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1 Introduction

One of the most important mathematical achievements of the 20th century was
the classification of simple finite groups.

Definition 1.0.1. A group G is simple if G has no normal subgroups.

This classification took tens of thousands of pages written over several decades
by hundreds of authors. Some of the longest papers in math were written as
part of this classification. For example, the last major gap of the classification
was filled by a monstrous 1221 page paper of Ascherbacher and Smith [AS04],
which proved that all the quasithin groups had been found. Another famous
example is the 255 page proof of the Feit-Thompson Theorem [FT63], which
states that groups of odd order are solvable, which proves that the only simple
groups of odd order are Sp.

Theorem 1.1. Any finite simple group is either:
i) Contained in one of 18 infinite families of groups, collectively known as

the groups of Lie type
ii) One of 26 other sporadic groups
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The reason we care so much about simple groups is the Jordan-Holder Theo-
rem. Informally, this theorem states that all groups are, in some sense, products
of finite groups, and that this product is basically unique. So the simple groups
are like the ”prime numbers” of groups.

Theorem 1.2 (Jordan-Holder). Let G be a group. Then G has a composition
series; that is, a sequence

G = G0 ▷G1 ▷ · · ·▷Gn = 1, (1)

where Gi/Gi+1 is a simple group for all i. Moreover, the composition factors
Gi/Gi+1 are unique up to isomorphism and ordering.

However, there is more than one way to multiply groups. That is, it’s possible
that two groups G1 ̸∼= G2 both have a normal subgroup N such that G1/N ∼=
G2/N ∼= H for some group H. Determining what groups G have this property
for fixed N and H is known as the extension problem. The extension problem is
very, very, very hard, and it’s unlikely to ever be solved. So knowing all the finite
simple groups doesn’t let us construct all the finite groups, the way knowing the
primes lets us build integers. However, it does tell us the possible composition
factors for groups, and knowing this turns out to be crucial to studying groups.

The sporadic groups are weird. It seems logical to expect that simple
groups would have a nice classification, given how abstract their definition
is. But somehow, the sporadic groups are just there, by themselves, with-
out any other groups like them. We will construct the 5 sporadic Mathieu
groups M24,M23,M22,M12,M11. These are the simplest examples of spo-
radic groups. Along the way, we will explore a few of the bizarre coincidences
and connections that make the existence of these simple groups possible.

2 Codes

We will constructM24 as the symmetries of a special error-correcting code called
the Golay code. We will then find all the other Mathieu groups as subgroups
of M24. Of course, we need to define codes first. We will use the most general
definition possible.

Definition 2.0.1. A (block) code C is a subset of Fn
2 . The elements of C are

called the codewords.

Why is this an interesting definition? Say that we are sending a message
represented as a sequence of bits. The system we use to transmit the message
isn’t perfect, so it’s possible the recipient receives a corrupted version of the
message. Specifically, a 0 can become 1 or a 1 becomes a 0, but bits will never
be added or deleted. The inspiration for this is how computers send bits. It’s
relatively easy for a computer to receive the wrong bit, but nearly impossible
for it to not receive a bit at all.

An error correcting code is a way to add redundancy to our message so that
the recipient can automatically fix errors in transmission. The words in the
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original message get broken up into blocks of size n and sent to codewords. The
mapping between uncoded words and codewords is totally arbitrary, so we don’t
care about it and only look at the codewords C.

Definition 2.0.2. The hamming distance between two vectors a = (a1, . . . , an)
and b = (b1, . . . , bn) is the number of i such that ai ̸= bi.

If a code has minimal Hamming distance d, then we can correct up to ⌊d−1
2 ⌋

errors by sending each element of Fn
p to the codeword closest to it in terms of

Hamming distance. if there are more, we could decrypt to the wrong codeword.
We can detect up to d − 1 errors because we need at least d errors to corrupt
a codeword into another codeword. Other than minimal Hamming distance,
there are two other things we care about in codes: the length of the original
message, k and the length of the encoded message, n. We will often say a code
with these parameters is a [n, k, d] code. The vast majority of codes are not
very interesting: if we just pick a subset of points at random, they probably
won’t make a very good code. So we need to add some structure to our codes.

Definition 2.0.3. A code C is linear if it is a subspace of Fn
2 over F2. We call

a matrix G whose rows span C a generator matrix.

Example 2.0.1. The n-repetition code C = {(0, . . . , 0), (1, . . . , 1)} over Fn
2 is

a linear [n, 1, n] code with generator matrix [1 1 . . . 1].

Of course, there are more complicated codes:

Example 2.0.2. The (7, 4) Hamming code is the [7, 4, 3]2 code with generator
matrix

G =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 0 1
1 1 0 1 0 0 1

 (2)

This code is small enough that we can just write down all 24 elements and
check their distance from each other to prove that the minimal distance between
codewords is 3. Actually, we just need to check distance from 0.

Definition 2.0.4. The weight of a ∈ Fn
2 , denoted as w(a) is the number of 1

entries in a.

Theorem 2.1. Let C be a linear [n, k, d] code over Fn
2 . Then d is the minimum

weight the elements of C.

Proof. Let a,b ∈ C have minimal Hamming distance from each other. Notice
that the Hamming distance between a and b is just the weight of a+ b. Since
C is linear, a+ b ∈ C.

Both of these examples have the very nice property that there is no ”wasted
space” because any element of Fn

2 can be corrected into a codeword by changing
at most (d−1)/2 bits. That is, every element of Fn

2 is within (d−1)/2 hamming
distance of a unique codeword. (Insert here) (Visualization with 3-repetition
code) We should give this property a name.
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Definition 2.1.1. A [n, k, d] code C is perfect if every element Fn
2 is within

(d− 1)/2 Hamming distance of a codeword.

The perfect codes are basically the best codes we can get. We can use a
simple counting argument to find which parameters [n, k, d] a perfect binary
code can have.

Theorem 2.2. If there exists a [n, k, d] perfect binary code, then(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

(d− 1)/2

)
= 2n−k (3)

Proof. We need exactly 2k codewords, one for each k-bit binary string. The
code is perfect, so we need the Hamming spheres of radius (d− 1)/2

There are
(
n
0

)
+

(
n
1

)
+ · · · +

(
n

(d−1)/2

)
ways to choose at most d−1

2 bits to

change, each Hamming sphere around the codewords has that many bits. Thus

2k(

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

(d− 1)/2

)
) = 2n. (4)

Dividing by 2k, we get the Theorem,

When does this happen? If n = d or n = (d−1)/2, the condition is obviously
met. These correspond to the code with one element and the n-repetition codes
for odd n, respectively. What other [n, k, d] work? With a bit more effort, we
can find that n = 2r − 1, k = 2r − r − 1, d = 1 works. It turns out there exists
a family of codes with these parameters, called the Hamming codes. We have
already seen the (7, 4) Hamming code. For a construction of these codes, see
[CS99].

