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Abstract

In this paper, we will cover the fundamentals of Quantum computing and use them to
analyze Shor’s factoring algorithm. This will involve showing that factorization can be reduced
to the problem of order finding, which leads to a Quantum algorithm that can prime factorize
an integer in polynomial time complexity.

1 Introduction

Peter Shor’s 1974 paper sent shockwaves throughout the field of cryptography as it threatened
to allow Quantum computers to break our most relied on encryption methods. RSA and ECC
encryption schemes are designed on the bases that computers cannot efficiently factorize large
numbers or compute discrete logarithms respectively. Shor’s paper showed algorithms for doing
precisely these two tasks efficiently on a Quantum computer. For this paper, I will focus on
describing his factoring algorithm.

Shor’s algorithm is not just fast, its exponentially faster than classical computers. The most efficient
classical algorithms for factoring numbers take exponential run time while Shor accomplishes this
task in mere polynomial time. The mechanic of Quantum computers that gives Shor’s algorithm
such a leg up is the principle of superposition. This principle states that Quantum systems do not
just have to exist in one of their base states, they can exist in an intermediate state from where
they have a probability of collapsing into any one of their base states based on probability.

This principle is of so much utility because we can encode information into these superpositions.
If you want to compute every possible value of a function for example, then in a single cycle of
a Quantum computer, you can create a superposition which contains every possible value of the
function. This sounds too good to be true and gives the impression that Quantum computers can
magically do thousands of calculations at once. Indeed, there is a catch: each value of the function
is very difficult to retrieve from the superposition.

But this issue does not completely kill hope for utilising the vast potential of superposition as a
means of doing many simultaneous calculations. There are clever ways of constructing Quantum
algorithms that can extract usable information from superpositions in a Quantum computer.

In this paper, we will start off with covering the fundamental concepts of Quantum computing. To
this end, we will formalise our concept of superposition, define the qubit -or “Quantum bit”- and
learn about Quantum gates for manipulating qubits. We will apply this knowledge to constructing
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Deutsch’s algorithm which finds properties of a function by constructing a superposition of all its
values.

Then, we will proceed to developing the core tools used in Shor’s algorithm. These tools are the
Quantum Fourier Transform and the Quantum Phase Estimation procedure. Both these algorithms
are central to computing orders in the order finding problem. This is a problem which is closely
related and can be used to achieve the task of factoring numbers.

Finally, we will see how to bring everything together, and write an algorithm on a Quantum
computer that wil, with high probability, factor large numbers in polynomial time through order
finding. You can find Peter Shor’s original paper and his exposition on the algorithm in [Sho97].

2 Superposition: Defining the Qubit

The principle of Superposition is perhaps the most important concept in Quantum computing
because it is the key difference between information on a classical computer versus that on a
Quantum computer.

A qubit is the fundamental object for handling information on a Quantum computer. The best
way understand a qubit is to refer back to classical computers, which store information as a se-
ries of 1s and 0s called bits. These bits can be used to represent general information, for exam-
ple we can ascribe each possible permutation of bits to an integer using the following mapping:
xnxn−1 . . . x2x1 → xn · 2n−1 + xn−1 · 2n−2 + . . . x2 · 21 + x1 · 20 where xj ∈ {0, 1}. Since this is a
bijective map, all integers can be represented with a sufficiently large number of bits. Importantly,
classical bits are binary, each bit can be either 0 or 1. If you take a hundred bits and inspect each
of them they will all be observed to represent the same digit of either 0 or 1.

A qubit can similarly exist in definite states. Let us work generally and say we have a qubit which
can be either in the state called |a⟩ or the state called |b⟩. We will discuss what these strange |⟩
brackets mean later. If you measure a qubit in state |a⟩ with respect to the states |a⟩ and |b⟩, you
will definitely observe it to be in state |a⟩. It is the same for a qubit in state |b⟩.

There is one striking, key difference between qubits and classical bits. Qubits are not restricted to
these basic definitive states. They may also exist in what is called a superposition of these deinite
states, which can be written as

|ψ⟩ = α |a⟩+ β |b⟩ . (1)

where α and β are any two complex numbers for which |α|2 + |β|2 = 1 where |α|2 = αα∗. This
state |ψ⟩ is neither |a⟩, nor |b⟩, and it may help you to think of it as a distinct state of its own.
It is, however, strongly related to the definite states |a⟩ and |b⟩. To be specific, whereas when you
measure |a⟩ or |b⟩ you observe |a⟩ or |b⟩ with 100% certainty, when you measure the superposition
|ψ⟩ with respect to the states |a⟩ or |b⟩, you will have some probability of observing the state |a⟩
and some probability of observing the state |b⟩. After you measure a superposition, it ‘collapses’
by which I mean, it stops being a superposition and takes on the deinite state that you observed.
The pprobability that the superposition collapses to |a⟩ is |α|2 and the probability it collapses to
|b⟩ is |β|2.
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THEOREM 1. Collapse of a Superposition: If a qubit in the superposition |ψ⟩ = α |a⟩+β |b⟩
is measured with respect to the states |a⟩ and |b⟩, it collapses into either the state |ψmeasured⟩ = |a⟩
with probability |α|2 or the state |ψmeasured⟩ = |b⟩ with probability |β|2 and stays in this collapsed
state for the future. In order to conserve probability, we must normalise the complex amplitudes so
that |α|2 + |β|2 = 1.

For our purposes here, we do not need to discuss the Physics behind what constitues a measurement,
we simply think of it as the the operation that collapses a qubit. Measurement depends on what
basis we are measuring with respect to. Measuring against the states |a⟩ and |b⟩ returns either |a⟩
or |b⟩. Measuring against a different set of states, say |c⟩ and |d⟩, will return either |c⟩ or |d⟩

The set of basic states that we can use to represent a qubit or a superposition of a qubit and which
we ultimately measure against is called a basis.The most fundamental basis for a singe qubit is the
set of states |0⟩ and |1⟩. This is called the computational basis. You can write any other valid
basis in terms of the computational basis. It plays a very similar role to the unit vectors x̂ and ŷ
in representing points in a 2d plane.

