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Abstract. In this paper, we outline enough class field theory to establish the statement
of Takagi’s Existence Theorem and how the Kronecker-Weber Theorem is the special of the
Existence Theorem where the base field is Q. We also outline a proof of the theorem without
the use of these class field theory statements, many of which are quite difficult to prove.
This approach reduces Kronecker-Weber to proving the theorem over local fields, which are
finite extensions of Qp for primes p.
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1. Introduction

A proof of the Kronecker-Weber Theorem was first announced by Leopold Kronecker in
1853, but the proof was not correct. The statement of the theorem is Theorem 2.1. The
main issue he had in his proof is that he didn’t address extensions of degree a power of 2
properly. Weber then published a proof in 1886, which was largely accepted, but it also had
similar errors to Kronecker. The first correct proof was by Hilbert in 1896, who also made
other conjectures in Algebraic Number Theory, such as about the Hilbert Class Field.

These ideas that Hilbert was working with were the start of Class Field Theory, which
deals with abelian extensions of a field. For example, the Kronecker-Weber Theorem says
that abelian extensions of Q have this special property that they’re subfields of cyclotomic
fields, and it is very easy to prove that subfields of cyclotomic fields are abelian. Thus, being
an abelian extension of Q is equivalent to being a subfield of a cyclotomic field.

One well-known consequence is Gauss Sums. For example, consider the two identities:

±
√
5 = ζ5 − ζ25 − ζ35 + ζ45

±
√
−7 = ζ7 + ζ27 − ζ37 + ζ47 − ζ57 − ζ67

where ζ5 and ζ7 are primitive 5th and 7th roots of unity respectively. What this means in
terms of Kronecker-Weber is that Q(

√
5) ⊂ Q(ζ5) and Q(

√
−7) ⊂ Q(ζ7), so the extensions

Q(
√
5) and Q(

√
−7) have this property of being abelian. In general, if α is an algebraic

number such that Q(α) has this abelian property, α can be expressed as a sum of roots of
unity.

The ideas in class field theory related to this theorem run very deep; although Kronecker-
Weber was proved by the 1900s, it wasn’t until 1920 when Teiji Takagi proved the existence
of ray class fields, which essentially play the role cyclotomic extensions do over Q but for
any base field K. Then, in 1927, Artin made Takagi’s results more explicit by proving
Artin Reciprocity, which not only provides a generalization of reciprocity laws like quadratic
reciprocity (exclusive to abelian extensions), but also advanced the study of class field theory
in general. Around this time, Class Field Theory was also developed through analysis, such
as with Hecke’s work on L-functions and Chebatorev’s Density Theorem.

2. Algebraic Number Theory

In the study of Class Field Theory, knowledge of Algebraic Number Theory and of Galois
Theory is essential, so let us go over some of the basic ideas relevant to these subjects.
In Algebraic Number Theory, we are mostly studying number fields, which are finite
extensions of Q, such as Q(

√
2), Q(i), or Q(

√
2, i). Given a number field K, we might

extend it and obtain a new number field L. In this case, we write L/K to indicate that L
is an extension of K. Any extension of a field can be thought of as a vector space over the
base field, and given an extension L/K, the degree of the extension is the dimension of this
vector space.

For any extension L/K, we can consider the group of automorphisms Aut(L/K), which
consists of all field automorphisms from L to itself which fix all elements of K. In the special
case where L/K is a finite Galois extension, we have |Aut(L/K)| = [L : K], and we write
Gal(L/K) instead of Aut(L/K). Recall that an extension of fields L/K is Galois if both:

(1) Every irreducible polynomial in K[x] which has a root in L has all its roots in L.
(2) The minimal polynomial over K of every α ∈ L is separable.
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A field extension with the first property is normal, and a field extension with the second
property is separable. It is also well-known that an extension L/K is Galois if and only if
L is the splitting field over K of some set of separable polynomials. This characterization is
usually easier to think about.

If an extension L/K is Galois and has an abelian Galois group, we say the extension is
abelian. The main theorem we will prove in this paper is the Kronecker-Weber Theorem,
which can be stated as follows:

Theorem 2.1. Every abelian extension K of Q is contained in Q(ζm) for some m ∈ Z.

As a brief review of Galois theory, we will prove a lemma about the compositum of multiple
field extensions. We will restrict our attention to finite extensions only. In particular, given
a base field F , suppose A and B are finite extensions of F . Then, the smallest field generated
by A and B is called the compositum of A and B, which is denoted by AB. We now prove
the following theorem.

Theorem 2.2. Suppose A/F and B/F are finite Galois extensions of some field F . Then,
A ∩ B/F and AB/F are also finite Galois extensions, and we have 2 canonical injective
maps:

Gal(AB/A) → Gal(B/F )

Gal(AB/F ) → Gal(A/F )×Gal(B/F ).

Furthermore, these are both isomorphisms if and only if F = A ∩B.

Proof. Suppose A and B are the splitting fields of f, g ∈ F [x] respectively. Then, A ∩ B is
the splitting field of gcd(f, g) and AB is the splitting field of fg, so they are both Galois.
Let GA = Gal(AB/A), GB = Gal(AB/B), and GF = Gal(AB/F ). For the first statement,

we consider the map σ → σ |B: GA → Gal(B/F ), which restricts automorphisms in GA to
the field B. This is clearly a homorphism, and it has a trivial kernel since if σ ∈ GA is such
that σ | B fixes all elements of B, σ fixes both A and B. Thus, it must fix AB, and is thus
trivial. Thus, σ → σ |B is injective.

Now we will suppose that F = A ∩ B and prove that the map is surjective. Consider
the image of GA under this homomorphism, which we will denote by GA |B. By the Galois
correspondence, this subgroup is equal to all of Gal(B/F ) = Gal(B/A∩B) if and only if the
fixed field of GA |B is A ∩ B. Suppose β ∈ B is fixed by all elements of GA |B. Then, β is
fixed by all elements of GA, which has fixed field A. Thus, β ∈ A ∩B. Thus, the fixed field
of the image of GA |B is A∩B, so we have an isomorphism between GA and Gal(B/A∩B).

For the second part, we consider the map σ → (σ |A, σ |B) : GF → Gal(A/F )×Gal(B/F ).
This is clearly a homomorphism, and the kernel is injective because if σ ∈ GF maps to
(idA, idB), σ fixes A and B, so it must fix AB. Furthermore, in the case where F = A ∩ B,
using the first isomorphism we established, we have

|GF | = [AB : A ∩B]

= [AB : A][A : A ∩B]

= [B : A ∩B][A : A ∩B]

= |GA||GB|
= |GA ×GB|.
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Thus, we have an isormophism between GF and Gal(A/F ) × Gal(B/F ). One thing we
haven’t shown yet is that if F ̸= A ∩ B, the maps are not isomorphisms. However, in this
case, F is a proper subfield of A ∩ B, so one can check that the orders of the groups on
either side of each isomorphism are not the same, once again given that A ∩B makes these
isomorphisms. ■

Corollary 2.3. Let A and B be abelian extensions of F . Then, AB is also an abelian
extension.

Proof. By Theorem 2.2, Gal(AB/F ) is isomorphic to a subgroup of Gal(A/F )×Gal(B/F ),
which is an abelian group by assumption. Thus, AB/F is abelian. ■

Given a number field K, we let OK denote its ring of integers; the set of elements of
K which satisfy a monic polynomial with integer coefficients (over Q). Though we will not
prove it, it is well known that OK is actually a ring. Here are examples of the ring of integers
for two different number fields.