Aside from these cases, extensive computer searches have only found two
more. Specifically: (

90

0

)
+

(
90

1

)
+

(
90

2

)
= 212 (5)

and (
23

0

)
+

(
23

1

)
+

(
23

2

)
+

(
23

3

)
= 211. (6)

The n = 90, d = 5 case doesn’t correspond to a code.

Theorem 2.3 ([CS99]). There is no [90, 11, 5]2 code.

Proof. Assume that C is a [90, 11, 5] code. We have just shown that C must be
perfect. Notice that the Hamming distance in Fn

2 is unaffected by translation.
So we can assume that 0 ∈ C. Since C is perfect, it must contain no other
codewords of weight less then 5. The elements of weight 3 in F90

2 must be
within Hamming distance 2 of a codeword. This codeword must be of weight
5. Consider the vectors of weight 3 that begin with two 1’s. We will write
these as (1, 1, 0, . . . , 0) + ei, where ei has zeroes in all places except for the
ith. These must be within two bits of a codeword, which must be of form
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(1, 1, 0, . . . , 0) + ei + ej + ek. All the different choice of i, j, k must be distinct
because the minimal Hamming distance is 5. But 3 does not divide 88, so this
is impossible for all i. Thus there is no [90, 11, 5] Hamming code.

So now the only remaining case is n = 23, d = 8. The code corresponding to
this is the Golay code G23. Moreover, the Golay code turns out to be the only
[23, 12, 7] code up to permuting the coordinates. Since the Golay code happens
to be unique, we could just construct it by going through all 223 elements of
F23
2 in some order, and choosing every element that differs in 3 or more places

from the previously chosen elements. But that doesn’t tell us anything about
the code. So instead of doing that, we will construct the closely relatedextended
Golay code G24, which has block size n = 24. G24 has the property that
removing any one of its coordinates gives us G23, up to permuting coordinates.

There are many constructions of the Golay code. The following is taken
from [Fre]. A standard way to transmit codes is to send the original message,
then follow it up with some redundant bits that can be used to correct errors.
The bits making up the original message are called the information bits, and
the added bits are called the padding bits. For example, we send two padding
bits identical to the information bit in the 3-repetition code. In the case of the
extended Golay code, we need 12 information bits and 12 padding bits.

Take a look at a dodecahedron. It has 12 faces. We will construct the Golay
code by putting an information bit and a padding bit on the 12 · 2 = 24 facts of
two dodecahedrons. Number the faces of the first dodecahedron from 1 to 12 like
below. On the second dodecahedron, just add 12 to each face. This numbering
is completely arbitrary, but we need to choose a particular numbering to find a
generating matrix for G24.

Given an element a ∈ F12
2 , we will put one bits on each face corresponding

to the element of F24
2 the word is are coded as. For the ith face, the information

bit on the first dodecahedron will just be the ith entry of a. The padding bit
on a face f of the second dodecahedron is determined as the sum of the bits
on the first dodecahedron not adjacent to the face in the same position as f ,
including that face itself. For example, if we want a first data bit to be 1, and
all the others 0, we place bits on the dodecahedron as below, where the shaded
faces are 0 and the others 1.

In general, if we want one data bit to be a 1 and the rest to be 0, we get
rotations of the diagram above. This gives us the following generating matrix
G for G24.
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

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 0 1 1 0
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 1


We will now prove G24 is a [24, 12, 8] code. It’s clear that n = 24. Because

the first twelve bits form the identity matrix, the subspace this matrix generates
is 12 dimensional, so k = 12. It remains to show that d = 8. Since the padding
bits are just a linear sum of data bits, the extended Golay code is linear. So
we just need to prove that the minimum number of ones in an element of the
Golay code is 8 . We can just do casework on the number of data bits that are
1.

Theorem 2.4. The minimal Hamming distance between two elements of the
extended Golay code is 8.

Lemma 2.4.1. If a = (a1, . . . , a12, . . . , a24) ∈ G24, then
a′ = (a13, a14, . . . , a1, a2, . . . , a12) ∈ G24.

Proof. This means that swapping the two dodecahedrons is an automorphism
of the Golay code We just need to prove this for all the generators given by
the rows of A. Since all the generators are the same up to rotation, we only
need to prove this for a single generator, which is equivalent to showing that
the following is an element of the extended Golay code.

We can just compute that this is true.

Proof. We have to do a lot of casework. If both the padding and data bits have
more than 4 ones, then the weight is at least 8. So we can assume one of them
has less than 4 ones. The Lemma lets us swap data and padding bits, so assume
data bits have less than 4 ones. We can just do casework on the number of ones.

If there is only one one, then we have a row of A, which is of weight 8.
If we have two ones, we need to consider how rows of A intersect. Put the

bits on a dodecahedron as before.
If the two bits are antipodal, then we get a word of weight 12.
Else, it’s easy to see that we get a word of weight 8.
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If we have three ones, there are three cases. Either two rings are antipodal,
in which case we get a codeword of weight 8, the 3 padding bits share a single 1
bit, or none do. Either way, we can check to see that the codewords have weight
at least 8.

The codewords of G24 of weight 8 are called octads. The set of octads is
called C8. Now we have proven the extended Golay code G24 is an [24, 12, 8]
code. We claim that removing any one bit gives us a perfect [23, 12, 7] code.
The code clearly still is linear. Since d = 8, no elements of the extended code
differ in exactly one place. So there are still 212 elements of the code. Thus we
have a perfect [23, 12, 7] code. We haven’t proven that these [23, 12, 7] codes are
all the same though. So for now, say that G23 is G24 with the last bit removed.

3 Steiner Systems

The octads of G24 have a structure that helps explain why the Mathieu groups
are so special.

Definition 3.0.1 ([Cur25]). A Steiner system S(t, k, n) is a set with n elements
S, along with a set of k-element subsets of S, called blocks, such that every t-
element subset of S is contained in exactly 1 block.

For example, the Fano Plane is a S(2, 3, 7) Steiner system, with every line,
including the circle, a block.

We don’t know many Steiner systems. Specifically, we have no examples
of S(t, k, n) Steiner systems with t > 5, and only a small number of S(5, k, n)
Steiner systems are known. It was recently shown that S(t, k, n) Steiner systems
existed for all t, but the proof is nonconstructive. So it should be surprising
that C8 has the structure of a Steiner system.

Definition 3.0.2. An octad is a codeword of the extended Golay code with
weight 8.

