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1. Abstract

The fair division problem is about the equal distribution of goods or burdens among people
based on criteria for fairness such as proportionality and envy-freeness. These concepts are
fundamental to solving real-world issues like inheritance disputes, rent division, and chore
assignments.

This paper explores five aspects of fair division, starting with a run-through of the proof
of Sperner’s Lemma. We will then demonstrate its application in the classic cake-cutting
problem, establishing the existence of envy-free divisions of divisible goods. Building on this,
we examine various methods and complications involved in dividing general divisible goods,
especially as the number of participants increases. Next, we address the complexities of
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dividing undesirables, such as chores, where fairness requires reversing traditional preference
structures and adapting existing protocols. Finally, we explore the division of indivisible
goods, which calls for discrete algorithms and approximations, often lacking the guarantees
of a fair division provided by tools such as Sperner’s Lemma.

2. Introduction

Since the dawn of civilization, humans have always had the problem of dividing things
such as responsibilities and resources in a way that is perceived as fair to everyone. In the
current world, this problem takes shape in smaller cases such as dividing inheritence and
chores among roommates, but it can also appear in an international setting where there is a
land conflict between two countries.

One of the first forms of fair division of goods between two people comes in the form of
the divide and choose method. This method has a person who divides the goods or chores.
This division is proposed to the second person, who gets to choose which half of the goods
or chores they want.

Before we talk about why this works, it is important to understand that people value
different things differently. This means that something that makes up less of the total
material could be valued a lot by a person if they really like it. An example of this is a
diamond in a lot of dirt. Although the diamond may make up less than 1 percent of the
mass, it is easily worth more than the rest of the dirt.

So, since we now know that the cost of something is subjective, let us talk about the divide
and choose method. This method would usually lead to the first person splitting the goods
or chores in such a way that each half is equivalent. ”Why”, you may ask. This is because
if the first person does not do that, the second person will take the better half, ultimately
leaving the first person with the worse half. In the first person’s eyes, they would make it so
that each half would be worth 50 percent of the total, but for the second person, since they
get to choose which half they want, they can always get the half that they believe is worth
50 percent or more of the total (remember, people value different things differently). This
leads to fairness, as it fills the two fair division criteria which are:

(1) Proportionality
(2) Envy-Freeness

So what do proportionality and envy-freeness mean?

Definition 2.1. Proportionality means that each person feels like they have received a fair
piece, which is defined in this case as receiving what they perceive as 1/n or more of the
total share, with n being the number of pieces made.

Definition 2.2. Envy-Freeness means that each person wants their own piece more than or
equal to a piece that another person received.

We can check that the divide and choose method satisfies these two criteria of fairness
from both points of view.

For the first person, regardless of the case, they receive 50 percent, also known as 1/2,
fulfilling the proportionality criteria. They also like each piece equally, so the envy-freeness
criteria is also fulfilled.

For the second person, they have to choose which half they take, so they will obviously
take the half that they value more. Since the goods or chores are divided into two, the halves
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will be equal, or they will be unequal, leading one to be more than 50 percent, and the other
will be less. The second person can always get 1/2 or more of the cost of the goods that
satisfy the proportionality criteria. Since the second person can also choose which half they
want, they will always like their piece more than or equal to the other piece, fulfilling the
envy-freeness criteria.

The actual study of the fair division problem was started in the early 1940s by the Polish
mathematician Hugo Steinhaus. He worked on this problem alongside Stefan Banach and
Bronislaw Knaster to develop procedures such as Knaster Inheritance Procedure, which uses
sealed bids and money to help fairly split items that are not indivisible throughout.

Later, during the 1960s and 1970s, topological theorems such as Sperner’s Lemma,
Brouwer’s Fixed Point Theorem, and the Borsuk-Ulam Theorem were used in the proofs to
guarantee the existence of a fair division solution under certain conditions. Although the
existence of a solution was proven under certain conditions, sometimes there was no method
to compute these solutions.

In the 1990s, Steven Brams and Alan Taylor introduced The Adjusted Winner Procedure,
which uses point-based bidding to divide things fairly between two people, and they also
worked on generalizing the envy-free cake cutting problem to cases where there are more
than two people.