Example. The ring of integers ofQ(
√
d) for d ∈ Z is a Z[

√
d] if d ≡ 2, 3 mod 4 and Z[1

2
(1+

√
d)]

if d ≡ 1 mod 4. Note we can assume d ̸≡ 0 mod 4 because then, d wouldn’t be squarefree.

Example. The ring of integers of the mth cyclotomic extension Q(ζm) is Z[ζm]. This fact
makes working with cyclotomic extensions easier than arbitrary extensions of Q.

For a number field K, the ideals of OK play a very important role in the multiplicative
structure of the OK . In particular, given two ideals a, b ∈ OK , the product ab is generated
by the set {αβ | α ∈ a, β ∈ b}. It turns out that under this notion of multiplication, the
ideals of OK have unique factorization; that is, there are certain prime ideals p1, p2, · · · ⊂ OK

such that any nonzero ideal a can be written uniquely as a product of these prime ideals.
In the case of K = Q, OK = Z, which is a PID, so every ideal is generated by a single ele-

ment. Thus, multiplication of ideals is essentially the same as multiplication of integers, and
up to sign, integers have unique factorization. The statement of unique ideal factorization
takes care of the sign issue easily however since the ideal (a), the principal ideal generated
by an integer a, is the same as (−a).

OK is not always a PID, and it is often much more complicated than being a PID. Recall
the definition of the class group, which describes the different types of ideals that exist in
OK . Before we can introduce the notion of a class group, we need to quickly define that of
a fractional ideal.

Definition 2.4. Given a number field K, a fractional ideal of OK is of the form αa where
α ∈ K× and α ⊂ OK is an (integral) ideal of OK .

It turns out that under this definition, every nonzero fractional ideal has an inverse; that
is, if A is a nonzero fractional ideal, there is some nonzero fractional ideal A−1 such that
AA−1 = OK . Thus, fractional ideals form an abelian multiplicative group, and we call this
group IK . Furthermore, we define PK to be the group of principal nonzero fractional ideals,
which are of the form αOK for α ∈ K×. Then, we define the class group Cl(K) as

Cl(K) := IK/PK .

The fact that we are modding out by PK indicates that two ideals are in the same ideal
class if their quotient (in this larger group of fractional ideals) is principal. Thus, the class
group contains all the different types of ideals. If the class group is trivial, then all ideals
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are principal, and OK is a PID, which implies that there is unique factorization up to units.
However, the class group is usually more complicated than this.

3. Ramification Theory

From Algebraic Number Theory, we know that given a number field K, while OK is not
necessarily a PID, the set of ideals of OK has unique factorization. In other words, there is
some set of prime ideals such that every nonzero ideal of OK factors uniquely as a product
of powers of those prime ideals. For example, Q is a PID, so the prime ideals of OQ = Z are
(p) for primes p ∈ Z.

Similarly, we can consider Q(i), whose ring of integers Z[i], is also a PID, so the prime
ideals of Z[i] are (a+bi) for Gaussian primes a+bi. Now we will consider how rational primes
p factor in Z[i]. If p ∈ Z is a rational prime, we have NQ(i)/Q(p) = p2, so if p were to split into
primes in Z[i], it could only split into at most two primes, each of which with norm p (we
should really be considering the ideal (p) here, but considering individual elements suffices
since we’re in a PID). If a prime a+ bi ∈ Z[i] has norm p, that means that a2 + b2 = p. By
Fermat’s Christmas Theorem, this is only the case when p ≡ 1 mod 4 or p = 2. In the case
p ≡ 1 mod 4, we just have p = (a + bi)(a − bi). One can check in this case that a + bi and
a− bi are indeed distinct primes, meaning that the ideals (a+ bi) and (a− bi) are distinct.
Thus, in the case p ≡ 1 mod 4, p splits into a product of 2 distinct primes. In the case
p ≡ 3 mod 4, p remains prime in Z[i], and we say that p is inert. However, something funny
happens with p = 2. Recall that 2 = (1 + i)(1− i), but the ideals (1 + i) and (1− i) are the
same since 1− i = −i(1 + i). Thus, we really have

(2) = (1 + i)2.

Thus, we say that 2 ramifies in Z[i]. Our next goal is to be able to generalize all these
notions to general extensions of number fields.

3.1. Primes over general extensions of number fields. Let L/K be an extension of
number fields. Let p be a prime in OK . We can naturally embed OK as a subring of OL, so
we can also regard p as an ideal of OL; in particular, by p, we mean both the prime ideal in
OK as well as the ideal generated by p after being embed into OL, which can also be thought
of as pOL.

For example, the ideal (2) in Z is 2Z. However, when we lift this ideal up to Z[i], it
becomes the ideal generated by 2Z, which is 2Z[i]. Either way, we denote these both by (2),
and it will usually be clear based on context what we mean.

The ideal p ∈ OL will factor into some product of primes. Suppose we have

p = Pe1
1 . . .Peg

g .

where the Pi’s are distinct primes of L and ei ≥ 1 for 1 ≤ i ≤ g. We say that each of the
Pi’s are primes lying above p. We say that p stays inert if g = e1 = 1, which is equivalent
to p staying prime in OL. We say that p splits completely if g = [L : K], and as we will see
later, this will imply that ei = 1 for 1 ≤ i ≤ g. Furthermore, we say that p ramifies if ei > 1
for some 1 ≤ i ≤ g.
Recall that OK is a Dedekind domain, and Dedekind domains have the nice property that

prime ideals are maximal, so p, which is a prime ideal of OK , is also a maximal ideal. Thus,
OK/p is a field. It turns out that OK/p is also a finite field (see [Mar18] Theorem 14, which
is a different statement, but the proof establishes this fact along the way).
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Proposition 3.1. OK/p is a subfield of OL/Pi.

Proof. Consider the map from OK → OL/Pi given by α → α mod Pi. The kernel of this
map is the set of elements in OK which are 0 modPi. Recall that this is exactly OK∩Pi = p.
Thus, there is an injective homomorphism from OK/p → OL/Pi, which is what we wanted
to show. ■

If we now write OK/p = Fq, then it is well known that any finite field containing Fq must
be of the form Fqf for some f . Now let fi be such that OL/Pi = Fpfi . We call the fi’s the
inertial degrees. There is the following useful relationship between the ei’s and fi’s.

Theorem 3.2. Let L/K be an extension of number fields, and p ∈ OK a prime. Suppose p
splits as

p = Pe1
1 . . .Peg

g

for distinct primes Pi ∈ OL. Then, we have
g∑

i=1

eifi = [L : K].

Proof. See [Mar18] Theorem 21. ■

3.2. Galois Extensions. In the case where L/K is a Galois extension, prime decomposition
becomes much simpler. In particular, let L/K be a Galois extension of number fields with
Galois Group G. Furthermore, let p be a prime in K. We can factor p over L as

p = Pe1
1 . . .Peg

g

for distinct primes Pi in L. Now let σ ∈ G. Then, σ(p) = p because p is generated by
elements in OK , which are fixed by σ. Thus, we can apply σ to both sides of this equality,
so

(3.1) σ(p) = p = σ(P1)
e1 . . . σ(Pg)

eg .

It is a very easy algebra exercise to show that if σ ∈ Gal(L/K), then σ(Pi) is a prime
ideal in OL. Thus, G acts on the prime ideals above p. In fact, the Galois group acts on the
Pi’s transitively, which we will not prove.

Proposition 3.3. Let L/K be a Galois extension with Galois group G. If p is a prime in
K and P1, . . . ,Pg are the distinct primes above p in L, then for any 1 ≤ i < j ≤ g, there is
some σ ∈ G such that σ(Pi) = Pj.