Theorem 3.1. For each octad of the extended Golay code, choose an 8-element
subset of {1, 2, . . . , 24} by choosing i to be in the subset if and only if the ith digit
of the corresponding octad is 1. These subsets form a Steiner system S(5, 8, 24).
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Proof. We just need to show that every vector v = (v1, v2, . . . , v24) ∈ F24
2 of

weight 5 has Hamming distance 3 to exactly one octad.
First we show that there exists such an octad. Without loss of generality,

assume that the first coordinate of v is 0. Consider v′ = (v2, v2, . . . , v23) ∈ F23
2 .

Since the [23, 12, 7] Golay code G23 is perfect, v′ is within 3 Hamming distance
of a codeword of G23, say c. The weight of c must be 7 or 8. Since G23 is
found by removing the first entry of G24, we can add that entry back to get a
codeword c′ ∈ G24. Since the minimal weight of a word in G24 is 8, and the
weight of a codeword must be even, the first entry of c′ is 1 if c has weight 7,
and 0 if c has weight 8.

Now we prove that octad must be unique. If v was contained in both the
octads corresponding to codewords a and b, then a and b can differ in at most
6 places, which isn’t possible because G24 is a [24, 12, 8] code.

We sometimes will refer to the specific S(5, 8, 24) Steiner system we found
here as just S(5, 8, 24). This is fine because the S(5, 8, 24) Steiner turns out
to be unique, which we will prove later. When our proofs apply specifically to
this Steiner system, and not S(5, 8, 24) Steiner systems in general, we will abuse
notation a bit and call it C8.

We found a generating matrix for G24 consisting of all octads in (insert).
Thus any permutation that sends octads of G24 to each other also maps G24

to itself. And since permuting coordinates doesn’t change the weight of any
codeword, any permutation that sends G24 to itself must also map octads to
each other. So M24 is also the group of automorphisms of the S(5, 8, 24) Steiner
system of octads.

We need to investigate the structure of Steiner systems a bit more to prove
some facts about G24.

Theorem 3.2. In an S(t, k, n) Steiner system, any set of i < t elements is
contained within (

n−i
t−i

)(
k−i
t−i

) (7)

blocks.

Proof. By the definition of S(t, k, n), each t element set is contained in a unique
block of k elements. There are

(
n−i
t−i

)
subsets of t elements that contain a par-

ticular i element subset. Each of these corresponds to a single kelement block.
A particular block has

(
k−i
t−i

)
subsets that contain a certain i element subset, so

we need to divide by that.

Using this theorem, we can find the Todd triangle corresponding to any
S(t, k, n). These Pascal’s triangle-like structures tell us how many blocks in-
tersect x element subsets in certain ways. Specifically, for any fixed subset
x1, . . . , xl−1, the mth entry of the lth row from the top tells us how many blocks
intersect in exactly x1, x2, . . . , xm−1 with x1, . . . , xl−1. After the t+1th line, we
have to assume that there exists a block containing x1, . . . , xl−1, so everything
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doesn’t become 0. We will show how to do this for S(5, 8, 24). Theorem 3.2 lets

us find the last row: 759 =
(245 )
(85)

, 253 =
(234 )
(74)

and so on, until we reach the sixth

row. Then we fill in ones, since we assume there is a block containing all these
elements. Now we can fill in the rest of the rows. The first entry of the second
row from the top is the number of rows that don’t contain some x1, which we
find as 759−253 = 506. The second entry of the third row is the number of rows
that contain x1 but not x2. The number of rows that contain both x1 and x2 is
77, and the number of rows that contain x1 is 253, so we fill in 253− 77 = 176.
Continuing like this, we get the whole triangle as shown below.

759
506 253

330 176 77
210 120 56 21

130 80 40 16 5
78 52 28 12 4 1

46 32 20 8 4 0 1
30 16 16 4 4 0 0 1

30 0 16 0 4 0 0 0 1
We mostly care about the last row. All the entries corresponding to octads

intersecting in an odd number of spaces are zero. So two octads always intersect
at an even number of points. This tells us a fact about the extended Golay code.

Theorem 3.3. The weight of any codeword of G24 is divisible by 4.

Proof. Notice that w(a + b) = w(a) + w(b) − 2(a · b) over Fn
2 . Assume that

a,b ∈ G24. Since a · b corresponds to the intersection of a and b, it must be
even, so w(a+b) ≡ w(a)+w(b) (mod 4). Since G24 is generated by codewords
with weight 8 ≡ 0 (mod 4), the weights of all codewords are divisible by 4.

This implies that the only possible weights of elements ofG24 are 0, 8, 12, 16, 24.
G24 cannot have a word of weight 4, because the minimal weight of an element
is d. Since (1, 1, . . . , 1) ∈ G24, there cannot be any words of weight 20 either, as
summing that word with (1, 1, . . . , 1) would give a word of weight 4. In general,
a word of weight i corresponds to a word of weight 24 − i. We can find the
weight distribution of the code from this.

Theorem 3.4 ([Cur25]). Let Ci be the set of words of weight i in G24. Then
i) |C1| = 1
ii) |C8| = 759
iii) |C12| = 2576
iv) |C16| = 759
v) |C24| = 1

Proof. The union of the Ci listed above make up the whole Golay code, which
has 4096 elements. There obviously is only one element each of weight 1 and 24,
so i) and v) have been proven. We have already proven that C8 has 759 elements,
so C16 does as well. Thus C12 has 4096− 2 · 759− 2 = 2576 elements,
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We defined M24 as the automorphism group of an S(5, 8, 24) Steiner system.
We naturally can think of M24 as acting on the set of 24 coordinate positions.
We will define the Mathieu groups M24−i as the stabilizers of i coordinates, and
prove that M24−i is also the automorphism group of another Steiner system.

We must be careful about the definition of a stabilizer of a set of points.
There are two kinds: standard stabilizers, and pointwise stabilizers.

Definition 3.4.1. Let G act on X. The stabilizer of S ⊆ X is the set of all
g ∈ G such that for all x ∈ X, x · g ∈ X.

Definition 3.4.2. Let G act on X. The pointwise stabilizer of S ⊆ X is the
set of all g ∈ G such that for all x ∈ X, x · g = x.

M23 and M22 have the simplest definitions:

Definition 3.4.3. M23 is the stabilizer of a point in M24 acting on X =
{1, 2, . . . , 24}.

Definition 3.4.4. M22 is the pointwise stabilizer of any two points in M24

acting on X = {1, 2, . . . , 24}.