Since the output from a quantum program must be a definite string of binary bits, a superposition
is not a valid output itself. In order to get a final output that we can actually make sense of, we
must always collapse any superposition by measuring it. Traditionally, final measurements are done
against the computational basis so that we either get an output of |0⟩ or |1⟩ for each qubit. These
final output states are then treated as string of binary 0s and 1s and used to store information just
like classical bits do on a nornal computer.

3 Change of Basis

Let us discuss the |⟩ brackets. This is called ket notation. A ket is used to signal that the variable
in the ket is a vector in a complex vector space. In order to explicitly express |ψ⟩ as a vector, notice
from equation (1) that in order to fully specify the state |ψ⟩ all we need are the complex constants
α and β. Let’s work in the computational basis now and set |a⟩ = |0⟩ and |b⟩ = |1⟩. Knowledge of
α and β tells us everything about the probability of |ψ⟩ collapsing into each state. In other words,
all we need to know the exact state |ψ⟩ is α and β and the fact we are in the computational basis.
In light of this, we can represent |ψ⟩ as a column vector of these two constants:

|ψ⟩ =
[
α
β

]
(2)

Then, we select vectors to represent |0⟩ and |1⟩ so that equations (1) and (2) are consistent with
each other:

|ψ⟩ = α

[
1
0

]
+ β

[
0
1

]
=

[
α
β

]

|0⟩ =
[
1
0

]
|1⟩ =

[
0
1

]
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Another basis that comes up very often is the Fourier basis, which we will discuss constantly
throughout this paper. For a single qubit system, the Fourier basis is as follows:

|+⟩ ≡ |0⟩+ |1⟩√
2

|−⟩ ≡ |0⟩ − |1⟩√
2

It is easy to see how we can convert from the computational to the Fourier basis:

|ψ⟩ = α |0⟩+ |1⟩ = α
|+⟩+ |−⟩√

2
+ β

|+⟩ − |−⟩√
2

=
α+ β√

2
|+⟩+ α− β√

2
|−⟩

It is also important to see the result of measuring a qubit in the states |+⟩ and |−⟩ against the
computational basis. For these states, α = 1√

2
and β = ± 1√

2
so that |α|2 = |β|2 = 1

2 . So the

Fourier basis for a single qubit is like a coin flip; it represents a 50/50 chance of measuring |0⟩ or
|1⟩.

4 Multiple Qubits

So far we have talked about only a single qubit. We can generalise to a larger system composed
of multiple qubits. When we increase the number of qubits in our system, we are also increasing
the size of the vector space that our state vectors reside in. This also means we need a new
computational basis with a larger number of basis vectors to represent superpositions of our qubit
system. The operation that is used when scaling to a larger vector space is the tensor product. We
will not go in depth with tensor products, and only introduce what is necessary.

In a classical computer, with more bits come more permutations of bits. With 3 bits, for instance,
you have the options 000, 001, 010, 011, 100, 101, 110, 111. These permutations guide us on what
vectors to choose for our computational basis for a 3 qubit system:

|ψ⟩ =α000 |000⟩+ α001 |001⟩+ α010 |010⟩+ . . . α111 |111⟩

=α000


1
0
...
0

+ α001


0
1
...
0

+ . . . α111


0
0
...
1

 =


α000

α001

...
α111


Really, a multi-qubit system is just several single qubit systems pooled together. In this context,
a tensor product is just the operation that is joining these qubits into a larger system which can
represent more information. Here’s an example of taking a tensor product of two qubits:

|0⟩ ⊗ |1⟩ = |01⟩ =
[
1
0

]
⊗
[
0
1

]
=


0
1
0
0


.

For a system of n qubits, taking a tensor product gives us column vectors with 2n rows. This means
we have 2n basis vectors, and thus 2n complex constants in any superposition. This exponential
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growth of vectors allows us to represent a large amount of information with relatively few qubits.
A system of 50 qubits means we have 250 complex constants which is a ginormous number.

Qubits follow similar properties to plane multiplication. Here is an example of how to take the
tensor product of two superpositions:

(α |0⟩+ β |1⟩)⊗ (γ |0⟩+ δ |1⟩) =αγ |0⟩ ⊗ |0⟩+ αδ |0⟩ ⊗ |1⟩+ βγ |1⟩ ⊗ |0⟩+ βδ |1⟩ ⊗ |1⟩

=αγ |00⟩+ αδ |01⟩+ βγ |10⟩+ βδ |11⟩

For this paper, I will alternate between three different formats for representing systems of qubits.
The formats

|x1x2 . . . xn⟩ = |x1⟩ |x2⟩ . . . |xn⟩ = |x1⟩ ⊗ |x2⟩ ⊗ . . . |xn⟩ (3)

all represent the same thing, but it often gets very messy to write every single ⊗ sign explicitly in
long equations so I will often drop them in favour of the first two formats.

5 Quantum Gates

Now that we are familiar with the quintisencial behaviour of qubits, we can finally work on devising
the building blocks of Quantum circuits and algorithms: Quantum gates.

In a classical computer, there are logic gates, which take a set of bits as an input and output
another set of bits. The truth tables of the most common logic gates (the NOT, OR, AND and
XOR gates) are as follows:

NOT Gate OR Gate AND Gate XOR Gate
0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 1 0 0 1 1

1 0 1 1 0 0 1 0 1
1 1 1 1 1 1 1 1 0

Table 1: Classical logic gates.