Proof. See [Mar18] Theorem 23. ■

This allows us to easily prove the following fact:

Theorem 3.4. Let L/K be a Galois extension of number fields and p ⊂ OK a prime. If
p factors in OL as p = Pe1

1 · · ·Peg
g for distinct primes Pi ⊂ OL, then e1 = · · · = eg and

f1 = · · · = fg, where fi is the inertial degree of Pi.

Proof. Returning back to 3.1, we have factored p into g prime powers, namely the σ(Pi)
ei ’s,

and there is only one way to do that. Thus, σ permutes the Pi’s. This means that if
σ(P1) = Pi, then the exponent of Pi in the factorization of p is e1, but it is also ei, so
e1 = ei. Because G acts transitively on the primes above p, we can choose i to be anything
between 1 and g, so we have e1 = · · · = eg.



CLASS FIELD THEORY AND THE KRONECKER-WEBER THEOREM 7

We can also show that inertial degrees are all equal. To do this, we just need to show that
OL/Pi and OL/Pj are isomorphic for any 1 ≤ i, j ≤ g. To do this, let σ ∈ G be such that
σ(Pi) = Pj and consider the map from OL → OL/Pj given by α → σ(α) mod Pj. The
kernel of this map is all α such that σ(α) ∈ Pj, which is equivalent to α ∈ σ−1(Pj) = Pi.
Thus, we have OL/Pi

∼= OL/Pj. This implies f1 = · · · = fg. ■

Now let e = e1 = · · · = eg be the common ramification index and f = f1 = · · · = fg the
common inertial degree. Then, by Theorem 3.2, we conclude that efg = [L : K]. Finally,
we have the following definition:

Definition 3.5. An extension L/K is unramified if no primes in OK ramify in OL.

3.3. Examples. We can create many examples of prime factorization by using the Dedekind-
Kummer Theorem, which is an algorithm for factoring a prime over a monogenic extension.

Theorem 3.6 (Dedekind-Kummer). Let L/K be a monogenic extension, meaning OL =
OK [α] for some α ∈ OL. Let f ∈ OK [x] be the minimal polynomial of α. Then, if p ⊂ OK

is a prime, p factors in OL as

p =

g∏
i=1

(p, fi(α))
ei

where f(x) ≡
∏g

i=1 fi(x)
ei mod p. Furthermore, the (p, fi(α))’s are prime ideals of OL.

For example, consider K = Q(ζ5). To factor the prime 11 over this extension, we need
to factor the 5th cyclotomic polynomial x4 + x3 + x2 + x + 1 mod 11, which factors as
(x− 3)(x− 4)(x− 5)(x− 9). Thus, (11) factors in Z[ζ5] as

(11) = (11, ζ5 − 3)(11, ζ5 − 4)(11, ζ5 − 5)(11, ζ5 − 9).

Thus, 11 completely splits since g = 4 = [Q(ζ5) : Q]. Now let’s look at 5 splits. Notice
that the 5th cyclotomic polynomial mod 5 is

x5 − 1

x− 1
≡ (x− 1)5

x− 1
≡ (x− 1)4 mod 5.

Thus, (5) factors as (5) = (5, ζ5 − 1)4. Thus, 5 is ramified.

3.4. The Discriminant of a Number Field. Given an extension of number fields L/K
with [L : K] = n, there are n embeddings (injective homomorphisms) of L into C fixing K.
Furthermore, recall that OL forms a lattice in K; in technical terms, it is a free OK-module
of rank n. Suppose OL has basis α1, . . . , αn over OK and that Gal(L/K) = {σ1, . . . , σn}.
The relative discriminant of L/K, denoted ∆L/K , essentially measures how spread out the
lattice OL is in L. It is an ideal of OK , defined as follows:

∆L/K :=

det

σ1(α1) · · · σ1(αn)
...

. . .
...

σ1(αn) · · · σn(αn)

2
 · OK

It can be shown that the determinant squared used in this definition is an element of
K and that it is independent of the basis chosen for OL. In the special case where OL is
monogenic with OL = OK [α], we can choose the basis 1, α, . . . , αn−1 in the definition above,
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and the determinant simplifies into a Vandermonde determinant. If we let f ∈ OK [x] be the
minimal polynomial of α, having roots α = α1, . . . , αn, then ∆L/K has the following value:

∆L/K =

( ∏
1≤i<j≤n

(αi − αj)
2

)
· OK .

The expression on the right-hand side of this equation is also the definition of the discrim-
inant of f , which we will denote ∆f . In particular, the discriminant is invariant under any
permutation of the roots, so it can be expressed as a polynomial in the symmetric polyno-
mials of the αi’s. Thus, ∆f ∈ OK , since the values of the symmetric polynomials are the
coefficients of f , which are in OK .

Let’s continue with the same setup as before, in which OL = OK [α] where α ∈ OK has
minimal polynomial f . Furthermore, let p ⊂ OK be a prime. By the Dedekind-Kummer
Theorem, we can find the factorization of p in OL by factoring f mod p. In particular,
suppose

f ≡ f e1
1 . . . f eg

g mod p

for distinct irreducible polynomials fi(x) ∈ OK [x]. Then, we have

p = (p, f1(α))
e1 . . . (p, fg(α))

eg

inOL. Notice that p ramifies if and only one of the ei’s is greater than 1, which is equivalent
to f having a double root mod p. This is only the case when ∆f ≡ 0 mod p. In other words,
a prime p ramifies in L/K if and only if p | ∆L/K . Although we have only considered the
case where OL is monogenic, it turns out that this fact is true in general, although the proof
is not easy:

Theorem 3.7. Let L/K be an extension of number fields. Then, a prime p ⊂ OK ramifies
in OL if and only if p | ∆L/K.

Proof. See [Neu07] Chapter 3 Section 2. ■

This also gives the following easy corollary:

Corollary 3.8. For any extension of number fields L/K, there are only finitely many primes
of OK that ramify in OL.

3.5. Minkowski’s Bound. We will end this section with Minkowski’s Bound, which will
allow us to deduce that Q has no unramified extensions. Let K be a number field with
[K : Q] = n which has 2s complex embeddings. Thus, s ≤ n

2
. We define

MK =
√

|∆K/Q|
(
4

π

)s
n!

nn
.

We then have the following statement of Minskowski’s Bound:

Theorem 3.9. Let K be a number field. Then, in every ideal class of K, there is an integral
ideal with norm at most MK.

One application of this is the following theorem:

Theorem 3.10. Given any number field K, ClK is finite.
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There is something else we can get out of this. Note that every integral idea has norm at
least 1, so we have MK ≥ 1. In other words,√

|∆K/Q|
(
4

π

)s
n!

nn
≥ 1

⇐⇒
√
|∆K/Q| ≥

(π
4

)s nn

n!

≥
(π
4

)n
2 nn

n!
.

Thus, we have the following theorem:

Theorem 3.11. There are no nontrivial unramified extensions of Q.

Proof. Suppose K/Q is an unramified abelian extension of Q. Then, |∆K/Q| = 1, so

1 ≥
(π
4

)n
2 nn

n!
.

This inequality only holds for n = 1, in which case we just have K = Q. ■

4. The Frobenius Element

Let L/K be a Galois extension with Galois group G. Let p be a prime of OK that splits
as follows:

p = Pe
1 . . .P

e
g.

Since G acts on the primes above p, we can consider the stabilizer subgroups of this action,
which are known as the decomposition groups.

Definition 4.1. In the setup above, the decomposition group at the prime Pi is

DPi
= {σ ∈ G | σ(Pi) = Pi}.