Of course, we haven’t proven that different choices of points will lead to iso-
morphic M23 and M22. We will prove this after we show S(5, 8, 24) is unique.
But even without proving everything is well that M23 and M22 are also the
automorphism groups of a S(4, 7, 23) and S(3, 6, 22) Steiner system. M23 is
the automorphism group of G24 with an element removed, that is, G23. Al-
ternatively, we could take all the octads of C8, remove those not containing a
certain point, and remove that point from the octads that do contain it. These
octads form a S(4, 7, 23) Steiner system. Viewed as vectors, its easy to see
that these blocks generate G23, so any automorphism of these blocks is also an
automorphism of G23. Thus,

Theorem 3.5. M23 is the automorphism group of an S(4, 7, 23) Steiner system.

Similarly, we can prove that

Theorem 3.6. M22 is the automorphism group of an S(3, 6, 22) Steiner system.

M24,M23,M22 are collectively known as the large Mathieu groups.
The definitions of the small Mathieu groups M12 and M11 is a bit more

complicated. A dodecad is a word of weight 12.

Definition 3.6.1. M12 is the stabilizer of a dodecad D in G24.

Definition 3.6.2. M11 is the stabilizer of a point of M12 acting on 12 points.

Theorem 3.7. M12 is the automorphism group of a S(5, 6, 12) Steiner system.

Proof. Let X = {1, 2, . . . , 24}. For any 5 points in X/D, there exists exactly
one octad O1 of G24 containing those points. We claim that |X/D ∩ O1| = 6.
For if |X/D ∩ O1| = 5, 7, 8, that would imply that |X/D ⊕ O1| = 10, 6, 4,
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respectively. Thus the X/D ∩O1 are the blocks of a S(5, 6, 12) Steiner system.
An automorphism fixing D must fix X/D as well, and thus the blocks X/D∩O1.
Conversely, its easy to see that the choices of O1 generate G24 as a vector space,
so any permutation of the X/D ∩O1 also fixes G24.

Similarly to the proof of Theorem 3.5, we can now show that.

Theorem 3.8. M11 is the automorphism group of a S(4, 5, 11) Steiner system.

In conclusion, we have proven that all the Mathieu groups are automorphism
groups of Steiner systems.

Theorem 3.9. i) M23 is the automorphism group of an S(5, 8, 24) Steiner sys-
tem. ii) M23 is the automorphism group of an S(4, 7, 23) Steiner system. iii)
M22 is the automorphism group of an S(3, 6, 22) Steiner system. iv) M12 is
the automorphism group of a S(5, 6, 12) Steiner system. v) M11 is the auto-
morphism group of a S(4, 5, 11) Steiner system.

4 The MOG

So far, we don’t have a nice way of deciding if a set of 8 elements forms an
octad of M24. Historically, not being able to calculate efficiently in M24 this
has been a problem. When Mathieu discovered his groups in the mid 19th
century, he was unable to prove that they were distinct from alternating groups.
The existence of these groups was contested over the next eighty years, until
Carmichael found another construction of them in 1931. But still, the standard
way of finding octads was just to check this list of them. (insert) So even checking
if a permutation was in M24 would require 759 separate checks. Nowadays, a
computer can do all these calculations near instantly, but computers weren’t
widely available in the 1960’s, when people started getting interested in the
Mathieu groups again. Obviously, this made doing anything with M24 very
difficult.

This all changed when Curtis discovered the Miracle Octad Generator, or
MOG, in 1976. The MOG is basically a diagram of S(5, 8, 24) that takes ad-
vantage of its symmetries to avoid just listing out all 759 octads. The diagram
consists of the 36 4×6 blocks shown below. We will construct this diagram and
explain how to find octads with it. The first block shows us the correspondence
between indices of F24

2 and spaces in the blocks. 35 of these blocks let us find
in a way we will explain later.
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24 20 16 15 5 2
23 19 6 18 12 7
22 13 17 10 9 14
21 1 3 11 4 8