In a Quantum computer, we also need some sort of gates to manipulate information. It turns out
that Quantum gates satisfy some very special properties. Firstly, a quantum gate, U , acting on
qubits results in a linear transformation. This means that for any two states |ψ⟩ and |ϕ⟩, we have
that

U(α |ψ⟩+ β |ϕ⟩) = αU |ψ⟩+ βU |ϕ⟩ . (4)

This may sound obvious at first sight, but a quick look at classical gates shows that they do not
obey this. For example Gand10 = Gand01 = 0 but Gand(10 + 01) = GAND11 = 1. Here Gand is a
function implementing the the AND gate.
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Similarly to superposition, this linearity is directly inherited from Quantum Mechanics where the
central Schrodinger Equation is famously linear, leading to linearity in many Quantum phenomena.

This is great for us because all linear transformations on finite dimensional vectors can be rep-
resented as a matrix, which means that we can represent any Quantum gate with an associated
matrix. More specificallly, a Quantum gate cannot be just any matrix, they are a special type of
matrix known as a unitary matrix. All unitary matrices are invertible, which means any set of
quantum gates are also invertible and any operation on a set of qubits can be reversed!

Now, we can finally formulate some Quantum gates. Our first gate will be the Quantum NOT gate,
represented by the symbol X. This gate will take a single qubit input and flip its value: X |0⟩ = |1⟩
and X |1⟩ = |0⟩. Through the linearity of this gate, we can see the result of having an X gate act
on a qubit in superposition:

X(α |0⟩+ β |1⟩) = αX |0⟩+ βX |1⟩ = α |1⟩+ β |0⟩ .

Thus in a sense, the Quantum NOT gate is switching the positions of the constants α and β. The
metric representation of this gate is as follows:

X

[
α
β

]
=

[
β
α

]

X =

[
0 1
1 0

]
.

Do you remember the Fourier basis I mentioned earlier? Perhaps the most used Quantum gate is
the Hadamard gate H, which can be used to put a qubit into the |+⟩ or |−⟩ states. More specifically,

H |0⟩ = |+⟩ = α|0⟩+β|1⟩√
2

and H |1⟩ = |−⟩ = |0⟩−|1⟩√
2
.

You should be able to show that the Hadamard gate is represented by the matrix

H =
1√
2

[
1 1
1 −1

]
.

One last class of Quantum gates I will discuss are controlled gates. Every Quantum gate has a
control variant. In a control gate, there is a central unitary operation that we would like to perform
on a certain qubit called the target bit. But there is also a second qubit passed to the gate called the
control qubit. The role of the control qubit is to determine whether the unitary operation should
go through. If the control qubit is in the state |1⟩, the unitary operator U acts on the target bit.
However, if the conrtol qubit is in the state |1⟩, the target qubit passes through the gate unchanged.

It is very nice to be able to represent Quantum circuits diagramatically. Figure 1 should give you
a flavour for how we draw Quantum gates. Note that for control gates, the control qubit is always
marked with that black dot. We will use the notation

U [xcontrol]xtarget

to repesent application of controlled U gates.
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U
|xtarget⟩

|xcontrol⟩

H
|ψ⟩ H |ψ⟩

Figure 1: Control gate

6 Quantum Parallelism

The key difference between classical and Quantum computation is the ability of a qubit to be in
superposition, and it is thus this principle that we must use to devise efficient Quantum algorithms,

Quantum parallelism is an idea that has garnered a lot of media hype. Most explanations of the
phenomenon are somewhat misleading. It seems many people are of the idea that Quantum comput-
ers can magically do thousands of computations simultaneously by creating a massive superposition
of every permutation of the problem being solved.

There is some truth to this statement. Quantum computers can in fact evaluate a function or
problem for many different input values at once via superposition, where a system of qubits is put
in a superposition where each state encodes some information about our problem. The immediate
issue for us, however, is that even if every possible solution of our problem is correctly represented in
some state of the superposition of qubits, that does not mean we have this information immediately
at hand.

Remember that the final output we read after measuring a qubit is just the state that the superpo-
sition collapses into. Thus a single measurement only nets us information about a single state, not
the rest of the superposition at large. Worse yet, which state the superposition will collapse into
after measurement is probabilistic. Hence, Quantum computers can’t output the results of thou-
sands of computations simultaneously. Even if we save immense computational time by embedding
the solutions to a problem into a superposition, we will lose this time when we have to measure the
qubits over and over again to get our answers.

Problem 1. We can see these ideas in action through an example. Suppose we have a function
with a one-bit domain and range: f : {0, 1} → {0, 1}. What want to know the following: Is f(x)
constant or balanced? In other words is f(0) = f(1) or is f(0) ̸= f(1)?

We do not know what the function is, but we have been provided with a reversible circuit that can
compute f . Think of this circuit as a black box of sorts, you enter your input x, and you get out
your output f(x), but you don’t know the inner workings of this circuit, so the only way to find
each output of the function on a classical computer is to run the black box for every x.

2 cycles on a classical computer can give us the values f(0) and f(1) and then we can determine if
these values are equal to find the answer to our question.

We can conduct the same 2 cycle operation on the Quantum computer by modeling this classical
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Uf

x x

y y ⊕ f(x)

H|0⟩

|0⟩

Figure 2: Circuit to create a superposition of states for f(x).

circuit using unitary gates. But there is a more efficient method through Deutsch’s algorithm which
utilises superposition.

Given the blackbox for finding f(x), we can construct a unitary matrix that takes two inputs and
has the effect

Uf : |x, y⟩ → |x, y ⊕ f(x)⟩ (5)

If y = 0, then it is easy to see that y ⊕ f(x) = f(x). Hence we set y to |0⟩. In this way we have
essentially recovered the classical algorithm where Uf |x, 0⟩ = |x, 0⊕ f(x)⟩ = |x, f(x)⟩. We can do
better though. Consider setting x to |+⟩ by passing it through a Hadamard gate before using it as
an input for Uf . Now we have

Uf

(
H |0⟩

)
|0⟩ = Uf

( |0⟩+ |1⟩√
2

)
|0⟩ = Uf |0⟩ |0⟩+ Uf |1⟩ |0⟩√

2

where x = |0⟩+|1⟩√
2

. Hence, our final state becomes

|0, f(0)⟩+ |1, f(1)⟩√
2

. (6)

If we measiure this superposition, we have a 50/50 chance of measuring either |0, f(0)⟩ or |1, f(1)⟩.
Hence in a single cycle of our Quantum circuit, we have managed to create a superposition with
every possible value of f(x). In a sense, our qubit system has evaluated f(x) for every value x
simultaneously. But as eluded to earlier, this simultaneous evaluation is not saving us computational
time because when we collapse the superposition we either measure the state |0, f(0)⟩ or |1, f(1)⟩
each with a 1

2 chance. This means that in order to know both f(0) and f(1) we would have to
conduct this cycle and measure the final superposition at least 2 times.