For now, let’s restrict our attention to the case e = 1. We already established that G acts
transitively on the Pi’s. It is a standard fact that for any group acting transitively on a set,
there are an equal number of group elements taking any fixed element of the set to any other
element of the set. Thus, since |G| = fg, the size of DPi

is exactly fg
g
= f .

Given an element σ ∈ DPi
, σ induces an automorphism on the residue field OL/Pi. In

particular, we can consider the automorphism α mod Pi → σ(α) mod Pi. Furthermore,
σ must fix everything inside OK/p (which can be naturally embedded in OL/Pi), so the
automorphism induced by σ is in the Galois Group Gal((OL/Pi)/(OK/p)). It turns out that
this map is also surjective (even in the case that p doesn’t ramify, see [Mar18] Theorem 28)
Thus, since |DPi

| = |OL/Pi| = f , we have an isomorphism DPi
∼= Gal((OL/Pi)/(OK/p)).

However, recall that OL/Pi and OK/p are finite fields. In particular, if OK/p = Fq, then
OL/pi = Fqf . It is well known that Gal(Fqf/Fq) is cyclic, where the generator is the map
a → aq. This is is called the Frobenius map.

Now we know that DPi
is cyclic, so let σ ∈ DPi

be a generator. Then, σ must act as the
Frobenius element on OL/Pi, so σ(α) ≡ αq mod Pi. We call this σ the Frobenius element
at Pi, which we will denote by σ = FrobPi

. The fact that Frobenius elements are unique is
very useful because if we find that a certain element of the Galois Group has the defining
property of the Frobenius element, then we know it must be the Frobenius element. There
is also a useful relationship between the different Frobenius elements at the primes above p.
In particular, they are conjugates of each other, as we will now prove:
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Proposition 4.2. Suppose L/K is a finite Galois extension of number fields, with p ⊂ OK

an unramified prime and p = P1 · · ·Pg for primes Pi ⊂ OL. Then, if µ ∈ Gal(L/K) such
that µ(Pi) = Pj for 1 ≤ i, j ≤ g, then

µ−1 FrobPj
µ = FrobPi

.

Proof. Let σ = FrobPi
and τ = FrobPj

. Let α ∈ OL and q = |OK/p|. Since αq ≡ τ(α) mod
Pj and µ−1(Pj) = Pi, µ

−1(αq) ≡ µ−1τ(α) mod Pi. Thus, we have

µ−1τµ(α) ≡ µ−1 (µ(α)q)

≡ µ−1µ(αq)

≡ αq mod Pi.

Thus, µ−1τµ is exactly the Frobenius map of OL/Pi, which is just σ. ■

In the case where L/K is abelian, µ−1τµ = τ = σ, so all the Frobenius elements above
any unramified prime p must be the same. In this case, we write Frobp as a stand-in for the
common value of the FrobPi

’s.

4.1. Frobenius and Splitting. Suppose p is unramified over the Galois extension L/K. If
σ is the Frobenius element of one of the primes above p, then the order of σ is the inertial
degree of p. Clearly, if we know the inertial degree of a prime, then we also know how many
primes are above it. This is quite useful computationally, as we will demonstrate in the next
few examples:

Example. We can prove Fermat’s Christmas Theorem using Frobenius elements. We can
restate this result as saying that all rational primes p with p ≡ 1 mod 4 split in Q(i) while
those with p ≡ 3 mod 4 remain prime. The Galois Group of Q(i)/Q is {1, σ} where σ is
complex conjugation. Now suppose an odd prime p remains inert in Z[i]. Then, its Frobenius
element is σ, and Z[i]/(p) is a field with p2 elements. Therefore, we should have

(a+ bi)p ≡ a− bi mod p

for a, b ∈ Z. But, since we are working in characteristic p, this implies ap + (bi)p ≡
a − bi mod p. Since a, b ∈ Z, ap ≡ a mod p and bp ≡ b mod p, so we should have a + bip ≡
a− bi mod p. This implies that we must have p ≡ 3 mod 4. The implication of p ≡ 3 mod 4
to p staying inert is easy since no sum of squares can be 3 mod 4 along with the fact that
Z[i] is a PID.

Example. Suppose we wanted to find how 3 splits in Q[ζ13]. The naive way to do this would
be to factor the minimal polynomial ζ13, which is degree 12 in Z/3Z. However, all we have
to do is find the Frobenius element. The Frobenius element must act by raising everything
to the 3rd power mod any of the primes above 3. No matter which prime above 3 we choose,
the corresponding residue field is characteristic 3, so if we just choose the automorphism
ζ13 → ζ313, this works. Composing this automorphism with itself is essentially equivalent to
repeatedly multiplying by 3 and reducing by 13. Thus, the order of the Frobenius element
is the multiplicative order of 3 mod 13, which can be checked to be 3. Thus, 3 splits into 4
primes, each of inertial degree 3 in Z[ζ13]. In fact, any prime which is 3 mod 13 also splits
this way. In general, the splitting of a prime in Q(ζ13) only depends on its value mod 13,
which is not unrelated to the fact that Q(ζ13)/Q is abelian.
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4.2. Inertia Subgroups. let L/K be a Galois extension of number fields and p a prime in
K which splits as follows:

p = Pe
1 · · ·Pe

g.

Let’s fix P = P1. As mentioned previously, DP is defined as the group of elements of
Gal(L/K) which fix P. There is an important subgroup of the decomposition group, known
as the inertia subgroup.

Definition 4.3. Let L, K, and P be defined as above. Then, we define the inertia group at
P as

IP := {σ ∈ Gal(L/K) | ∀α ∈ OL, σ(α) ≡ α mod P}.

At the moment, we haven’t actually proved IP ⊂ DP, although this is quite easy.

Proposition 4.4. Given the same setup as above, IP ⊂ DP.

Proof. Note that α ∈ OL is in P if α ≡ 0 mod P. Thus, if σ ∈ IP, for α ∈ P, σ(α) ≡ α ≡
0 mod P, so σ(α) ∈ P. Therefore, σ(P) ⊂ P. A similar argument shows that σ−1(P) ⊂ P,
which implies P ⊂ σ(P). Therefore, σ(P) = P, which is exactly what we need for σ ∈ DP.
Therefore, IP ⊂ DP. ■

In fact, we know what the size of IP is.

Proposition 4.5. Given the same setup as above, we have |IP| = e.

Proof. As mentioned previously in this section, there is a natural map fromDP to Gal((OL/P)/(OK/p)).
In the case where e = 1, we saw that this was in fact an isomorphism. However, although we
will not prove it, this map is always surjective, and by the definition of the inertia subgroup,
the kernel of this map is exactly the inertia subgroup. Thus, we have

DP/IP ∼= Gal((OL/P)/(OK/p))

=⇒ |IP| =
|DP|

|Gal((OL/P)/(OK/p))|
=

ef

f
= e.

■

At the moment, we have decomposition and inertia subgroups for each individual prime
above p. Quite naturally, these subgroups are conjugate to each other. In particular, we
have the following statement:

Proposition 4.6. Given the same setup as before, the DPi
’s are conjugate, and the IPi

’s
are conjugate.

Proof. Let 1 ≤ i, j ≤ g, and let µ ∈ Gal(L/K) be such that µ(Pi) = Pj. Then, it is easy to
check that µ−1DPi

µ = DPj
. This is essentially a generalized statement of Proposition 4.2.

■

Thus, if L/K is abelian, all the DPi
’s are the same, and so are the IPi

’s. Thus, we may
just write Dp and Ip instead. We will prove 2 final properties of inertia subgroups:

Proposition 4.7. Given the same setup as above with the additional assumption that L/K
is abelian, the subfield of L fixed by Ip is the largest subfield in which p is unramified.