× × 1 3 2 4
× 4 2 3 1
× 2 4 1 3

3 1 4 2

× × 1 4 3 2
× 3 2 1 4
× 2 3 4 1

4 1 2 3

× 1 4 3 2
× 4 1 2 3

× 1 4 3 2
× 4 1 2 3

× 1 2 4 3
× × 4 3 1 2

× 1 2 4 3
4 3 1 2

× 1 2 3 4
4 3 2 1

× 1 2 3 4
× × 4 3 2 1

× × 1 4 3 2
4 1 2 3

× 2 3 4 1
× 3 2 1 4

× × 1 4 2 3
4 1 3 2

× 2 3 1 4
× 3 2 4 1

× 1 2 3 4
× 1 2 3 4
× 1 2 3 4
× 1 2 3 4

× 1 2 4 3
× 1 2 4 3

× 2 1 3 4
× 2 1 3 4

× 1 4 2 3
× 1 4 2 3

2 3 1 4
× × 2 3 1 4

× 1 2 3 4
× 1 2 3 4

× × 4 3 2 1
4 3 2 1

× 1 1 1 1
× 2 2 2 2
× 3 3 3 3
× 4 4 4 4

× × 1 2 4 3
× 3 4 2 1

2 1 3 4
× 4 3 1 2

× × 1 2 3 4
× 3 4 1 2

2 1 4 3
× 4 3 2 1

× 1 4 3 2
× 4 1 2 3
× 4 1 2 3

× 1 4 3 2

× 1 3 4 2
4 2 1 3

× × 4 2 1 3
× 1 3 4 2

× 1 2 3 4
× × 4 3 2 1

4 3 2 1
× 1 2 3 4

× 1 1 2 2
× 2 2 1 1

× 3 3 4 4
× 4 4 3 3

× 1 2 1 2
× 2 1 2 1
× × 3 4 3 4

4 3 4 3

× 1 2 2 1
× 2 1 1 2

× × 4 3 3 4
3 4 4 3

× × 1 1 2 2
× × 1 1 2 2

4 4 3 3
4 4 3 3

× × 1 4 1 4
1 4 1 4

× 2 3 2 3
× 2 3 2 3

× × 1 2 2 1
1 2 2 1

× 4 3 3 4
× 4 3 3 4

× 1 1 2 2
× 4 4 3 3

× 2 2 1 1
× 3 3 4 4

× 1 4 1 4
2 3 2 3

× 4 1 4 1
× × 3 2 3 2

× 1 2 2 1
× × 3 4 4 3
× 2 1 1 2

4 3 3 4

× × 1 1 2 2
4 4 3 3

× × 1 1 2 2
4 4 3 3

× × 1 2 1 2
× 4 3 4 3

1 2 1 2
× 4 3 4 3

× × 1 2 2 1
× 4 3 3 4

1 2 2 1
× 4 3 3 4

× 1 1 4 4
× 2 2 3 3
× 3 3 2 2

× 4 4 1 1

× 1 4 1 4
× × 2 3 2 3

3 2 3 2
× 4 1 4

× 1 4 4 1
2 3 3 2

× × 3 2 2 3
× 4 1 1 4

× × 1 1 2 2
4 4 3 3
4 4 3 3

× × 1 1 2 2

× × 1 4 1 4
× 2 3 2 3

× 2 3 2 3
1 4 1 4

× × 1 2 2 1
× 4 3 3 4

× 4 3 3 4
1 2 2 1

We need to take a look at the structure of S(5, 8, 24). Call any set of four
points a tetrad. Given a tetrad T1 contained within an octad U , the triangle
tells us there are exactly 4 other octads that intersect that octad in exactly
that tetrad. The intersection of these 4 octads with the sixteen elements not
in U divides them evenly into 4 sets of special tetrads of 4 elements each. For
if any of these special tetrads intersected with each other, their corresponding
octads would intersect at more than 5 points, which contradicts the fact that
any 5 points are contained in a unique octad. We call the chosen tetrad, its
complement in U , and the four special tetrads a sextet.

We care about sextets because they let us find lots of octads.

Theorem 4.1. Let U be an octad, and T1 a tetrad in U with complement T2.
Let T3 . . . , T6 be the corresponding special tetrads. Then Ti ∪ Tj , i ̸= j is always
an octad.

Lemma 4.1.1. Let U1 and U2 be octads in the S(5, 8, 24) Steiner system defined
as the weight 8 words of the Golay code such that |U1 ∩ U2| = 4. Then the
symmetric difference U1 ⊕ U2 = U1 ∪ U2 − U1 ∩ U2 is also an octad.

Proof. If the octads U1 and U2 correspond to Golay codewords v1 and v2, then
U1 ⊕ U2 corresponds to their sum v1 + v2. This sum has weight |U1| + |U2| −
2|U1 ∩ U2| = 8 + 8− 8 = 8, so it also corresponds to an octad.

Proof. By the definition of special tetrads, T1 ∪ Ti is an octad for all i ̸= 1. By
taking the symmetric difference of T1 ∪ Ti and T1 ∪ Tj , we get that Ti ∪ Tj is
also an octad, since Ti and Tj are disjoint.

This shows that complementary choices of the first tetrad T1 ∈ U give us the
same octads. There are

(
8
4

)
/2 ways to divide an octad into two complementary

tetrads. So there are a total of 140 different special tetrads for a particular
octad. These special tetrads have a nice structure.

Theorem 4.2. The set of special tetrads for a particular octad U forms a
Steiner system S(3, 4, 16).
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Proof. Say that two partitions of U into disjoint tetrads, U = A1 ∪ A2 and
U = B1 ∪ B2, result in special tetrads differing in exactly one place, say T1 for
A1 ∪A2 and T2 for B1 ∪B2 with |T1 ∩ T2| = 3. There must exist i, j such that
|Ai ∩ Bj | ≥ 2. Then the octads T1 ∪ Ai and T2 ∪ Bj intersect in more than 5
points, which is impossible.

We are now ready to explain what the MOG is. The first diagram has the
24 coordinates arranged into 6 columns, each of which is a tetrad. This grid is
divided into three 2× 4 octads, called Λ1,Λ2,Λ3 in that order.

24 20 16 15 5 2
23 19 6 18 12 7
22 13 17 10 9 14
21 1 3 11 4 8

= Λ1 Λ2 Λ3 .

We call Λ1 the special brick, and Λ2 ∪ Λ3 the square. The special brick is
separated from the square by a line in each diagram. For each of the 35 ways
to split Λ1 into an octad, we show how the 4 special tetrads, which we label as
1, 2, 3, 4 partition Λ2 ∪ Λ3. Given any 5 points, 4 of which are in Λ1, the MOG
tells us how to complete it. But what if there aren’t three points in Λ1?

This is the miraculous part of the miracle octad generator. It turns out that
the MOG diagram stays the same even if we swap bricks around. That is, M24

contains a subgroup isomorphic to S3 that swaps the positions of the bricks
Λ1,Λ2,Λ3 in the MOG without changing the relative position of elements.

The easiest way to see this is just by writing the generators of this S3. The
permutation swapping Λ1 and Λ3 and the permutation Λ2 and Λ3 generate this
copy of S3. It’s clear from the symmetry of the MOG diagram that swapping
Λ2 and Λ3 inside the square is an automorphism. (insert)

The permutation swapping Λ1 and Λ2 is (insert). We can just check all 12 of
the octads corresponding to the generators of the Golay code to see that they get
mapped to other octads under σ. Then every other octads are mapped to each
other as well, since they correspond to sums of generators in F24. Alternatively,
we can just calculate every single octad from those octads given by the MOG.

Theorem 4.3. In any S(5, 8, 24) Steiner system. The octads that intersect a
specific octad U in exactly four points uniquely determine all other octads of the
system.

Proof. Consider all the octads containing any 3 points x1, x2, x3 of an octad U0.
Octads intersect in an even number of points, so pairs of these octads intersect
in exactly 4 points. Todd’s triangle shows that there are 21 of these. Since these
21 octads intersect each other in 4 points, the

(
21
2

)
= 210 symmetric differences

of these octads are also octads. These 210 octads are also all distinct. Say that
U1 ⊕ U2 = U3 ⊕ U4, where all Ui contain x1, x2, x3. There are 5 points in U1

other than the xi. At most two of these points can be shared with U2. So there
are at least 3 points of U1 that are also in U1 ⊕ U2. Since U1 ⊕ U2 = U3 ⊕ U4,
one of U3 or U4 contains at least two of those points. Say that U3 does. Then

13



U1 = U3 since they intersect in at least 5 points. It follows that U2 = U4. Todd’s
triangle again shows that these 210 octads are all the octads not containing the
xi. But for any octad U5 ̸= U0, there exist three xi ∈ U0 such that U5 does not
contain any xi, since octads intersect in at most 5 points.

The copy of S3 in M24 lets us find the octads that intersect in 4 points with
any Λi. Since octads intersect each other in either 0, 2, or 4 points, any octad
U must intersect with at least one of the Λi in four points. We call this Λi

the heavy brick. By permuting the bricks, we can send the heavy brick to the
special brick Λ1, and then the MOG shows the octad. So the MOG diagram
shows us all the octads of S(5, 8, 24).

5 Multiple Transitivity

Recall how we defined the other Mathieu groups as stabilizer subgroups of M24

acting on X = {1, 2, . . . , 24}. The reason these groups are well defined is that
M24 is 5-transitive.