3. Proving Sperner’s Lemma

3.1. Key Terms and Concepts. What does Sperner’s Lemma even say in the first place?
But first, there is some vocabulary that we should learn beforehand.

Definition 3.1. A Simplex is a generalization of a triangle or tetrahedron to a certain
number of dimensions. For example, a 0 − simplex is a point, a 1 − simplex is a line
segment, a 2− simplex is a triangle and a 3− simplex is a tetrahedron.

Definition 3.2. A Triangulation is the division of a simplex into smaller simplices (plural
of simplex) that intersect shared faces, and the union of all simplices covers the entirety of
the original simplex.

Definition 3.3. A n− simplex is considered Sperner’s Labeled if each vertex is labeled by
one of the n+1 distinct labels. Every vertex on a face of the original simplex is only labeled
with labels from the vertices of that face.

For example, as you can see with the 2 − simplex in Figure 1, the vertices are labeled
with labels 1, 2, and 3. The edges with vertices labeled 1 and 2 can only be labeled using
the numbers 1 and 2. The same is true for the edges with the labels 2 and 3, and with the
labels of 1 and 3. Vertices on the inside of the simplex can be labeled with any label that
corresponds to the labels on the main vetrices of the simplex.
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Lemma 3.4 (Sperner’s Lemma). For any triangulated simplex with boundary-respecting
vertex labeling, there exists at least one fully labeled subsimplex (i.e. a simplex where each
vertex has a distinct label from the original simplex’s set).

3.2. Sperner’s Lemma for a 1−simplex. Let us prove this inductively, using 1−simplex
at first and transitioning to 2−simplex. In the 1−simplex below, the endpoints are labeled
1 and 2. This means that any vertices in the simplex must be labeled either 1 or 2, as seen
below in Figure 2.

1 2 2 1 1 2

Figure 2

At some point, there will be a fully labeled subsimplex because the parity is odd. When
going from left to right along the simplex, the label will change an odd number of times
because it starts with the label 1, and has to change at some point to get to the label 2.
Once one of the vertices is labeled 2, there will be an even amount of changes, since it has to
change to 1, and then back to 2. Since an even number plus one is always odd, this means
that the number of swaps is odd, otherwise meaning that the parity is odd. This guarantees
that there is a fully labeled 1− simplex, as the smallest odd positive whole number is 1.
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3.3. Sperner’s Lemma for a 2− simplex.
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Now, looking at the 2-simplex version, we will initially label it so that it is Sperner’s
Labeled. This is shown in Figure 3. We are trying to show that there will be at least one
subsimplex with its vertices labeled 1, 2, and 3. An important thing to remember here is
that if a subsimplex has an edge labeled with 1 and 2, and if it also has a vertex labeled with
3, that means that it is a subsimplex that is fully labeled, which leads to the conditions for
Sperner’s Lemma to be met.

Now in Figure 4, all edges labeled with 1 and 2 are in bold and should be easy to see.
The graph has also been converted to a dual graph, which means that each subsimplex also
contains a node. Everything outside of 2− simplex is also considered as one node. We also
draw a line connecting two nodes if they share an edge labeled 1 and 2. If a subsimplex only
has 1 edge labeled with a 1 and a 2, this will mean it is fully labeled as the last vertex has to
be labeled with the number 3. This means the node corresponding to a fully labeled triangle
has an odd degree.
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Definition 3.5. The degree of a node is defined as the number of edges connected to the
node. For example, if a node has 3 edges connected to it, it has a degree of 3.

From the proof of Sperner’s Lemma for a 1 − simplex, we know that there will be an
odd number of edges labeled with 1 and 2 along the main 2 − simplex. In the case shown
in Figure 4, there are 3 edges that go to the area outside of the simplex. This means the
node representing the area outside of the simplex has an odd degree, as the number of edges
connecting it is odd. So now what do we do with this information?

Corollary 3.6. A corollary to the Handshaking Lemma states that in any finite undirected
graph, the number of vertices with an odd degree is always even.