Proof. ■
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Lemma 4.8. Let K/Q be an abelian extension, and let p1, . . . , pk be the primes ramifying
in K. Then, the inertia subgroups Ipi generate Gal(K/Q).

Proof. ■

5. Statements of Class Field Theory

Let L/K be a Galois extension of number fields. We will let Spl(L/K) be the set of
primes of K which split completely in L. Among other things, one of the consequences of
Chebatorev’s density theorem is that the density of Spl(L/K) among the set of primes of L
is exactly 1

[K:L]
. In particular, if we let S be the set of prime ideals of OL, we have

lim
x→∞

#{p ∈ Spl(L/K) | NL/K(p) ≤ x}
#{p ∈ S | NL/K(p) ≤ x}

=
1

[L : K]
.

Note that p ∈ Spl(L/K) is equivalent to the Frobenius element at every prime above p
being trivial. We will now give a sketch of the following theorem

Theorem 5.1. Let K be a number field and let L1/K and L2/K be finite Galois extensions
such that Spl(L1/K) and Spl(L2/K) differ by a finite set of primes (in particular, finitely
many primes are in exactly one of these sets). Then, L1 = L2.

Proof. Consider the compositum L1L2. The main claim, which we will not rigorously prove,
is that a prime splits in L1L2 if and only if it splits in L1 and L2. The proof of this relies
on how the Frobenius element controls splitting. A more detailed description of this can be
found at [Mil20] Theorem 8.38. The density of Spl(L1L2), Spl(L1), and Spl(L2). By the
corollary to Chebotarev, this means [L1L2 : K] = [L1 : K] = [L2 : K], which can only occur
if L1 = L2. ■

In other words, extensions of K are determined by the primes which split within them.
In Class Field Theory, we are interested in abelian extensions of number fields in particular.
Class Field Theory essentially gives a complete correspondence between abelian extensions
L/K of number fields and the associated sets of primes Spl(L/K). Furthermore, this cor-
respondence can be described entirely with respect to K only. Thus, if one were to know
everything about the so-called ray class fields and ray class groups of K, then they would
know everything about the abelian extensions of K. In fact, these things are very easy to
describe for Q, and this correspondence leads easily to the Kronecker-Weber Theorem.

5.1. Moduli and Ray Class Groups. To understand the statements of class field theory,
we first have to understand what a modulus is. A modulus m of a number field K consists
of a finite part m0 and an infinite part m∞. The finite part is just an ideal of OK while the
infinite part is a subset of the real embeddings of K. In this case, we write m = m0m∞.
Now we can define the ray class group for a given modulus m, which is a generalization of

the usual class group. In particular, let ImK be the multiplicative group of fractional ideals
relatively prime to m. A generic element of this group will look like∏′

p∤m

pap

where the product is a restricted product over prime ideals p ∤ m and the ap’s are integers
(the restricted product means that only finitely many of the ap’s are 0). Thus, ImK can also
be thought of as the free group generated by the primes not dividing m.
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We then define Pm
K to be a certain subgroup of PK , the multiplicative group of principal

fractional ideals of OK . In particular, Pm
K includes fractional ideals of the form αOK for

α ∈ K× such that

• α ≡ 1 mod m0

• For τ ∈ m∞, τ(α) > 0.

We then define the ray class group of modulus m to be ClmK := ImK/P
m
K . Notice that

when m = (1), ClmK is just Cl(K), the usual class group. Given that Cl(K) is finite, it is
actually not too hard to prove that ClmK is always finite.

Proposition 5.2. For any number field K and any modulus m, ClmK is finite.

Proof. There is a natural surjection ClmK → Cl(K), so we just have to show that the kernel
of this map has a finite index in ClmK . The kernel ■

Example. Let’s calculate the moduli and ray class groups for Q. Ideals of Z look like (m)
for m > 0. Furthermore, there is one infinite embedding of Q, which is just the identity
map. We will denote this as ∞. Thus, we can write all moduli of Q in the form m = m or
m = m∞. Either way, we have

ImK =
{a
b
Q | gcd(a,m) = gcd(b,m) = 1

}
.

Now suppose m = m. Then,

Pm
K = Pm

K =
{
αQ | α ∈ Q×, α ≡ 1 mod m

}
.

It looks like the class group ClmQ might be isomorphic to (Z/mZ)×. However, note that
for α ≡ −1 mod m, αQ× = −αQ× ∈ Pm

K since −α ≡ 1 mod m. Thus, the class group ends
up being isomorphic to (Z/mZ)×/{±1} since αQ× for both α ≡ ±1 become trivial in the
quotient. What we really need to do is make sure that α is positive. This is exactly the case
when m = m∞, and as you might expect, we have Clm∞

Q
∼= (Z/mZ)×. Thus, considering

real embeddings is actually very fruitful.

5.2. Takagi’s Existence Theorem. Fix a number field K and a modulus m. The first part
of Takagi’s Existence Theorem establishes the existence of the ray class field. In particular,
there is an extension Km/K such that the primes that split completely are exactly those in
Pm
K . By Theorem 5.1, this field is unique.

Example. Let K = Q and m = m∞ for m ∈ Z+. We claim that Qm = Qm∞ = Q(ζm). Notice
that the primes that are in Pm∞

Q are exactly the rational primes that are 1 mod p, so we just
need to show that the only primes that completely split in Q(ζm) are those that are 1 mod
m. A prime p completely splitting in Q(ζm) is equivalent to the mth cyclotomic polynomial
completely splitting mod p, by the Dedekind-Kummer Theorem. This is equivalent to ζm
existing mod p, and since (Z/pZ)× is cyclic, this is equivalent to q | |(Z/pZ)×| = p − 1. In
other words, p splitting is equivalent to p ≡ 1 mod q as desired.
Let K = Q but m = m for m ∈ Z+. We claim that Qm = Q(ζm + ζ−1

m ). Based on our
discussion of calculating ClmQ for this type of modulus, we saw that Pm

K contained primes in Q
that were both ±1 mod m. Thus, we need to show that the primes splitting in Q(ζm + ζ−1

m )
are those that are ±1 mod m. Once again, by the Dedekind-Kummer Theorem, p splitting
completely in this extension is equivalent to the minimal polynomial of ζm + ζ−1

m completely
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splitting mod p, and this is equivalent to ζm + ζ−1
m being an element of Fp, since ζm + ζ−1

m

generates its Galois conjugates. If ζm + ζ−1
m ∈ Fp, we can solve a quadratic to find ζm;

however the value of ζm may be in Fp2 , so m | |F×
p2| = p2 − 1, so p ≡ ±1. This shows that if

p splits, then p ≡ ±1 mod m. The other direction is also not that hard to show.

The surprising part of Takagi’s Theorem is that all finite abelian extensions of a number
field K are subfields of one of the ray class fields. Furthermore, there is a very natural
correspondence between subfields of Km and the ray class group, ClmK . In particular, here is
the full statement:

Theorem 5.3 (Takagi’s Existence Theorem). Let K be a number field and m a modulus.
Then, there is a unique extension Km/K such that Spl(Km) is the set of or primes in Pm

K ,
with possibly finitely many exceptions. Furthermore, for every congruence subgroup H with
Pm
K ⊂ H ⊂ ImK, there is a unique subfield L of Km such that Spl(L) is the set of primes in

H, with finitely many exceptions. Furthermore, for this subfield L, we have

Gal(L/K) ∼= ImK/H.

The proof of the Existence Theorem is not easy, and modern approaches to this theorem
use Artin Reciprocity,, although this is in some sense, a more precise version of the existence
theorem. Furthermore, the proof of Artin Reciprocity typically requires a lot of cohomology,
which we won’t be able to cover in this paper. However, assuming the existence theorem,
we can easily prove Kronecker-Weber!