Definition 5.0.1. A group G acting on a set X is k-transitive if for any two
sets of k elements a1, a2, . . . , ak ∈ X and b1, b2, . . . , bk ∈ X, there exists a g
such that ai · g = bi.

Definition 5.0.2. A group G acting on X is sharply k-transitive if for any two
sets of k elements a1, a2, . . . , ak ∈ X and b1, b2, . . . , bk ∈ X, there exists exactly
one g such that ai · g = bi.

Example 5.0.1. Sn acts sharply n-transitively on {1, 2, . . . , n}, and An acts
n− 2 transitively for n ≥ 5.

The proof that S(5, 8, 24) is unique will also proves that M24 is 5-transitive
onX = {1, . . . , 24}. This is interesting because highly transitive groups are rare.
In fact, it turns out that the only k-transitive groups for k > 5 are the symmetric
groups Sn and the alternating groups An. [ONa75] gives a proof of this fact
as a consequence of the classification of simple finite groups. Unfortunately, no
direct proof of this fact is known.

The order of M24 is central to proving it’s simplicity. Luckily, the orbit
stabilizer theorem tells us a lot of information about the order of k-transitive
groups.

Theorem 5.1. If G acts on X k-transitively, then Stab(x) acting on X − {x}
is k − 1 transitive, and |Stab(x)| = |G|

|X| for any x ∈ X.

Proof. Since G is transitive, orb(x) = X. By the orbit stabilizer theorem,

|G| = |X||Stab(x)| (8)

which is equivalent to |Stab(x)| = |G|
|X| .
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Let a1, a2 . . . , ak−1 and b1, b2, . . . , bk−1 be any k−1 points of X−{x}. Since
G acts k-transitively on X, there exists g ∈ G such that x ·g = x and ai ·g = bi.
By definition, g ∈ Stab(x), so Stab(x) acts k − 1-transitively on X − {x}.

Theorem 5.2. If G acting on X is k-transitive and |X| = n, then |G| =
n(n− 1) . . . (n− k − 1)|Stab(a1, . . . ak)|, where a1, . . . , ak are any k elements of
X.

Proof. We proceed by induction on k. The base case of k = 1 is proven by the
previous theorem. Assume that |G| = n(n−1) . . . (n−k−2)|Stab(x1, . . . xk−1)|
if G acts on X k − 1-transitively, where |X| = n.

Let H act k-transitively on X. By Theorem (insert), Stab(xk) acts k − 1
transitively on X − {xk}, and |G| = n|Stab(xk)|. But |Stab(xk)| = (n− 1)(n−
2) . . . (n − k − 2)|Stab(x1, . . . , xk)| by induction, so |G| = n(n − 1) . . . (n − k −
1)|Stab(a1, . . . ak)|.

Corollary 5.2.1. If G acts on X sharply k-transitively, and |X| = n, then
|G| = n(n− 1) . . . (n− k − 1).

Proof. By definition, if G acts sharply k-transitive on X, then there is only one
g ∈ G such that xi · g = xi for any k elements of G x1, x2, . . . , xk. Specifically,
this element must be the identity. So |Stab(x1, . . . , xk)| = 1, which implies
|G| = n(n− 1) . . . (n− k − 1) by the previous theorem.

6 S(5,8,24) is Unique

We are finally ready to prove that S(5, 8, 24) is unique. Along the way, we
will find the order of M24 and prove that it is 5-transitive. If we can derive
the MOG as a diagram of the octads of an arbitrary S(5, 8, 24), possibly with
the first diagram relabeled, then we will have shown that there is only one
S(5, 8, 24).

First, notice that everything we have proven about the particular S(5, 8, 24)
Steiner system C8 is also true for any S(5, 8, 24) Steiner system, except for
(insert), which relied on the linearity of the Golay code, and the construction
of the MOG. Fortunately, it’s not too hard to prove that we can still take
symmetric differences in an arbitrary S(5, 8, 24).

Theorem 6.1. For any two blocks A,B in any Steiner system S(5, 8, 24), if
|A ∩B| = 4, then A⊕B is also a block.

Proof. Let A = {a1, . . . , a8} and B = {a1, a2, a3, a4, b5, b6, b7, b8}. For the sake
of contradiction, assume that {a5, a6, a7, a8, b5, b6, b7, b8} is not an octad. Con-
sider the unique octad U1 that contains the points a5, a6, a7, a8, b5. Since two
octads intersect in an even number of points, U1 must contain another point
of B. This point cannot also be in A, since 4 of the 5 points are already
in A, and octads intersect in at most 4 points. So without loss of gener-
ality we can assume that U1 also contains b6, so U1 ⊃ {a5, a6, a7, a8, b5, b6}.
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Similarly, we can assume the octad U2 containing a5, a6, a7, a8, b7 contains b8,
or that U2 ⊃ {a5, a6, a7, a8, b7, b8}. Now consider the octad U3 that contains
a5, a6, a7, b5, b7. This octad must contain another point of A, which cannot be
a8. Say it is a1. U3 must intersect with B in exactly one more element. U3

already contains four ai’s, so the new element must be a bi. We have already
found three elements of U3 that intersect with U1 and U2, so this new element
must not be in U2 or U3. But since U2 ∪ U3 contain all the bi, we have reached
a contradiction, and {a5, a6, a7, a8, b5, b6, b7, b8} is an octad.

Before we prove S(5, 8, 24) is unique, we need to understand how sextets
intersect with octads.

Theorem 6.2. An octet intersects with the tetrads of a sextet in one of the
following three ways:

i) In four places with two tetrads
ii) In 2 places with 4 sextets.
iii) In 3 places with one tetrads, and 1 place with the 5 others

Proof. Octets intersect in an even number of points. If two tetrads T1, T2 of a
sextet intersect an octad U with different parities, T1 ∪ T2 intersects U in an
odd number of points, since all tetrads are disjoint. So all tetrads of a sextet
must intersect U with the same parity. If the tetrads intersect evenly, then the
octad must intersect either as i) or ii). If the tetrads intersect oddly, there is at
most one tetrad intersecting in three places with the octad, since the union of
two tetrads that intersect the octad in three places would intersect the octad in
6 places, which is impossible. There are only 6 octads, so there must exist at
least one tetrad intersecting the octad in 3 places if the tetrads intersect oddly.
So iii) is the only remaining choice.

Now we are ready to prove the main theorem of this section.