If our goal was to find the specific values of f(0) and f(1), then Quantum parallelism really is
not helping us here. We would be better off modeling the classical algorithm using unitary gates.
However, with a few extra steps from here, we can create a Quantum circuit that can find f(0)⊕f(1)
in a single cycle. The trick to do this is to make it so that the quantity f(0) ⊕ f(1) is a part of
every state of the superposition so that whichever state it collapses onto, we find out the value of
f(0)⊕ f(1). If f is constant, then f(0)⊕ f(1) = 0 and if it is balanced, then f(0)⊕ f(1) = 1.
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Uf

x x

y y ⊕ f(x)

H|0⟩

|1⟩ H

H

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩

Figure 3: Circuit implementing Deutsch’s algorithm.

7 Deutsch’s Algorithm

Look at figure 3, which implements Deutsch’s algorithm. Let us go through each step along the
circuit, described by the states |ψ0⟩,|ψ1⟩, |ψ2⟩ and |ψ3⟩ where we start out with initial state |ψ0⟩ =
|0⟩ |1⟩. Through the action of the Hadamard gates, we find |ψ1⟩:

|ψ1⟩ = H |0⟩H |1⟩ = |+⟩ |−⟩ = |0⟩+ |1⟩√
2

|−⟩

=
1√
2

(
|0⟩ |−⟩+ |1⟩ |−⟩

)
.

Now we must apply the unitary matrix Uf to this state. Remember that matrices are linear, so
the gate can be ditributed as follows:

|ψ2⟩ = Uf |ψ1⟩ =
1√
2

(
Uf |0⟩ |−⟩+ Uf |1⟩ |−⟩

)
=

1

2

(
Uf |0⟩ |0⟩ − Uf |0⟩ |1⟩+ Uf |1⟩ |0⟩ − Uf |1⟩ |1⟩

)
Notice the presence of two terms of the form Uf (|x⟩ |0⟩− |x⟩ |1⟩). These two terms can be rewritten
in the following form:

|x⟩ |0⊕ f(x)⟩ − |x⟩ |1⊕ f(x)⟩ = |x⟩ |f(x)⟩ − |x⟩ |f(x)⟩

Notice that if f(x) = 0, then the expression is |x⟩ |0⟩ − |x⟩ |1⟩ = |x⟩ |−⟩, while if f(x) = 1, it is
|x⟩ |1⟩− |x⟩ |0⟩ = − |x⟩ |−⟩. So, the term |x⟩ |−⟩ stays the same while the sign in front of it changes
based on the value of f(x). Hence, it is a simple next step to write the expression as

Uf (|x⟩ |0⟩ − |x⟩ |1⟩) = (−1)f(x) |x⟩ |−⟩ .

With this, we can finally write |ψ2⟩ in the following simplified way:

|ψ2⟩ =
1

2

(
(−1)f(0) |0⟩ |−⟩+ (−1)f(1) |1⟩ |−⟩

)
Now, we arrive at two cases which give us two different outcomes. We can either have f(0) = f(1)
or f(0) ̸= f(1) which correspond to the function being constant or balanced respectively and which
lead to different outcomes for |ψ2⟩:

|ψ2⟩ =

{
± |+⟩ |−⟩ if f(0) = f(1)

± |−⟩ |−⟩ if f(0) ̸= f(1)
(7)
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Now all we have to do is to apply the Hadamard gate to the first qubit and measure these states.
After the Hadamard gate, the first qubit will transform into |0⟩ for the case of f(0) = f(1) or |1⟩
for the case of f(0) ̸= f(1).

|ψ3⟩ =

{
± |0⟩ |0⟩−|1⟩√

2
if f(0) = f(1)

± |1⟩ |0⟩−|1⟩√
2

if f(0) ̸= f(1)
(8)

You can equally well write the final state in the more compact form |ψ3⟩ = ± |f(0)⊕ f(1)⟩ |−⟩. In
either case, the key is that this algorithm allows us to find out whether or not our function f is
balanced in a single cycle of our Quantum computer. The first qubit of our 2 qubit system is in the
state |f(0)⊕ f(1)⟩ so when we measure the final state |ψ3⟩, if we find that the first qubit collapses
to |0⟩, we know the function was constant while if it collapses to |1⟩, we know that it was balanced.
This algorithm has half the runtime of its classical counterpart, which took two cycles to find the
answer.

You may find discussion of the previous ideas and the more general Deutsch Jozsa algorithm through
their original paper at [DJ92].

8 The Quantum Fourier Transform

So far, we have established many of the foundations of Quantum computing and have familiarised
ourselves with the ability of Quantum computers to solve for many different values at once. Now
are ready to finally dig into the inner workings of Shor’s factoring algorithm. First, however, we
must develop the idea of phase estimation, which is central to Shor’s algorithm. In turn, to estimate
phases, we must also study the Quantum Fourier Transform.

Here is the problem we are trying to solve for this section and the next: Given some unitary
matrix U , and its eigenstate |u⟩, what is a good approximation for the phase of its eigenvalue? To
illuminate on this question a little, the eigenstate of a matrix is a vector which, when transformed
by the matrix, stays the same and gains a scalar factor. More specifically, U |u⟩ = λ |u⟩ = ei2πϕ |u⟩.
The reason that the eigenvalue of our unitary matrix, λ, is ei2πϕ is that a unitary matrix preserves
the norm of vectors it acts on, meaning the eignenvalue must have magnitude of 1. The most
general complex number with a magnitude of 1 is eiθ.

