Shor's Algorithm: Factoring Numbers on Quantum Computers

Talha Ashraf

10th July 2025

What is Shor's Algorithm?

- It's an algorithm that can find factors of composite numbers on a Quantum computer in polynomial time. This is exponentially faster than classical algorithms.
- Shor's algorithm is based on the fact that factorization can be reduced to the problem of order finding (discussed soon).
- Order finding in turn can be computed efficiently on a Quantum computer using an algorithm called Quantum Phase Estimation.

Order Finding

Definition

Consider a number N that we want to factorize and a second number 1 < x < N that is co-prime to x. The order r is the smallest integer such that $x^r \mod N = 1$.

Theorem

Given $x^r \mod N = 1$, We can prove that $gcd(x^{\frac{r}{2}} - 1, N)$ gives a non trivial factor of N, with the exception of two cases.

Proof that Order Finding gives Factors

Proof.

 $x^r \mod N = 1$ is equivalent to the equation

$$x^r = kN + 1 \implies x^r - 1 = kN \tag{1}$$

$$(x^{\frac{r}{2}} - 1)(x^{\frac{r}{2}} + 1) = kN \tag{2}$$

If $(x^{\frac{r}{2}}-1)$ and $(x^{\frac{r}{2}}+1)$ are integers, $(x^{\frac{r}{2}}-1)$ is a factor of N, and $\gcd(x^{\frac{r}{2}}-1,N)$ is a factor of N!

For them to be integers, we need 2 conditions to be satisfied:

- ① $x^{\frac{r}{2}} 1$ is an integer: r must be even.
- We mustn't have $x^{\frac{r}{2}} = kN 1$ or else the factor at the end is just N.

Order Finding Doesn't Fail Often

Theorem

Suppose a number $N=p_1^{s_1}p_2^{s_2}\dots p_n^{s_n}$, and a randomly chosen number x which is coprime to it. Then their order r satisfies the conditions that r is even and $x^{r_2} \neq 0 \mod N$ with the probability

$$P(r \text{ is even}, x^{\frac{r}{2}} \neq 0 \pmod{N}) \geq 1 - \frac{1}{2^n}$$
 (3)

How do we find Orders?

- In order to actually compute orders and find factors, we must develop an efficient Quantum algorithm for it.
- Quantum algorithms rely heavily on a principle called Superposition, so let's discuss this next!

Superposition: The Heart of Quantum Technology

- In a classical computer, we have bits: strings of 0s and 1s.
- ② A Quantum computer has qubits. It also outputs 0s and 1s.
- If a qubit in the state $|0\rangle$ is measured, we observe $|0\rangle$ and record it as a 0. If it's in the state $|1\rangle$ is measured, we observe $|1\rangle$ and record it as a 1.
- **1** The way qubits differ from normal bits is they can also be in a superosition of its states $|0\rangle$ and $|1\rangle$:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \tag{4}$$

The rule is that when we measure this superposition, we will either see $|0\rangle$ with probability $|\alpha|^2$ or we'll see $|1\rangle$ with probability $|\beta|^2$. α and β are complex.

Transforming Qubits using Linear Algebra

- We can use Quantum effects to manipulate qubit values to build algorithms.
- ② Since a superposition can be fully specified by just α and β , we can write $|\psi\rangle$ as the vector

$$|\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \alpha \, |0\rangle + \beta \, |1\rangle = \alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Quantum effects cause reversible linear linear transformations

$$U(|x\rangle + |y\rangle) = U|x\rangle + U|y\rangle$$

- 4 All linear transformations can be represented as a matrix. So Quantum gates are invertible matrices.
- Sy the way, strings of multiple qubits are represented as follows:

$$|\psi\rangle = |x_1\rangle \otimes |x_2\rangle \otimes |x_3\rangle \otimes \dots |x_n\rangle$$

2 Useful Gates

The Hadamard gate is defined as

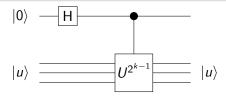
$$H = rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix} \quad H egin{bmatrix} 1 \ 0 \end{bmatrix} = rac{|0
angle + |1
angle}{\sqrt{2}} \quad H egin{bmatrix} 0 \ 1 \end{bmatrix} = rac{|0
angle - |1
angle}{\sqrt{2}}$$

② A controlled U gate applies the matrix U to the target bit if the control bit is $|1\rangle$ but does nothing if the control bit is $|0\rangle$.

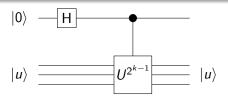
1 Quantum gates have eigenvalues of the form $e^{i2\pi\phi}$:

$$U|u\rangle = e^{i2\pi\phi}|u\rangle$$
.

- ② Quantum Phase Estimation is an algorithm that can estimate the phase ϕ for a given matrix of this form.
- The QPE algorithm is essential for order finding. Let's go through its circuit together.