Proof of Theorem 2.1. The ray class fields of Q are Q(ζm) and Q(ζm + ζ−1
m ) for m ∈ Z+,

both of which are subfields of Q(ζm). Thus, all finite abelian extensions of Q are contained
in Q(ζm) for some m ∈ Z+. ■

6. Local Fields

In this section, we will introduce local fields, the simplest of which are the p-adic rationals
Qp for rational primes p. When constructing a local field, the goal is that we want to
metrically complete Q, since it is not already metrically complete. Such metric completions
are local fields.

For example, in the usual metric space on Q, the distance between two rational numbers
is |x − y|. We can complete Q with respect to this metric, which means we form the space
of Cauchy sequences in Q with respect to the metric. For this choice of metric, this forms
R, which is one of the local completions of Q.

However, there are other useful metrics on Q, such as the p-adic metric. Before we look
at this, we should define what a metric is.

Definition 6.1. A norm function for a field F is a function | · | : F → R≥0 such that |x| ≥ 0
for x ∈ F and equality only when x = 0. Furthermore, |xy| = |x||y| and |x+ y| ≤ |x|+ |y|,
the last condition being the triangle inequality.

We can then define the distance between two elements x, y ∈ F as |x − y|. It is easily
checked that this forms a metric space. The other useful norm over Q is the p-adic norm.
In particular, for a prime p, we can write any nonzero rational number q as pn a

b
for some

n ∈ Z such that p ∤ a, b. In this case, we write |q|p = p−n where | · |p is the p-adic norm.
In other words, if the numerator of q has many factors of p, q has a small norm, and if the
denominator has many factors of p, q has a large norm. The only nontrivial thing that needs
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to be shown to prove | · |p is a norm is that it satisfies the triangle inequality. In fact, it
satisfies a stronger inequality, which we will not prove.

Proposition 6.2. Let | · |p be the p-adic norm on Q. Then, for x, y ∈ Q, |x + y|p ≤
max(|x|p, |y|p) ≤ |x|p + |y|p.

The field of p-adic rationals Qp is the completion of Q under this metric. The above
inequality makes Qp a non-archimedean field.
Instead of just thinking about the norm of this field, it is often better to think about the

underlying valuation. For example, in Qp, the valuation should detect how many powers of
p a certain element is divisible by. In particular, for q ∈ Q, if q = pn a

b
where p ∤ a, b, we

write νp(q) = n. Alternatively, we have νp(q) = − logp(|q|p).

6.1. Extensions of Qp. We can now consider extensions of Qp, just as we consider exten-

sions of Q. For example, Q3 does not have
√
2, because there is no square root of 2 mod

3. Thus, we can consider Q3(
√
2)/Q3, which is a quadratic extension. Q3(

√
2) also has

an absolute value that extends that of Q3. For example, consider |
√
2|3. It should satisfy

|
√
2|23 = |2|3 = 1. Thus, |

√
2|3 = 1. In fact, although it is a bit harder, it can be shown

that |a+ b
√
2|3 = 1 if 3 ∤ a, b, so ν3(a+ b

√
2) = ν3(gcd(a, b)), and the absolute value can be

defined as usual based on the valuation. This is a demonstration of how there is a unique
absolute value that extends the absolute value of the base field. These fields, which are finite
extensions of Qp, are known as local fields.

Theorem 6.3. Let L/K be an extension of local fields and | · |K an absolute value on K.
Then, there is a unique absolute value | · |L which agrees with | · |K on K, which is given by

|α|L = n

√
|NL/K(α)|K .

Proof. See [Neu07] Chapter 2 Section 8. ■

Every local fields K as a ring of integers OK , defined as

OK = {α ∈ K | |α|K ≤ 1}.
For example, the ring of integers of Qp is denoted Zp, the p-adic integers. While we will

not prove it, it turns out that this ring has exactly one maximal ideal (and hence prime),
which is given by

{α ∈ K | |α|K < 1}.
Furthermore, this maximal ideal is generated by a single element, known as a uniformizer.

For example, the ideal Zp in Qp is generated by p. If K is a local field and OK is the ring of
integers, we denote k = K/OK to be the residue field, which is analogous to the notion of
residue field with number fields.

6.2. Hensel’s Lemma. Perhaps the most useful property about local fields is Hensel’s
Lemma, which allows us to find a root of a polynomial in the local field by only finding a
root in the residue field, with a few extra conditions. Here is one version of the statement
of Hensel’s Lemma:

Theorem 6.4. Let K be a local field with uniformizer π and ring of integers OK. If f(x) ∈
OK [x] has a root r mod π and f ′(r) ̸≡ 0 mod π, then f has a root r′ ∈ OK [x] with r′ ≡
r mod π.
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Proof. See [Lan94] Chapter 3 Proposition 2. ■

In the initial hypothesis of Hensel’s Lemma, we’re looking for a root of f in OK [x] mod
π. However, recall that OK/(π) is defined to be the residue field of K, which we established
was finite. Thus, in Hensel’s Lemma, we’re initially looking for a root of the polynomial in
the residue field, and we are usually able to “lift up” such a root if we find it in the residue
field.

Example (Roots of unity). Consider Qp which has residue field Fp. Every nonzero element
of Fp is a p− 1th root of unity. In other words, the p− 1 roots of xp−1− 1 are 1, 2, . . . , p− 1.
The derivative of this polynomial is (p− 1)xp−2 which is nonzero at none of these roots, so
all of these roots can be lifted up to a p − 1th root of unity in Qp. Furthermore, there are
no other roots of unity in Qp since there are no other possible roots of unity mod p.

6.3. Ramification. Just as we have ramification for number fields, we have ramification for
local fields. A local field K only has one prime, which is of the form (πK) for a uniformizer
πK ∈ OK . Thus, for L/K to be a ramified extension, we would need to have (πK) = (πL)

e

for e > 1 where πL is a uniformizer of L. We have the following definition:

Definition 6.5. Let L/K be a finite extension of local fields, πK a uniformizer of K, and
πL a uniformizer of L. Then, as ideals in L, we have (πK) = (πL)

e for some e > 0. This
value of e is the ramification index of L/K. We say L/K is ramified if e > 1.

This ramification index is completely analogous to that of number fields. There is also an
analogue of inertial degree.

Definition 6.6. Let L/K be a finite extension of local fields. If ℓ is the residue field of L
and k the residue field of K, the inertial degree f of L/K is [ℓ : k].

There isn’t a useful analogue of g however, since primes can’t factor as a product of
multiple distinct primes, although one could say g = 1. Either way, there is an analogue of
the efg formula for number fields:

Proposition 6.7. Let L/K be a finite extension of local fields, and let e be the ramification
index and f the inertial degree. Then, ef = [L : K].

Note that if L/K is ramified, then we have (πK) = (πL)
e for uniformizers πK and πL, so

πK = πe
Lu for a unit u ∈ OL. Assuming we have a valuation ν such that ν(πK) = 1, we can

uniquely extend this valuation to L, and we will get 1 = ν(πK) = eν(πL), so ν(πL) =
1
e
. Thus,

ramified extension create new “levels” of possible valuations while unramified extensions only
expand the residue field (although a single extension can do both of these).

Example. It can be checked that the quadratic extension Q5(
√
2)/Q5 is unramified. This

corresponds to the fact that 5 is still a uniformizer in Q5(
√
2), and that the residue field of

Q5(
√
2) is F5(

√
2) = F25. Furthermore, we can find a square root of 3 in F25, so by Hensel’s

Lemma, we can lift it up to find
√
3 in Q5(

√
2). This implies that Q5(

√
2) = Q5(

√
3). In

fact, any two quadratic unramified extensions of Q5 are equal, as we will see by the next
proposition.