It turns out that there is a a fairly simple Quantum algorithm which uses control gates implementing
the operator U to take n qubits, and transform them into the superposition

1√
N

N−1∑
y=0

ei
2πϕy
N |y⟩ = 1

2
n
2

2n−1∑
y=0

ei
2πϕy
N |y⟩ (9)

This expression probably looks very odd to you at the moment, that is because I have not yet defined
what many of the variables here mean. I will do so shortly. We will also discuss the Quantum
algorithm that implemented this transformation in the following section on Phase Estimation. For
now, I want you to try and notice how similar the expression in equation (9) is to the discrete
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Fourier transform:

1√
N

N−1∑
y=0

ei2πϕyy (10)

There exists an efficient Quantum algorithm (which we will construct in this section) that can
take the computational basis vectors and transform them into the the same expression we got in
equation (9) in polynomial time. More specifically, our algorithm denoted by UQFT takes a n-qubit
vector in the computational basis |x⟩ = |x1x2 . . . xn⟩, xi = {0, 1} and transforms it into

UQFT |x⟩ = 1

2
n
2

2n−1∑
y=0

ei
2πxy
N |y⟩ . (11)

Here, y is a simple integer from 0 to N − 1 but |y⟩ is the qubit state representing that integer. So
for the scenario of 4 qubits, y = 5 corresponds to |y⟩ = |0101⟩ since 0 · 23+1 · 22+0 · 21+1 · 20 = 5.
We can write |y⟩ more explicitly as |y⟩ = |y1y1 . . . yn⟩. To get some more intuition for how this
operation works, let us compute the QFT of the 1 qubit computational basis vectors |0⟩ and |1⟩.

UQFT |0⟩ = 1√
2

1∑
y=0

ei
2π(0)y

N |y⟩ = 1√
2

(
|0⟩+ |1⟩

)
= |+⟩

UQFT |1⟩ = 1√
2

1∑
y=0

ei
2π(1)y

N |y⟩ = 1√
2

(
|0⟩+ ei2π |1⟩

)
=

1√
2

(
|0⟩ − |1⟩

)
= |−⟩

Indeed the QFT procedure gives us the states |+⟩ and |−⟩ for the computaional basis vectors for
n = 1. More generally, QFT will transform a set of computational vectors into another, special,
set of basis vectors which is called the Fourier basis. The Fourier basis for the one qubit system is

simply the familiar vectors |0⟩+|1⟩√
2

and |0⟩−|1⟩√
2

.

Our final goal for this section is to draft an algorithm for implementing the Quantum Fourier
transform, so that we may use its inverse algorithm for our Phase Estimation procedure in the next
section. In order to come up with this algorithhm, we will first simplify the expression in equation
(11) into a more explicit form. More specifically, we want to write it as the following explicit tensor
product of different states so that we know exactly how each qubit’s state changes:

1

2
n
2

(
|0⟩+ ei

2πx
2 |1⟩

)
⊗
(
|0⟩+ ei

2πx
4 |1⟩

)
⊗ . . .

(
|0⟩+ ei

2πx
2n |1⟩

)
(12)

Let us start with the fact that y can be written as y =
∑n

k=1 2
n−kyk. This comes simply from how

we find the value y from its binary digits |y1y2 . . . yn⟩.

UQFT |x⟩ = 1

2
n
2

2n−1∑
y=0

ei
2πx
N

∑n
k=0 2n−kyk |y⟩

11



Now, we do 4 things. Firstly, thanks to exponential laws, we can write the exponential in the
expression as a product of exponentials.

ei
2πx
N

∑n
k=1 2n−kyk =

n∏
k=1

ei
2πx
2n 2n−kyk =

n∏
k=1

ei
2πx

2k
yk .

Secondly, We can rewrite |y⟩ as its tensor product

|y⟩ = |y1y2 . . . yn⟩ = |y1⟩ ⊗ |y2⟩ . . .⊗ |yn⟩ =
n⊗

k=1

|yk⟩ .

Thirdly, now that everything is in terms of the binary values yk, instead of summing on the values
of y, we can run n sums, one for every coefficient yk.

1

2
n
2

2n−1∑
y=0

( n∏
k=1

ei
2πx

2k
yk

n⊗
k=1

|yk⟩
)
=

1

2
n
2

1∑
y1=0

1∑
y2=0

. . .

1∑
yn=0

( n∏
k=1

ei
2πx

2k
yk

n⊗
k=1

|yk⟩
)

Fourthly, and finally, we can combine the product and the tensor product into just a tensor product.
To accomplish this we group terms that correspond to the same coefficient of |y⟩, say yk. Them we
find that

n∏
k=1

ei
2πx
N 2n−kyk

n⊗
k=1

|yk⟩ =
n⊗

k=1

ei
2πx
N 2n−kyk |yk⟩

Combining all this, we find that

UQFT |x⟩ = 1

2
n
2

2n−1∑
y=0

ei
2πx
N

∑n
k=1 2n−kyk |y⟩ (13)

=
1

2
n
2

2n−1∑
y=0

( n∏
k=1

ei
2πx

2k
yk |y⟩

)
(14)

=
1

2
n
2

1∑
y1=0

1∑
y2=0

. . .

1∑
yn=0

( n∏
k=1

ei
2πx

2k
yk

n⊗
k=1

|yk⟩
)

(15)

=
1

2
n
2

1∑
y1=0

1∑
y2=0

. . .

1∑
yn=0

( n⊗
k=1

ei
2πx

2k
yk |yk⟩

)
(16)

=
1

2
n
2

n⊗
k=1

( 1∑
y1=0

1∑
y2=0

. . .