Theorem 6.3.
i) S(5, 8, 24) is unique up to relabeling.
ii) M24 acts 5-transitively on X = {1, 2, 3 . . . , 24}.
iii) |M24| = 24 · 23 · 22 · 21 · 20 · 3 · 16 = 244, 823, 040

Proof. Say that we have an arbitrary S(5, 8, 24) Steiner system C ′
8. Let M′

24 be
the subgroup of S24 consisting of all automorphisms of C ′

8. We know that the
MOG diagram determines all the octads of C8. We will prove that the MOG
also shows the octads of C ′

8, possibly with a different first diagram, so C8 and
C ′
8 are isomorphic. The way we will do is to prove that some of the diagrams

are true by computation, and then derive the rest of the diagrams from them
using Theorem 6.1.

Let Y be the set of all ordered 7-tuples (x1, x2, x3, x4, x5, x6, y), where the xi

are elements of an octad Λ1 in C8, and y /∈ Λ1. Along with proving S(5, 8, 24)
is unique, we will also prove that M′

24 acts sharply 1-transitively on Y . Since
there are 24 · 23 · 22 · 21 · 20 ways to choose the first 5 xi’s, 3 ways to choose the
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sixth, and 16 ways to choose y /∈ Λ1, Corollary 5.2.1 implies ii). And since any
5 points are contained in some octad, this also implies iii).

For the first diagram, arrange the 7 points like below. The 21 · marks are
undetermined points. We choose to arrange them such that the columns are
tetrads of the hexad we get from choosing x1, x2, x3, x4 as a tetrad of Λ1.

x1 x5 y · · ·
x2 x6 · · · ·
x3 · · · · ·
x4 · · · · ·

Because we assumed the columns form tetrads, the MOG diagram D1 works.

D1 =

× 1 1 1 1
× 2 2 2 2
× 3 3 3 3
× 4 4 4 4

Now consider the MOG diagram corresponding to the partition

×
×
×
×

.

The × are the places containing elements of the MOG.
The octad U1 determined by the points {x2, x3, x4, x5, y} must intersect each

column of the square in exactly one point. For if it intersected, say, column i
in 3 places as well, U1 would intersect the union of columns 1 and i in more
than 5 places, which isn’t allowed because any two columns form a octad. So
by rearranging the points in the last three columns, we can assume that the top
row forms a special tetrad. We can repeat this for the rest of the columns to
get the diagram

D2 =

× 1 1 1 1
× 2 2 2 2
× 3 3 3 3
× 4 4 4 4

Since all the permutation we have used preserve columns, D1 stays accurate as

well. Now consider the partition

×
×
×
×

. We now have found all the octads

disjoint from Λ1.
Similarly to before, the octad containing {x1, x3, x4, x5, y} must intersect

with each of the square’s columns in exactly one place. By permuting the last

3 columns, we can assume that

× ×
× ×
× ×
× ×

is a tetrad. Since
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× × ×
× × ×
× × ×
× × ×

is also a octad, we can take the symmetric difference

of these to find the octad

× ×
× ×
× ×
× ×

. If we continue like this, we

find that the octads containing

×
×
×
×

are exactly those indicated in

D3 =

× 1 2 4 3
× 2 1 3 4
× 4 3 1 2
× 3 4 2 1

.

What permutations are we still allowed to use? That is, what remaining per-
mutations are there that permute the special tetrads of all of D1, D2, D3? We
can just check all the (4!)2 permutations that fix D1 and D2 (preferably with a
computer) to find that the subgroup that also fixes D3 is generated by

a =

× 1 2 4 3
× 2 1 3 4
× 4 3 1 2
× 3 4 2 1

, b =

× 1 2 4 3
× 2 1 3 4
× 4 3 1 2
× 3 4 2 1

, c =

× 1 2 4 3
× 2 1 3 4
× 4 3 1 2
× 3 4 2 1

.

Now look at the partition

× ×
×
× . The octad containing {x1, x2, x3, x5, y}

cannot contain points labeled with 1 in D1, D2 or D3. This forces it to either

be

× ×
× ×
× ×
× ×

or

× ×
× ×
× ×
× ×

. Since b swaps these,

we can assume it is the first. Just like we did with D3, we can use other octads
disjoint from Λ1 to find that the diagram

D4 =

× × 1 4 3 2
× 3 2 1 4
× 2 3 4 2

4 1 2 3

is valid. Now we only have a and c left to permute with. With the same method,
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we conclude that

D5 =

× × 1 4 2 3
× 3 4 2 1

2 1 3 4
× 4 3 2 1

is also a valid diagram. But this time, D5 is determined entirely and we don’t
have to use any permutations.

We also get that

D6 =

× × 1 1 2 2
× × 1 1 2 2

3 3 4 4
3 3 4 4

displays a sextet by using c.
Now using a,we get that

D7 =

× × 1 1 3 3
2 2 4 4

× × 1 1 3 3
2 2 4 4

also displays a sextet.
Now we have used al the permutations fixing the sextets, so we need all the

other diagrams to be determined by these. Its easy to check that they are. For
example, we can sum D7 and D6 to get

× × 1 1 2 2
× × 1 1 2 2

3 3 4 4
3 3 4 4

+

× × 1 1 3 3
2 2 4 4

× × 1 1 3 3
2 2 4 4

=

× × 1 1 2 2
4 4 3 3
4 4 3 3

× × 1 1 2 2

.

Thus we have derived the MOG and S(5, 8, 24) is unique. Since we have
used up all the permutations fixing D1, D2, D3, M24 acts sharply transitively
on {x1, x2, x3, x4, x5, y} because the stabilizer has

Since M24 is 5-transitive, the large Mathieu groups are well defined. The
orders and transitivity of the large Mathieu groups can be easily found with
Theorem (insert).

Theorem 6.4. M23 acts 4-transitively on 23 elements and |M23| = 23 · 22 ·
21 · 20 · 3 · 16 = 10200960.

Theorem 6.5. M22 acts 4-transitively on 23 elements and |M22| = 22 · 21 ·
20 · 3 · 16 = 443520.

To prove the small Mathieu groups are well defined, we will show M24

acts transitively on dodecads, and that M12 acts sharply 5-transitively on the
remaining 12 points.
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Theorem 6.6 ([Cur25]). M24 acts transitively on dodecads.

Lemma 6.6.1. Let D ∈ C12. Then there exists two octads U1, U2 ∈ C8 such
that, as sets, |U1 ∩ U2| = 2 and D = U1 ⊕ U2 = U1 ∪ U2 − U1 ∩ U2.