On the other hand, Q5(
√
5) is ramified, because the prime (5) factors as (

√
5)2. Thus,√

5 becomes a uniformizer of Q5(
√
5) rather than 5. Furthermore, the residue field of this

extension is still F5.
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Theorem 6.8. Given a local field K, there is only one unramified extension of K with degree
q > 0.

Corollary 6.9. Let L/K be an unramified extension of local fields. Then, L = K(ζq−1)
where q is the order of the residue field of L.

7. Kummer Theory

Throughout the section, for a field K, K× denotes the multiplicative group of K, which
include all the nonzero elements of K. Furthermore, for any group G and positive integer n,
we will let Gn denote the set {gn | g ∈ G}, which is a group if G is abelian.
The goal of Kummer Theory is to classify extensions of a very particular type, which we

call Kummer extensions. First, recall that the exponent of a group G is the smallest positive
integer n such that Gn = 1, if it exists. Clearly, all finite groups have an exponent.

Definition 7.1. A Galois extension L/K is Kummer if there is some n for which ζn ∈ K
and Gal(L/K) is abelian with exponent dividing n.

For example, any quadratic extension of Q and Q(ζ3,
3
√
2)/Q(ζ3) are Kummer. It is very

important in the second example that ζ3 is in the base field because Q( 3
√
2)/Q is not Galois.

Conversely, if we have a field K containing ζn, adjoining any element of the form α
1
n for

α ∈ K× gives a Galois extension, and in fact the Galois group of this extension will be a
subgroup of Z/nZ. We will actually be able to explicitly describe all Kummer extensions of
a given base field. We will need the following lemma however:

Lemma 7.2. Let L/K be a field extension with autormorphism group G. Then, the elements
of G are linearly independent over L. In particular, if G = {σ1, . . . , σn}, there are no
elements α1, . . . , αn, such that for all x ∈ L,

α1σ1(x) + · · ·+ αnσn(x) = 0.

Theorem 7.3. Let K be a field containing ζn for some positive integer n. Then, every
extension L/K with Gal(L/K) ∼= Z/nZ is of the form K(α

1
n )/K for some α ∈ K× such

that α
1
d ̸∈ K for any d > 1 dividing n.

Proof. Suppose we have some α ∈ K× such that α
1
d ̸∈ K× for any d > 1 dividing n. Then,

any element of Gal(K(α
1
n )/K) must take α

1
n to another nth root of α, so α

1
n must be taken

to α1/nζrn for some r. No two elements of the Galois Group can send α1/n to α1/nζrn for
the same value of r since this r determines the automorphism. Thus, Gal(K(α1/n)/K) is
isomorphic to the group containing the possible values of r mod n, which is a subgroup of
Z/nZ. Suppose Gal(K(α1/n)/K) has exponent e | n. Then, it can easily be seen that αe/n

must be fixed by all automorphisms of the Galois Group, so αe/n ∈ K×. By our hypotheses,
this means that e = n.

On the other hand, suppose L/K is a Kummer extension with Galois Group Z/nZ. Let σ
be a generator of the Galois Group. By Lemma 7.2, σ, . . . , σn are linearly indepdendent, so
the linear combination ζnσ(x)+ . . . ζnnσ

n(x) is not identically 0, so we can find some t, α ∈ L×

such that

0 ̸= t = ζnσ(α) + · · ·+ ζnnσ
n(α) =

n∑
i=1

ζ inσ
i(α).
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We claim that L = K(t1/n). Note that

σ(t) = σ

(
n∑

i=1

ζ inσ
i(α)

)

=
n∑

i=1

ζ inσ
i+1(α)

=
n∑

i=1

ζni− 1σi(α)

= ζ−1
n t.

Thus, σ(tn) = σ(t)n = tn, so tn ∈ K×. Clearly, no smaller powers of t are fixed by σ, so
by the first part of the proof, K(t1/n) ⊂ L must have degree n, but L has degree n over K,
so L = K(t1/n). ■

Now we can state the full statement of Kummer Theory:

Theorem 7.4. Let K be a field containing ζn for some positive integer n. Then, the finite
subgroups of K×/(K×)n are in one-to-one correspondence with the finite Kummer exten-
sions of K with exponent dividing n. In particular, given a subgroup ∆ ⊂ K×/(K×)n, the

corresponding Kummer extension is K(∆
1
n ). Furthermore, ∆ ∼= Gal(L/K).

Proof. Note that K×/(K×)n is a group of exponent n, since any element of K× raised to the
nth power is in (K×)n, and for ζn, this is the minimum possible power that achieves this.
Thus, any subgroup ∆ ⊂ K×/(K×)n has exponent dividing n. Thus, we can write

∆ ∼= Z/d1Z× · · · × Z/dkZ
where di | n. Let αi be a generator for the isomorphic copy of Z/diZ in ∆. Then,

αdi
i ∈ (K×)n, but no lower power of αi is in (K×)n. Now we construct the Kummer extensions

Ki = K(α
1/n
i ). Note that α

1/n
i = (α

di/n
i )1/di , and it can be checked that αdi/n ∈ K× while no

root of it is in K×, based on all our assumptions. Thus, by Theorem 7.3, Ki/K has Galois
Group Z/diZ. It is also easy to see that the Ki’s are mutually disjoint, so

K(∆1/n) = K(α
1/n
1 , . . . , α

1/n
i )

whose Galois Group is the direct product of the Galois Group of all the Ki/K’s by Theo-
rem 2.2, and that direct product is isomorphic to ∆.

The other direction follows similarly from Theorem 7.3, so we omit it. ■

Example. As an example, we can characterize all finite Kummer extensions of Q of exponent
dividing 2. Such extensions are in correspondence with the finite subgroups of Q×/(Q×)2,
which can be identified with the group ∏′

p

Z/2Z

where the product is a restricted product (all but finitely many terms in the product
have to be the trivial element of Z/2Z) where p goes over all places of Q. If ∆ is a finite
subgroup of this group containing an element which has the nontrivial element of Z/2Z in
the places p1, . . . , pk, then, this would correspond to adjoining

√
p1 · · · pk to Q. Note that

“multiplication” by the infinite place in this case is just multiplication by −1.
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8. Reduction of the Statement of Kronecker-Weber

In this section, we will reduce Kronecker-Weber to a simpler equivalent statement. First
of all, we will prove that it suffices to show Theorem 2.1 where Gal(K/Q) is cyclic of prime
power order, and we will also show that the “Global” Kronecker-Weber Theorem is equivalent
to the “Local” Kronecker-Weber Theorem, in which we use a base field of Qp for primes p
rather than Q. This step heavily relies on the fact that the Kronecker-Weber Theorem is
concerned with extensions of Q in particular.

8.1. Reducing to Cyclic Galois Groups of Prime Power Order. Suppose K/Q is
abelian. Then, by the Fundamental Theorem of Finite Abelian Groups, we have a decom-
position:

Gal(K/Q) ∼= Z/pr11 Z× · · · × Z/prnn Z
where the pi’s are not primes which are not necessarily distinct. Thus, K has subex-

tensions Ki such that Gal(Ki/Q) ∼= Z/prii . Ki is just the field fixed by the subgroup
Gal(K/Q)/(Z/prii Z) =

∏
j ̸=i Z/p

rj
j Z. For i ̸= j, Gal(Ki/Q) and Gal(Kj/Q) have trivial

intersection, so Ki ∩ Kj. By Theorem 2.2, we thus have that K is the compositum of the
Ki’s, also denoted as

∏
i Ki. Thus, if can show that each of the Ki’s is contained in a cy-

clotomic extension, then so must their compositum, because the compositum of cyclotomic
extensions is cyclotomic. In fact, for positive integers a and b, Q(ζa, ζb) = Q(ζlcm(a,b)). In
other words, when proving Kronecker-Weber, we only have to consider extensions whose
Galois group is cyclic of prime power order.