1∑
yk=0

. . .

1∑
yn=0

ei
2πx

2k
yk |yk⟩

)
(17)

=
1

2
n
2

n⊗
k=1

1∑
yk=0

ei
2πx
N 2n−kyk |yk⟩ =

1

2
n
2

n⊗
k=1

(
|0⟩+ ei

2πx

2k
yk |1⟩

)
(18)
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To explain what happened in equations (16) through to equation (18): We switched the order
of summation and the tensor product, and then found that the expression being summed only
depended on yk and not on any of the other coefficients y1, y2 . . . yk−1, yk+1 . . . yn, and hence we
were able to get rid of all but the yk sum.

The final result in equation (18) is really nice, because each state in the tensor product corresponds
to the superposition that the qubits in our system were transformed into. If we expand the notation
in (18) out to show each state explicitly then we get

1

2
n
2

(
|0⟩+ ei

2πx
2 |1⟩

)
⊗
(
|0⟩+ ei

2πx
4 |1⟩

)
⊗ . . .

(
|0⟩+ ei

2πx
2n |1⟩

)
(19)

There is one, final, simplification we can make to equation (19). Specifically, we can write x as a
binary string x1x2 . . . xn. We know the mapping of this to the integer x as discussed before. Binary
representation can also be used to write decimal numbers. For example, .x1x2 . . . xn means

x1 · 2−1 + x2 · 2−2 + . . . xn · 2−n = x1 ·
1

2
+ x2 ·

1

4
+ . . . xn · 1

2n

The reason this simplification is important is that it allows us to write the exponentials in equation
(19) in terms of the specific coefficients xk as follows:

ei
2π

2k
x1x2...xn = ei2πx1x2...xn−k.xn−k+1...xn = ei2πx1x2...xn−kei2π(0.xn−k+1xn−k+2...xn) (20)

= ei2π(0.xn−k+1xn−k+2...xn) (21)

I was able to ignore the coefficients x1x2 . . . xn−k when going from (20) to (21) because that was
the integer part of the string and we know that ei2πn = 1 for any integer n. Now our tensor product
is even more well specified as

1

2
n
2

(
|0⟩+ ei2π(0.xn) |1⟩

)
⊗
(
|0⟩+ ei2π(0.xn−1xn) |1⟩

)
⊗ . . .

(
|0⟩+ ei2π(0.x1x2...xn) |1⟩

)
(22)

Recall that our original state before the transform was

|x⟩ = |x1x2 . . . xn⟩ = |x1⟩ ⊗ |x2⟩ ⊗ . . . |xn⟩ .

This means that the kth qubit in our system is transformed in the following way:

|xk⟩
QFT−→ 1√

2

(
|0⟩+ ei2π(0.xn−k+1xn−k+2...xn) |1⟩

)
(23)

=
1√
2

(
|0⟩+ ei2π

xn−k+1
2 ei2π

xn−k+2
4 . . . ei2π

xn
2k |1⟩

)
(24)

You should notice that |x′k⟩ is very similar to the result of a Hadamard gate on a state |u⟩, u = {0, 1}:

|x′k⟩ =
|0⟩+ ei2π0.xk |1⟩√

2
. (25)
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|x1⟩ H R2 R3 Rn

|x2⟩ H Rn−2 Rn−1

|xn−1⟩ H R2

|xn⟩ H

1√
2

(
|0⟩+ ei2π0.x1x2...xn |1⟩

)
1√
2

(
|0⟩+ ei2π0.x2x3...xn |1⟩

)

1√
2

(
|0⟩+ ei2π0.xn−1xn |1⟩

)
1√
2

(
|0⟩+ ei2π0.xn |1⟩

)
Figure 4: Circuit to implement the Quantum Fourier Transform

The difference is there are also phases ei2πϕ that are being thrust onto the |1⟩ term in equation (24).
Thus, our strategy to finally draft an algorithm to implement the Quantum Fourier Transform will
be to first pass every qubit through a Hadamard gate to get the result of equation (25), and then
add additional phases to only the |1⟩ term to bring each qubit into the necessary state. This second
step may be accomplished by introducing a new unitary gate:

Rk =

[
1 0

0 ei
2π

2k

]
(26)

Rk |0⟩ = |0⟩ Rk |1⟩ = ei
2π

2k |1⟩

Specifically, we will be using the controlled Rk gate. If we pass the original value of the xk bit into
Rk as the control value then it creates just the right phase. When xk = 0 we get

Rk[0] |1⟩ = |1⟩

which makes sense since ei
2πxk
2k = ei

2π(0)

2k = 1. Similarly, when xk = 1, we get the phase we are
looking for:

Rk[1] |1⟩ = ei
2πxk
2k |1⟩

Now all that is left for us is to use these ideas in the QFT circuit in figure ?? to produce the states
in equation (24) . Let us analyse just the first line of the circuit, where the Hadamard gate followed
by the first controlled gate produces

R2[x2]
|0⟩+ ei2π0.x1 |1⟩√

2
⊗ |x2x3 . . . xn⟩ =

|0⟩+ ei2π0.x1x2 |1⟩√
2

⊗ |x2x3 . . . xn⟩ (27)

The following controlled Rk gates have a similar effect, adding more bits to the phase, finally giving
us the state

|0⟩+ ei2π0.x1x2...xn |1⟩√
2

⊗ |x2x3 . . . xn⟩ (28)
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Then, you can see that the second line of the circuit produces the appropiate state for the second
qubit:

1

2

(
|0⟩+ ei2π0.x1x2...xn |1⟩

)
⊗
(
|0⟩+ ei2π0.x2x3...xn |1⟩

)
⊗ |x3 . . . xn⟩ (29)

Continuing on for all n lines of the circuit, we finally arrive at the final output state of the qubits:

1

2
n
2

(
|0⟩+ ei2π0.x1x2...xn |1⟩

)
⊗

(
|0⟩+ ei2π0.x2x3...xn |1⟩

)
⊗ . . .

