmod{m}$). It turns out that K_m , the other possible type of ray class fields for \mathbb{Q} , are of the form $\mathbb{Q}(\zeta_m+\zeta_m^{-1})$, which are index-2 subfields of $\mathbb{Q}(\zeta_m)$. Either way, we get the following:

Theorem (Kronecker-Weber)

Every finite abelian extension of \mathbb{Q} is contained within $\mathbb{Q}(\zeta_m)$ for some m > 0.