• Here the controlled Quantum gate $U^{2^{k-1}}$ applies the matrix $U^{2^{k-1}}$ times to its eigenvector $|u\rangle$, but only if the control bit is $|0\rangle$ since it's a controlled gate



 This circuit is used repeatedly in QPE. It transforms the target qubit into

$$U^{2^{k-1}}\left[\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right]|u\rangle = \frac{1}{\sqrt{2}}\left(U^{2^{k-1}}|0\rangle\otimes|u\rangle+U^{2^{k-1}}|1\rangle\otimes|u\rangle\right)$$
$$=\frac{1}{\sqrt{2}}\left(|0\rangle\otimes|u\rangle+|1\rangle\otimes e^{i2\pi 2^{k-1}\phi}|u\rangle\right)$$
$$=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i2\pi 2^{k-1}\phi}|1\rangle\right)\otimes|u\rangle. \tag{5}$$

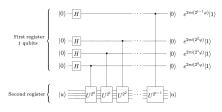


Figure: Credit to Nielson's Quantum Computing for the image.

- The real QPE procedure is n of these circuits stacked together, for n qubits, as show in the figure.
- Hence the final state is

$$\begin{split} &\frac{1}{2^{\frac{n}{2}}}\Big(\left.\left|0\right\rangle+e^{i2\pi2^{n-1}\phi}\left.\left|1\right\rangle\right.\Big)\otimes\Big(\left.\left|0\right\rangle+e^{i2\pi2^{n-2}\phi}\left.\left|1\right\rangle\right.\Big)\otimes\\ &\ldots\Big(\left.\left|0\right\rangle+e^{i2\pi2^{1}\phi}\left.\left|1\right\rangle\right.\Big)\otimes\Big(\left.\left|0\right\rangle+e^{i2\pi2^{0}\phi}\left.\left|1\right\rangle\right.\Big)\otimes\left.\left|u\right\rangle\right.. \end{split}$$

Quantum Fourier Transform 1

- ① Now we have n qubits in superposition, each containing the phase ϕ . But how do we actually recover the value of ϕ from the superpostion.
- The last result

$$\begin{aligned} &\frac{1}{2^{\frac{n}{2}}}\Big(\left.\left|0\right\rangle+e^{i2\pi2^{n-1}\phi}\left.\left|1\right\rangle\right.\Big)\otimes\Big(\left.\left|0\right\rangle+e^{i2\pi2^{n-2}\phi}\left.\left|1\right\rangle\right.\Big)\otimes\\ &\ldots\Big(\left.\left|0\right\rangle+e^{i2\pi2^{0}\phi}\left.\left|1\right\rangle\right.\Big)\end{aligned}$$

can be rewritten as

$$\frac{1}{2^{\frac{n}{3}}} \sum_{k=0}^{2^{n}-1} e^{i2\pi k\phi} |k\rangle.$$

3 But this looks so similar to the discrete Fourier Transform!

Quantum Fourier Transform 2

There is in fact another Quantum algorithm named the Quantum Fourier Transform that implements the exact expression we just saw:

$$U_{QFT}|x_1\rangle|x_2\rangle\dots|x_n\rangle=\frac{1}{2^{\frac{n}{3}}}\sum_{k=0}^{2^n-1}e^{i2\pi kx}|k\rangle.$$

- ② Since all Quantum gates are reversible matrices, there is an inverse QFT U_{QFT}^{-1} .
- **③** If we apply the Quantum Phase Estimation procedure, then the inverse QFT will give us an estimate for ϕ with n qubits:

$$U_{QFT}^{-1}U_{QPE}\left|0\right\rangle \left|0\right\rangle \ldots \left|0\right\rangle = U_{QFT}^{-1}\sum_{k=0}^{2^{n}-1}\mathrm{e}^{i2\pi k\phi}\left|k\right\rangle = \boxed{\phi}.$$

Computing Orders

• If we want to find the order of x and N, we can consider the Quantum gate

$$U|y\rangle = |xy \mod N\rangle$$
.

- ② It can be proven this matrix has eigenvector $|u_s\rangle=\frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}e^{i\frac{2\pi sk}{r}}|x^k \mod N\rangle$ and eigenvalue $e^{i\frac{2\pi s}{r}}$.
- 3 Applying the phase estimation procedure to this gives us the value $\frac{s}{r}$ and hence tells us r, the order of x and N!
- Finally $gcd(x^{\frac{r}{2}}-1, N)$ gives us a non trivial factor of N and hence we have succeeded in factoring N.

Shor's Algorithm

- If *N* is even, return 2 as a factor.
- ② Check if N is of the form $N = p^m$ a classical algorithm. If true, we return p and end our algorithm.
- **3** Choose a random integer in the range 1 < x < N. If gcd(x, N) > 1, then we have hit the jackpot and we can return gcd(x, N). If instead, gcd(x, N) = 1, then x is coprime to N and we proceed to step 4.
- We now find the order r of x mod N using the order finding procedure.
- We check if r is even and if $x\frac{r}{2} \neq -1 \mod N$. If these conditions hold, we can compute $\gcd(x^{\frac{r}{2}}-1,N)$ and divide N by it to test if it is a non trivial factor of N. If it is, then we return this as a factor. If either condition does not hold, however, our algorithm has failed. We must try again with a new choice of x.