(
|0⟩+ ei2π0.xn

)
(30)

Comparing this to the states in equation (22), we see that quation (30) has the same qubit states
as it, but in reverse order. This is not a big deal as there exist swap operations that can correct the
ordering and give us our desired result without adding any significant computational time. This
swap operation is the final step in our QFT procedure

9 Quantum Phase Estimation

Now we are very well acquainted with the Quantum Fourier transform and its implementation on a
Quantum computer. I made the claim that there exists a Quantum algorithm that can transform n
bits into the set of states in equation (9). This set of states is completely analogous to the Fourier
basis for n qubits.

Let us start this section with constructing the algorithm to produce the states in equation (9) as I
promised to do in the previous section.

The main gates we will use for the circuit will be controlled U2k gates where U2k is simply the U
gate applied 2k times. Given that the control bit is 1, this gate will apply the unitary transformation
U . Recall that our whole goal is to find eigenvalues for this general unitary matrix U .

We use two different groups of qubits for this circuit, commmonly referred to as ‘registers’ of qubits.

The first register has n qubits which serve as the control bits for the controlled U2k gates and are
transformed into the form in equation (9) through phase kick back as will be shown soon. These n
bits will eventually represent our approximation for ϕ at the end after we apply an inverse QFT.
The second register is the set of qubits that represent the eigenstate |u⟩. They are our target bits.
When the control bit equals 1, the unitary gates produce a the phase we are looking to produce.

Let us analyse a general line of the circuit in Figure 5. to see how phase kickback occurs. Specifically,

U2k−1
[ |0⟩+ |1⟩√

2

]
|u⟩ = 1√

2

(
U2k−1

[|0⟩] |u⟩+ U2k−1

[|1⟩] |u⟩
)

=
1√
2

(
|0⟩ ⊗ |u⟩+ |1⟩ ⊗ ei2π2

k−1ϕ |u⟩
)

=
1√
2

(
|0⟩+ ei2π2

k−1ϕ |1⟩
)
⊗ |u⟩ . (31)
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U1 U2 U4 U2n−1|u⟩ |u⟩

H

H

H

H|0⟩

|0⟩

|0⟩

|0⟩

|0⟩+ ei2π2
n−1ϕ |1⟩

|0⟩+ ei2π2
2ϕ |1⟩

|0⟩+ ei2π2
1ϕ |1⟩

|0⟩+ ei2π2
0ϕ |1⟩

QFT−1

|ϕn⟩

|ϕ3⟩

|ϕ2⟩

|ϕ1⟩

Figure 5: Circuit to implement Quantum Phase Estimation

Hence the first register is transformed into

1

2
n
2

(
|0⟩+ ei2π2

n−1ϕ |1⟩
)
⊗
(
|0⟩+ ei2π2

n−2ϕ |1⟩
)
⊗ . . .

(
|0⟩+ ei2π2

1ϕ |1⟩
)
⊗

(
|0⟩+ ei2π2

0ϕ |1⟩
)
(32)

Similarly to x in the previous section, it is useful to write ϕ as a decimal binary expansion. We
can say that

ϕ = 0.ϕ1ϕ2 . . . ϕn

You may wonder why we are only including decimal bits. Any bits on the left hand side of the
decimal point has no real effect on the phase. Recall that our eigenvalue is ei2πϕ. If we consider
bits to the left of the decimal point, then we quite simply find that

ei2πϕ−m...ϕ−1ϕ0.ϕ1ϕ2...ϕn =ei2πϕ−m...ϕ−1ϕ0ei2π0.ϕ1ϕ2...ϕn

=ei2π0.ϕ1ϕ2...ϕn

With this in mind, our tensor product in equation (32) becomes

1

2
n
2

(
|0⟩+ ei2πϕ1ϕ2...ϕn−1.ϕn |1⟩

)
⊗
(
|0⟩+ ei2πϕ1ϕ2...ϕn−2.ϕn−1ϕn |1⟩

)
⊗ . . .

(
|0⟩+ ei2π0.ϕ1ϕ2...ϕn |1⟩

)
=

1

2
n
2

(
|0⟩+ ei2π0.ϕn |1⟩

)
⊗
(
|0⟩+ ei2π0.ϕn−1ϕn |1⟩

)
⊗ . . .

(
|0⟩+ ei2π0.ϕ1ϕ2...ϕn |1⟩

)
(33)

As promised, this is exactly analogous to the result of the Quantum Fourier Transform as seen in
equation (22). Thus, in order to recover an approximation for the value ϕ, the final step is to take
the inverse of the QFT procedure. Since QFT is a unitary operation, it definitely has an inverse,
and the circuit for this inverse can be contructed without much trouble by reversing the original
QFT circuit. The final result

|ϕ1⟩ ⊗ |ϕ2⟩ . . .⊗ ϕn
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is a definite state of n qubits and does not contain any superpositions meaning measuring the state
simply gives us the string ϕ1ϕ2 . . . ϕn which represents the phase value

ϕ ≈ 0.ϕ1ϕ2ϕ3 . . . ϕn (34)

I have repeatedly referred to this result as an approximation to ϕ rather than its exact value, so
let us end this section off with why this is an approximation. The issue lies in the fact that we
are trying to approximate ϕ with the finite number of qubits n. Not only is it possible that the
representation of the true value of ϕ may require more than n bits, it is possible that ϕ is irrational
with infinite bits in its representation. The best we can do for a longer string ϕ while using only n
qubits is get within an error of |ϕactual − ϕapproximated| < 1

2n . Luckily for us, though, if you take a
reasonably large number of qubits, there is a large probability that we get a good approximation
for ϕ with error of the order of 1

2n . This is a fact that I will not attempt to prove here, but a deep
discussion of it can be found in Nielson’s Quantum Computation Unit 5.2.1.