Since we already have one node that has an odd degree, there must be an odd number
of other nodes that also have an odd degree. Since the smallest whole odd number is 1,
there must be at least one other node with an odd degree. Since the nodes are representing
the subsimplexes, and the degree represents the number of edges labeled with a 1 and a 2,
there must be a subsimplex that has an odd number of edges labeled with a 1 and a 2. The
only amount of odd edges there can be is one, so this shows that there is a fully labeled
subsimplex, thus proving Sperner’s Lemma.

4. Proving the Cake-cutting Problem Using Sperner’s Lemma

Now we move on to one of the more well known sides of the fair division problem which
takes shape in the cake cutting problem. This problem makes the cake heterogeneous, which
means it has different flavors throughout the cake. The cake has different flavors, so that
means that different people will value different parts of the cake more than other parts due
to the fact that they like a certain flavor more than others. Since the thing being split is a
cake, that means you can also split it anywhere you want, making it a divisible good.
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We can show that a division always exists using Sperner’s Lemma, which we discussed in
the last section. This method shows the existence of a solution to the problem, but it is not
a method that shows how to get to the solution to the problem.

First, the cake will be represented by the interval [0, 1]. Different intervals will represent
different parts of the cake. For example, the interval [0.5, 1] will represent the second half
of the cake. We will prove the existence of a solution for a case with 3 people. To prove for
more and more people, it is necessary to use higher order simplexes.

To use Sperner’s Lemma, we first need to find a way to turn the interval into a triangu-
lation. One way we can do this is by turning our divisions into points inside of the simplex.
For each point, we can use (a, b, c), where a + b + c = 1. One person will receive the part
of the cake represented by [0, a], the next will receive the part represented by [a, a+ b], and
the last person will receive the part represented by [a + b, 1], which can also be written as
[1− c, 1].

A question you may have is how can we represent a two-dimensional point in a triangle
with three coordinates. This uses a system called Barycentric Coordinates. So, how does
this system work? Each number represents a mass placed at the vertex of the triangle.
The point is found from these numbers by finding the center of mass. Some examples of
points are [0, 0, 1], [0, 1, 0], [1, 0, 0], [1/3, 1/3, 1/3], where the first three points represent the
vertices of the triangle, and the fourth point is the centroid of the triangle. More examples
of barycentric points can be found in Figure 5.

[0, 1, 0]

[1, 0, 0]

[0, 0, 1]

[1/2, 1/2, 0] [1/2, 0, 1/2]

[0, 1/2, 1/2]

[1/2, 1/4, 1/4]

[1/4, 1/2, 1/4] [1/4, 1/4, 1/2]

[1/3, 1/3, 1/3]

Figure 5

Now that we have a way to represent the divisions of the cake as points in the triangle, we
can subdivide the triangle into smaller triangles. To do this method, you have to subdivide
the triangle many times. We will subdivide the triangle using Barycentric Subdivision.

With a triangulation now in place, we can go to each vertex and propose a division to
each person. We then ask each person who prefers their piece the most, or in other words,
who would pay the most for their piece. The vertex is then labeled with the person’s name
or something that marks the vertex that can be connected to them.
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How does this guarantee the specific conditions for a Sperner’s Labeling, you might ask.
We can then use Sperner’s Lemma since the triangle meets the restrictions. This guaran-

tees that there is a triangle that is fully labeled, which means that if you shift the division
cuts a little bit, a different person will prefer their piece the most. This means that each
person values their piece of the cake roughly equally, fulfilling the proportionality criteria of
fair division. Since each person also prefers a different piece, this means that the division is
also envy-free, as nobody wants another person’s piece.

This method works to prove the existence of a solution as it goes over every possible
division. This is also the reason why it is not feasible to use this method to find an exact
solution, as the amount of time you need to check each solution and ask each person for
their preference is astronomical.

For a generalization for n people, a n−1−simplex needs to be used. Although complexity
skyrockets with each dimension, Sperner’s Lemma guarantees the existence of a fair division
by guaranteeing a fully labeled subsimplex.

5. Division of Divisible Goods

I know that I talked a little bit about divisible goods earlier, but I did not give a concrete
definition.

Definition 5.1. A divisible good is something that can be split into smaller parts without
losing value or functionality.

Some examples of a divisible good include the cake example from earlier, or other things
such as land, water, and resources such as gasoline and wood.