Proof. If |U1 ∩ U2| = 2, it follows that |U1 ⊕ U2| = 12, since it corresponds to
the sum of U1 and U2 as vectors, so every U1 ⊕ U2 correspond to a dodecad.
We can just count the number of ways to make a dodecad with Todd’s triangle.
There are 759 different octads U1, and 30

(
8
2

)
octads U2 that intersect that octad

in exactly two points by Todd’s triangle.
(
12
2

)
of these choices lead to the same

dodecad, so U1 ⊕ U2 can be

758 · 30 ·
(
8
2

)(
12
2

) = 2576 (9)

dodecads, which is exactly the number of dodecads in C12.

Proof of Theorem 6.6. Consider an arbitrary dodecad D = U1 ∪ U2, where U1

and U2 are octads such that |U1 ∩ U2| = 2. Let |U1 ∩ U2| = {x1, x2}. Since
M24 is 5-transitive and 5 points define an octad, there exists σ ∈ M24 sending
x1 and x2 to the top two points of Λ1 in the MOG and U1 to Λ1. By Todd’s
triangle, there are 16 choices for the image U2 that intersects x1, x2. This is
small enough that we can just find all the possible U2 and find elements of M24

mapping any choice to another. For example,
We can easily check with the MOG that these following elements are all in

M24, and that they fix no choice of U2. All these elements have order 2, and
the lines depict 2-cycles of the involutions.

These elements generate a subgroup of M24 isomorphic to (Z/2Z)4 of order
16. There are 16 possible So by the Orbit-Stabilizer Theorem, there is only one
orbit on the dodecads.

Theorem 6.7. M12 is sharply 5-transitive on Ω/D, and |M12| = 12 · 11 · 10 ·
9 · 8 = 95040.

Proof. There are 2576 dodecads, so M12 = |M24|/2576 = 12 · 11 · 10 · 9 · 8. By
Theorem (insert), M12 must be sharply 5 transitive if it is 5-transitive at all.
Let D be an arbitrary dodecad and Ω = {1, 2, . . . , 24}. We will show that the
stabilizer of D acts 5-transitively on X/D. Notice that the stabilizer of D is
exactly the stabilizer of X/D. Given two sets of 5 points a1, a2, a3, a4, a5 and
b1, b2, b3, b4, b5 in X/D, there exists a permutation π ∈ M24 such that ai · b = yi
for i ≤ 5. Let the unique octads containing these 5 points be A and B, and
say the other three points are a6, a7, a8 and b6, b7, b8, respectively. A and B
each must intersect Ω/D in exactly 6 points. A and B are already known to
intersect X/D in 5 points, and there must be a sixth point for the weight of

20



their symmetric difference to be divisible by 4. Assume that the sixth point of
the intersection with Ω/D is a6 and b6 respectively.

By (the proof of) Theorem 6.3, we can assume π maps x6 to y6, since we
proved that M24 is transitive on any six points within an octad and one point
without. Since B intersectsD in 6 points, there exists another octad B′ with B∩
B′ = {b7, b8} such that B⊕B′ = X/D. By the previous Theorems proof, there
exists a subgroup of M24 fixing B isomorphic to Z/2Z, which acts transitively
on all the octads intersecting B in {b7, b8}. So one of these elements, say τ , maps
B to B′. Then π ·τ fixes D, and sends ai to bi. Thus M12 acts 5-transitively.

7 Simplicity

Now we will prove the Mathieu groups are simple. The normal way to show this
is through the following theorem.

Theorem 7.1 ([Rot95]). Let G be a group acting faithfully and k-transitively
on X. Assume there exists some x ∈ X such that Stab(x) is simple. Then:

i) If k ≥ 4, then G is simple.
ii) If k = 3, and |X| is not a power of 2, then either G ∼= S3, or G is simple.

The proof of this theorem requires quite advanced group theory, so we’ll skip
it. But it reduces proving the Mathieu groups are simple to proving that their
stabilizer is simple. Actually, we only need to prove that the stabilizer of M22

and M11 is simple.

Theorem 7.2 ([Rot95]). The stabilizer of a point in M22 is the simple group
PSL3(4).

Unfortunately, explaining what PSL3(4) means, or proving its the stabilizer
of M22 is beyond the scope of this paper. But it relates to the projective
lines, an example of which is the famous Fano plane shown previously. Another
construction of the Golay codes and S(5, 8, 24) uses these lines. For more on
the relation between them, see [Cur25].

There is a much simpler proof that M23 and M11 are simple discovered by
Chapman. [Cha95] When combined with Theorem 7.4, it proves that all the
Mathieu groups are simple. Recall the Sylow theorems. These will be all we
need.

Definition 7.2.1. A p-group is a groups whose order is divisible by p.

Definition 7.2.2. A Sylow p-subgroup is a maximal p-subgroup.

Theorem 7.3 ((insert)). 1. Let G be a group such that |G| = pnm, where
m ∤ p. Then there exists a sylow p-subgroup of order pn.’

2. All sylow p-subgroups are conjugates for fixed p.

3. Let np be the number of Sylow p-subgroups. Then np|m, np ≡ 1 (mod p),
and np = |G : NG(P )|, where P is any Sylow p-subgroup.
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Also define rp = |NG(P ) : P |, so that we have |G| = |P ||NG(P ) : P ||G :
NG(P )| = pnprp. Now we are ready to prove M23 and M11 are simple.

Theorem 7.4. Let G be a subgroup of Sp acting transitively on X = {1, 2, . . . , p}.
If |G| = pnr, where n > 1, n ≡ 1 (mod p), and r < p prime, then G must be
simple.

Lemma 7.4.1. Let G be a subgroup of Sp that acts transitively on X = {1, 2, . . . , p}
with sylow p-group P . If np > 1, then rp > 1.

Proof. Say that np = rG = 1. By the second sylow theorem, we can assume P
is generated by (12 . . . p). There are np(p − 1) = n − nG elements of order p.
These elements can fix no points of X, a set with p elements. But the stabilizer
Gi for i ≤ p must have np elements, so every stabilizer must be the same. The
only way this can happen is if np = 1, a contradiction.

Proof. It is clear that rp = r, np = n. Let H be a nontrivial normal subgroup.
Since G is transitive, all the orbits of H on X = {1, 2, . . . , p} have the same size.
Since H is nontrivial, this size cannot be 1, and since p is prime, the size must
be p, meaning H is also transitive. So H must contain some sylow p-subgroup,
which is also a sylow p-subgroup of G. H is a normal group, closed under
conjugation, and thus contains all p-subgroups. So H has the same number of
sylow p-subgroups as G, so the order of H is pmpt. We need t < r. Since r is
prime and t < 1 by the lemma, t = r and G = H.

This theorem can easily be seen to apply to M23 and M11.
Since we have proven that M23 and M11 are simple, Theorem 7.4 proves

that M24 and M12 are also simple, but we need to assume (insert) to show that
M22 is simple.
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