10 Order Finding allows Prime Factorization

Now we are finally ready for the heart of this paper’s discussion; factoring numbers on a Quantum
computer. In his 1994 paper, Peter Shor outlined a Quantum algorithm for his task. He utilised
the strong link between prime factorization and the problem of finding the order of a number.

DEFINITION 1. Suppose you have two positive integers, x and N such that x and N are co-
prime, or in other words gcd(x,N) = 1. The order r for these two integers is defined as the smallest
positive integer such that xr ≡ 1 (mod N).

This definition is so important to us because the problem of factorization can be reduced to order
finding. Suppose you want to prime factorize a number N . Before discussing how order finding
helps in factorization, however, we should cover some simple cases. For example, if N is even, it
is an easy task to reduce it to find its even factors since we know they are of the form 2k and
division by 2 is not a difficult task for classical computers. For the following discussion, let us just
assume that we have found the even factors, and our N is odd. Next, it is possible that N = pn,
where p is prime. This is the case of N having just one distinct prime factor. There is a simple
classical algorithm to find p if this is true. We simply cycle through integers 1 ≤ n ≤ log2N and
compute the quantity

n√
N . If we find that p =

n√
N is an integer for any choice of n, we know that

N = pm. Once again, taking the nth root of a number is not particularly difficult computationally,
and checking for such a factor before starting the order finding procedure will not cost us any
significant time.

Now to see how order finding relates to factoring N , we can start by finding a number 0 < x < N
which is co-prime to N . Then we may find the order such that xr = 1 (mod N). We can express
this modular relation instead using explicit constants for the quotient and remainder.

xr = kN + 1

xr − 1 = kN

(x
r
2 − 1)(x

r
2 + 1) = kN (35)
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This means that (x
r
2 − 1)(x

r
2 + 1) = 0 (mod N), which implies that there exists a gcd(x

r
2 − 1, N)

which is a factor of N ! Thus, if we can find a co-prime to N , and compute its order, we can find
ourselves a nontrivial divisor of N . However, thereer, there are some possibilfailure thatf failure
that wewith.with. Firstly x

r
2 −1 is an integer only if r

2 is also an integer. Hence, the order r we find
must be even. Secondly, there is the case where x

r
2 = −1 (mod N). This is a problem because it

implies that x
r
2 + 1 = 0 (mod N) and x

r
2 − 1 = −2 (mod N). You can see the original discussion

of order finding as a path to factoring in Gary Miller’s 1976 paper in [Mil76].

Luckily, these two possibilities do not pose a big issue for us because for a chosen coprime x, we can
prove that there is a high probability that its order r with N is even and that x

r
2 ̸= −1 mod N.

THEOREM 2. Suppose a number N = ps11 p
s2

2 . . . psnn , and a randomly chosen number x which is
coprime to it. Then their order r satisifes the conditions that r is even and x

r
2 ̸= 0 mod N with

the probability

P
(
r is even , x

r
2 ̸= 0 (mod N)

)
≥ 1− 1

2n
(36)

There exists an efficient algorithm for computing the greatest common denominators of two numbers
(see [Knu98]), and hence finding gcd(x

r
2 − 1, N) is not a bottleneck for our procedure either.

11 The Order Finding Algorithm

Now we know that if we can find the order of N and one of its coprimes x, then there is a high
probability this will allow us to find a factor of N . This all is only of any practical value to us,
however, if we can actually efficiently find the required order r. The final piece in the puzzle is the
fact that we can construct an efficient Quantum algorithm for this task.

As eluded to earlier, the order finding algorithm turns out to simply be the phase estimation
algorithm, applied to a special unitary operator.

U |y⟩ = |xy (mod N)⟩ (37)

Note that

U |xk (mod N)⟩ = |xk+1 (mod N) (mod N)⟩ = |xk+1 (mod N)⟩

which allows us to find an eigenstate for U . Specifically any state of the form

|us⟩ =
1√
r

r−1∑
k=0

ei
2πsk

r |xk mod N⟩ (38)
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where 0 < s < r − 1 is an integer is an eigenstate of U as

U |us⟩ =
1√
r

r−1∑
k=0

e−i 2πsk
r |xk+1 mod N⟩

=
1√
r

r∑
k′=1

e−i
2πs(k′−1)

r |xk
′
mod N⟩ (39)

=
1√
r

r−1∑
k′=0

e−i
2πs(k′−1)

r |xk
′
mod N⟩ (40)

=ei
2πs
r

1√
r

r−1∑
k=0

e−i 2πsk
r |xk mod N⟩ = ei

2πs
r |us⟩ (41)

Between equations (39) and (40), I used the fact that

e−i 2πs
r (r−1) |xr mod N⟩ = e−i 2πsr

r ei
2πs
r |1 mod N⟩ = ei

2πs
r |1 mod N⟩

Now there is only one thing left to do. We apply the phase estimation procedure to the unitary gate
represented in equation (37) and the we hence compute, to a high degree of accuracy, an estimation
for the value ϕ ≈ s

r .

12 Shor’s Factoring Algorithm

With all this we are finally ready to state the procedure for factoring a general composite integer
N on a Quantum algorithm. Let’s state the procedure as a series of steps.

1. If N is even, return 2 as a factor.

2. We check if N is of the form N = pm using the classical algorithm mentioned prior. If this is
found to be true, we return p and end our algorithm.

3. Choose a random integer in the range 1 < x < N . If gcd(x,N) > 1, then we have hit the
jackpot as the result of this GCD, in fact, gives us a non-trivial factor of N, and we can return
it. If, instead, gcd(x,N) = 1, then x is co-prime to N and we proceed to Step 4.

4. We now find the order r of x mod N using the order finding algorithm discussed prior.

5. We check if r is even and if x r
2 ̸= −1 mod N . If these conditions hold, we can compute

gcd(x
r
2 − 1, N) and divide N by it to test if it is a non-trivial factor of N . If it is, then we

return this as a factor. However, if either condition does not hold, our algorithm has failed.
We must try again with a new choice of x.
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