How can we model this? Let C represent a cake or divisible good and is represented by
the interval [0, 1], and let there be n people, who each have their own function fi, where
fi([a, b]) quantifies how much they value the cake or divisible good they receive, and how
much they want piece [a, b] for person i. Some basic restrictions and properties with this
function is that fi is that it is:

• Non-negative: fi([a, b]) ≥ 0,
• Additive: fi([a, c]) = fi([a, b]) + fi([b, c]) for a < b < c,
• Normalized: fi([0, 1]) = 1.

Do you remember the the the two criteria for a fair division? The two criteria were to
be proportional in terms of value and make it so that no person envies the other. These
criteria reflect different notions of fairness. Depending on the context—legal, economic, or
computational—a different criteria may be weighted more.

5.1. Theoretical and Algorithmic Methods.

Divide and Choose: As stated in the introduction, this was one of the first ways to
divide something fairly.

Sperner’s Lemma-Based Existence Proof: One fundamental way to prove that
there is a fair division is with Sperner’s Lemma.

Moving-Knife Procedure: Moving-knife procedures are continuous protocols that
were developed to provide fair divisions with real-time interaction. One of the earliest
and most well-known is the Dubins–Spanier method, which values proportionality.
In this method, a knife moves slowly across the cake from left to right. Each person
(n people in total) monitors the value of the left segment of the cake. When the first
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person believes the knife has reached a point where the left portion is worth exactly
1/n of the cake (according to their valuation), they tell whoever is moving the knife to
stop. The person then gets to receive that portion. The process continues recursively
on the remaining cake for the other people. This method does not always ensure that
the division will be envy free, as the last person does not get a say in the piece they
get, and they might want someone else’s piece of cake. It also relies on people being
trustworthy and being truthful to their evalulations.

There are other more complex procedures have been developed to guarantee envy-
free outcomes for multiple people. These methods often involve multiple knives,
trimming, and intricate conditions to preserve fairness no matter want another person
does. One of these procedures is called Austin’s Moving Knife Procedure.

Austin’s Moving Knife Procedure guarantees envy-freeness, but it only works for
three people. For this method, the first person divides the cake into three pieces.
They divide it into such a way that they value each piece equally. After this, the
other two people assess the divisions, and if the two other people want the same
piece, the first person keeps on moving the cuts, but in such a way that each piece is
still valued the same to them.This goes on until the two other people want different
pieces, and then they take the piece they want, and the first person takes the leftover
piece. One of the requirements for the procedure to work is the assumption that all
three people have different preferences.

Though other moving knife procedures theoretically work for any amount of people,
they are difficult to extend to larger numbers of people in a way that preserves envy-
freeness or proportionality. Additionally, they require continuous monitoring, which
sometimes makes it impractical if you can not communicate in real time.

Discrete Approximation using Triangulation: To move toward algorithmic im-
plementations, continuous models can be discretized. When a model gets discretized,
it means that the item is divided into a large number of small pieces. The next step
is to let the people that the item is being shared between to then assign a value or
rank each of these small pieces.

The goal of this process is to group these small pieces in such a way that each
person’s bundle satisfies a chosen fairness criterion. The triangulation approach from
Sperner’s Lemma can also be applied in a discrete fashion, enabling algorithms to
approximate envy-free or proportional solutions that are close enough to fair for many
people.

Discrete methods are especially important for computational fair division because
they allow for finite calculations, and they usually use things like a table of preferences
to help figure out how the item should be divided.

Algorithmic Cake-Cutting Protocols: There have been many protocols that have
been developed to have fair divisions through deterministic algorithms. For instance:

• The Even–Paz Protocol provides a proportional division for any number of
people in O(n log n) time. It works by recursively dividing the cake and asking
people to determine their worth. It is very similar to the discrete approximation
using trigulation, as it splits up the cake. The difference is that the Even-Paz
Protocol sacrifices some aspects of fairness to make the protocol applicable to
real life.
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• The Selfridge–Conway Procedure achieves envy-freeness for three people by
shaving small pieces off big pieces and redistributing them. It is complex, but it
remains one of the most widely discussed envy-free algorithms when n is fairly
small.

• Round-Robin with Trimming: people take turns selecting their most pre-
ferred piece. When someone starts to feel envious of a piece that another person
got, adjustments to fix this such as trimming or trading pieces are used to correct
imbalances.