8.2. Global to Local. Our main strategy for proving Kronecker-Weber will be to prove
the Local Kronecker-Weber Theorem, and then extend that to the global case. This is
advantageous because local class field theory is much easier than global class field theory in
general. The local version states the following:

Theorem 8.1 (Local Kronecker-Weber Theorem). For every prime p, every abelian exten-
sion K of Qp is contained in Qp(ζm) for m ≥ 0.

We will now that Theorem 8.1 implies Theorem 2.1, and then we will prove Theorem 8.1.

Theorem 8.2. The Local Kronecker-Weber Theorem implies the Global Kronecker-Weber
Theorem.

Proof. Suppose the Local Kronecker-Weber Theorem is true, and let K/Q be an abelian
extension. Let p1, . . . , pk be the finitely many primes ramifying in K and pi a prime above
pi. Consider the localizations Kpi/Qpi . By the Local Kronecker-Weber Theorem, there exist
mi’s such that Kpi ⊂ Qpi(ζmi

). We can actually construct an m such that K ⊂ Q(ζm) in
terms of the mi’s. It turns out that

m =
k∏

i=1

peii

works, where peii is the largest power of pi dividing mi. Intuitively, this makes sense
because we are trying to find an m such that the pi’s have the right ramification indices.
Then, the power of pi that divides the ramification index of pi in Q(ζm) is only dependent
on the number of power of pi that divides m. Furthermore, the ramification index of pi in
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Qpi(ζmi
) should be the same as the ramification index in Q(ζm), so we attempt to match up

the exponents of all the pi’s between these two extensions.
To show this works, let L = K(ζm). We want to show that L = K. For each i, consider

the localization of L at pi. In particular,

Qp(ζm) ⊂ Lpi = Kpi(ζm) ⊂ Qp(ζmi
, ζm) = Qp(ζni

)

where ni = lcm(mi,m). Because the largest power of pi dividing both mi and m is peii ,
the inertia subgroups for Qp(ζm) and Qp(ζni

) are (Z/peii Z)×. Thus, this is also the inertia
subgroup for Lpi . Therefore, the inertia subgroup Ipi of L/Q with respect to the prime p is
(Z/peii Z)×, which has size φ(peii ). By Lemma 4.8, we thus have the following inequality:

[L : Q] = |Gal(L/Q)| ≤
k∏

i=1

|Ipi | =
k∏

i=1

φ(peii ) = φ(m).

Meanwhile, Q(ζm) ⊂ L, so [L : Q] ≥ [Q(ζm) : Q] = φ(m), so we must have an equality,
which can only hold if L = Q(ζm). Thus, we have K ⊂ L = K(ζm) ⊂ Q(ζm). ■

8.3. Some Lemmas. Before proving Local Kronecker-Weber, we will sketch the proofs of
some lemmas will which be necessary as we go along.

Lemma 8.3. Let L/K be a totally and tamely ramified extension of degree e of finite exten-

sions Qp. Then, there exists a uniformizer πK of K such that L = K(π
1/e
K ).

Proof. For the extension to be ramified of degree e, this means that (πK) = (πL)
e (as ideals

in OL), where πL is a uniformizer of L. We can assume that πe
L ≡ πK mod π2

K since every
element of (πK)\(πK)

2 is a uniformizer of OK . Thus, πe
L = πKu. By our assumption, we

can conclude that u ≡ 1 mod πK . Thus, Xe − u, which is a separable polynomial, has a
root mod πK , so it has a root in OK by Hensel’s lemma. In other words, u1/e ∈ K. Thus,

L = K(πL) = K(π
1/e
K u1/e) = K(π

1/e
K ). ■

Lemma 8.4. We have the equality

Qp

(
(−p)

1
p−1

)
= Qp(ζp)

.

Proof. See [Was97] Lemma 14.6. ■

Lemma 8.5. For p ̸= 2, there is no extension of Qp with Galois group (Z/pZ)3.

Proof. See [Was97] Lemma 14.8. ■

Proof of Theorem 8.1. Let K/Qp be an abelian extension. We have two main cases in the
proof, the second of which will be much harder than the first.

Case 1 (K/Qp is either not ramified or tamely ramified.). Let L/Qp be the largest sub-
extension of K/Qp which is totally ramified. Furthermore, let [L : Qp] = e where e is the
ramification index of p in L. By our hypotheses for this case, we have p ∤ e. We claim that
e | p− 1. By Lemma 8.3, we have L = Qp(π

1/e) for a uniformizer in Qp. Thus, the smallest
Galois extension that contains L must contain ζe. However, L(ζe, π

1/e), which is Galois, is
not abelian unless ζe ∈ Qp. On the other hand, L(ζe, π

1/e) ⊂ K, and K/Qp is abelian, so we
must have ζe ⊂ Qp. This only exists for e | p − 1 since p − 1th roots exist due to Hensel’s
lemma, and no other roots of unity exist mod p.
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Now note that all uniformizers of Qp are of the form pu for a unit u ∈ Zp. We will write
π = pu in this way. Thus, using e | p− 1, Lemma 8.4, and Corollary 6.9, we have

L = Qp(π
1/e)

= Qp((pu)
1/e)

⊂ Qp((pu)
1

p−1 )

⊂ Qp((−p)
1

p−1 , (−u)
1

p−1 )

⊂ Qp(ζp, ζq−1)

where the q is such that Qp((−u)
1

p−1 ) = Qp(ζq−1), as guaranteed by Corollary 6.9. Thus,
L is contained within a cyclotomic extension of Qp. Using Corollary 6.9 again, we know that
K = L(ζr−1) for some integer r since K/L is unramified. Thus,

K = L(ζr−1) ⊂ Qp(ζp, ζq−1, ζr−1)

which finishes this case.

Case 2 (K/Qp is wildly ramified and p ̸= 2). We can assume that K is totally ramified.
Otherwise, like in the previous case, we can letQp ⊂ L ⊂ K such thatK/L is tamely ramified
and L/Qp is totally ramified. But, K is a cyclotomic extension of L since it is unramified,
so in this case, it is sufficient to prove that L is contained in a cyclotomic extension of Qp.
Furthermore, we can also assume that the degree of K/Qp is p

r for some r > 0. Let Qr
p be a

totally ramified extension of Qp with degree pr and let Qu
p be an unramified extension of Qp

of degree pr. Both of these exist; the first one can be found by taking the degree pr subfield
of Qp(ζpr) while the second can be found by constructing a local field with residue field Fpr

and no ramification, which is cyclotomic by Theorem 6.8. Clearly, Qr
p ∩Qu

p = Qp. We claim
that K ⊂ Qr

pQu
p . Otherwise, we could consider Qr

pQu
pK, and the Galois group of this over Q

would have to have (Z/pZ)3. This is impossible by Lemma 8.5.

Case 3 (K/Qp is wildly ramified and p = 2). We will not go over all the details of this case,
as it is somewhat similar in nature to the previous case. The main difference is that one has
to prove that Q2 has no extensions with Galois Group (Z/2Z)4 or (Z/4Z)3. More details
can be found at [Was97] in the end of Chapter 14.

■
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