These algorithmic approaches are practical and well-suited to software implemen-
tations, though they may sacrifice stronger fairness criteria when generalized to larger
numbers of people.

5.2. Choosing a Method. Choosing the appropriate method depends on the application
context, number of people, and the desired fairness criteria. A brief guide:

Context Recommended Method
Existence proof (theoretical) Sperner’s Lemma
Two or three people Moving-knife or Selfridge–Conway
Many people (large n) Even–Paz or discrete triangulation
Software or simulations Discrete approximation or round-robin algorithms

5.3. Real-World Applications. The division of divisible goods appears in many settings
in real life:

• Inheritance Division: Splitting inherited land or money among family members.
• Time-Sharing: Assigning lab time, telescope access, or shared computing resources.
• Media Advertising: Dividing airtime slots on radio or TV across competing clients.
• Academic Scheduling: Allocating classroom hours or equipment fairly among in-
structors.

6. Division of Undesirable Goods

While a lot of the fair division papers and sections in books focus on dividing desirable
and divisible goods, a significant and often more complex challenge occurs when the items to
be divided are undesirable. This includes chores, debts, costs, burdens, or any other negative
thing that people want to avoid. In these cases, the goal is to allocate the least unfair share
to each person. This is basically the reverse of the cake-cutting problem.

6.1. An Undesirable Problem. Let C denote a chore or the undesirable good being divied
up, represented by the interval [0, 1], and let there be n people, who each have their own
function di, where di([a, b]) quantifies how annoying and how much they do not want to do
the chore segment [a, b] for person i. This is basically a function for how much someone
values a chore, and it is different for every person. Some basic restrictions and properties
with this function is that di is:

• Non-negative: di([a, b]) ≥ 0,
• Additive: di([a, c]) = di([a, b]) + di([b, c]) for a < b < c,
• Normalized: di([0, 1]) = 1.

These three properties are pretty simple. The first one states that the function can not be
negative, which roughly translates to ”a person can never want to do a chore.” The second
property states that the value of two functions added together whose input is a certain range,



FAIR DIVISION PROBLEM 11

when that range is put into it’s own function, they will be equal. This means that 2 sets
of chores split up is just as annoying to do as 2 sets of chores together. The third property
states that when you put in all of the chores into the function, it will always be equal to a
constant(in this case, the constant is one), no matter who the function pertains to.

The goal is to divide [0, 1] into n disjoint intervals such that each person i receives a set
of chores and the division satisfies a fairness criterion adapted to minimizing the workload
on everyone

6.2. Fairness Criteria for Chores. The fairness criteria introduced earlier apply, but their
interpretations are slightly different:

• Proportionality: Each person receives a portion they consider to be no more than
1
n
of the total chores.

• Envy-freeness: No person prefers another person’s chore bundle (i.e., no one be-
lieves another got off easier).

These goals are often harder to achieve for chores, especially envy-freeness.

6.3. Algorithmic Approaches for a Solution. Several algorithms have been adapted or
developed for chore division. Some of the more notable among them are as follow:

Cake-Cutting: Some of the procedures mirror the cake-cutting problem, such as a “mov-
ing knife” sweeping from right to left, where people call “stop” when the portion swept so
far equals their acceptable chore load. These procedures can guarantee proportionality but
not envy-freeness as discussed earlier.

Reverse Adjusted Winner: The Adjusted Winner procedure, originally for goods, can
be adapted to chores by using the valuations. Items are temporarily assigned and then
transferred between people to equalize burdens, often using fractional allocations.

This procedure is usually conducted with two people. Each person gets a certain amount
of points, and give points to the chores. In the case below, we have given Bob and Joe 4
chores to do, and 100 points to show us how much they do not like doing each chore. Bob
hates getting his hands wet so he does not like dealing with water, and Joe hates being
around dust, so they both give a lot of points to those chores.

Task Bob’s point assignment Joe’s point assignment
Washing the dishes 40 25
Taking out the trash 20 25
Vacuuming the house 15 35
Washing the windows 25 15

So now, the person who gave the least amount of points to each chores gets that chore
temporarily.

Task Whose Chore?
Washing the dishes Joe
Taking out the trash Bob
Vacuuming the house Bob
Washing the windows Joe

The chores that Joe were assigned has a point total of 40, while the point total for Bob is
35. Since Bob has a lower point total, Bob has less chores to do. Now we have to equalize
the burden, so we first calculate the ratio of the points that Bob gave per chore by the points
that Joe gave for that chore.
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Task Bob’s point assignment Joe’s point assignment Point ratio
Washing the dishes 40 25 1.6
Taking out the trash 20 25 0.8
Vacuuming the house 15 35 0.43
Washing the windows 25 15 1.67

Now, to remove some of the burden from Joe, we take the chore with the lowest ratio that
Joe currently has. With this case, the chore that will be partly transferred over is washing
the dishes. The amount of chore removed from Joe will go to Bob, and we can calculate
the amount using some simple algebra. This is done by setting the point totals equal. The
amount of chore will be represented by x.

(6.1) 25 + 15− 25x = 20 + 15 + 40x

(6.2) x = 0.077

After all of that, we get that Bob will do 7.7% of the dishes, take out the trash, and
vacuum the house, but Joe with do 92.3% of the dishes and wash the windows. Their point
totals are equal at roughly 38.08. This means that they both believe that they have a fair
share of the chores and can do them.

Divide and Choose: For two people, an envy-free division of chores can be achieved by
one person dividing the chore into two parts of equal burden (in their own view), and the
other choosing the part they prefer (or rather, dislike least). This is the exact same as the
method discussed in the introduction.

Approximation Algorithms: For more than 2 people, exact envy-free chore division
may be impossible due to indivisibility or complexity. Algorithms using discrete approxima-
tions divide the chore into many small parts and reassemble bundles to approximate fairness
within some margin of error.

6.4. Real-World Applications.

• Roommate Chores: Dividing cleaning tasks, taking out trash, doing dishes, etc.
• Workload Distribution: Assigning project tasks or time slots that are less desir-
able.

• Cost-Sharing: Dividing a total cost burden among participants fairly (e.g., taxes,
rent, group payments).

7. Division of Indivisible Goods

Since indivisible things, like books, homes, or furniture, cannot be divided or shared
in smaller quantities, it might be difficult to divide them fairly. Indivisible commodities
necessitate discrete allocation procedures that seek to decrease unfairness, which contrasts
the earlier forms of division in cake-cutting or chore-division situations, when resources can
be divided continuously.

7.1. Modeling an Indivisible Problem. Let there be a set G = {g1, g2, . . . , gm} of m
indivisible items and n people. Each person i has a valuation function vi : G → R≥0

assigning a non-negative value to each item. The goal is to assign each item to exactly one
person such that the allocation meets one or more fairness goals.
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7.2. Definitions for the Division of Indivisible Goods. For some reason, this area of
the study for fair division has a lot more fancy terms.

Definition 7.1. Envy-Freeness up to One Item: If one person envies a second person’s
share, they will not envy the other person’s pile after one item is removed from the second
person’s pile. This is also usually shortened to EF1.

Here is an example of a envy-free division up to one item. Lets say there are two people:
Billy and Bob. There are five indivisible items: A ladder, a vacuum, a tennis racket, a guitar,
and a suitcase.

Billy’s valuations of the items are as follows:

Item Value to Billy
Ladder 6
Vacuum 5

Tennis Racket 4
Guitar 8
Suitcase 3

We can divide these five items in a way so that

• Billy receives: {Guitar, Suitcase} → value = 8 + 3 = 11
• Bob receives: {Ladder, Vacuum, Tennis Racket} → value = 6 + 5 + 4 = 15

Billy compares their bundle to Bob’s:

Bob’s value = 15 vs. Billy’s value = 11

So Billy envies Bob.
However, if we remove one item from Bob’s bundle (which has the Ladder, Vacuum, and

the Tennis Racket):

Bob’s bundle without the Ladder = {Vacuum, Tennis Racket}

This means that the value of Bob’s share without the ladder → value = 5 + 4 = 9 Then:

11 > 9 ⇒ Billy no longer envies Bob

Since removing one item (The ladder) from Bob’s bundle eliminates Billy’s envy, the
allocation is envy-free up to one item from Billy’s perspective.

Definition 7.2. Proportionality up to One Item: Each person receives at least 1/n of the
total value, up to the value of one item. This is commonly shortened to PROP 1.

To help understand proportionality up to one item, here is an example. We have 3 people:
Billy, Bob, and Joe. There are 4 indivisible items: A, B, C, and D. Billy’s valuations for the
items are as follows:

Item Value to Billy
A 19
B 13
C 14
D 8

Total 54
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Billy’s proportional share (based on their total value of 51) is:

54

3
= 18

We can give each person the following items:

• Billy receives: {C} → value = 14
• Bob receives: {A} → value = 19
• Joe receives: {B, D} → value = 21

Billy received less than their fair share (14 < 18), but we now check if adding one item
would make up the difference.

• Add A (from Bob): 14 + 19 = 33 ≥ 18
• Add B (from Joe): 14 + 13 = 27 ≥ 18
• Add D (from Joe): 14 + 8 = 22 ≥ 18

In all cases, adding a single item brings Billy to or above their proportional share. Even
though Billy initially received less than one-third of the total value, there exists an item
(A, B, or D) that could be added to their bundle to reach or exceed their fair share. For a
division to be proportional up to one item, we do this check for everyone else.

Definition 7.3. Maximin Share Guarantee: Each person receives at least as much as they
could guarantee by dividing the items into n bundles and receiving the least valuable one.
This is usually shortened to MMS.

As we did withe the last two ways of division, here is an example. There are two people:
Billy and Bob. There are 3 indivisible items: A, B, and C.

Billy’s valuations for the items are:

Item Billy’s Valuation
A 8
B 5
C 7

Total 20

Billy must divide the items into 2 bundles, assuming that they will receive the less valuable
one. We consider all possible partitions:

• Split 1: {A, B} and {C}
⇒ Values: 8 + 5 = 13 and 7 → minimum = 7

• Split 2: {A, C} and {B}
⇒ Values: 8 + 7 = 15 and 5 → minimum = 5

• Split 3: {B, C} and {A}
⇒ Values: 5 + 7 = 12 and 8 → minimum = 8

The best worst-case outcome for Billy is: MMS = 8
Suppose the items are allocated as:

• Billy receives: {B, C} ⇒ value = 5 + 7 = 12
• Bob receives: {A} ⇒ value = 8

Billy’s value is greater than their MMS, so Billy received at least their Maximin Share
value. Basically, the split needs to be better than the maximum minimum value, hence the
name Maximin.
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7.3. Methods for Dividing Indivisible Things. Many algorithms exist to divide indi-
visible goods while satisfying the relaxed fairness criteria mentioned such are envy-free up
to one item or proportional up to one item.:

Round-Robin Allocation: People take turns picking their most preferred item in a
round-robin order. This simple and intuitive approach ensures high satisfaction when pref-
erences are diverse. It does not guarantee an envy-free up to one item division, but performs
well in practice when there are a decent amount of items.

Envy-Free Matching and Graph-Based Approaches This approach models people
and items as nodes in a bipartite graph, where:

• One set of nodes represents people, and the other set represents items.
• Edges connect each person to each item and are weighted based on individual pref-
erences or utility.

• A matching corresponds to an allocation of items to people.

Algorithms such as the Hungarian algorithm are used to find a maximum-weight matching,
maximizing total satisfaction.

Although these algorithms primarily aim for efficiency, they can be adapted to approximate
fairness notions such as envy-freeness up to one item. Down below, you can see an example
of the graph based approach.

Lets say we have 3 people, Billy, Bob, and Joe, and 3 items labeled A, B, and C. In the
table below, you can see how much each person values each item.

Billy Bob Joe
A 9 6 3
B 4 8 7
C 5 2 10

Billy

Bob

Joe

A

B

C

9

4 6

8

5 3

10

9

2 7
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Figure 6

• A is assigned to Billy (Value = 9)
• B is assigned to Bob (Value = 8)
• C is assigned to Joe (Value = 10)
• Total value: 9 + 8 + 10 = 27

• No person envies another’s assignment.
• Each person either prefers their own item more or values others’ less.
• The result is envy-free, and thus satisfies EF1.

Greedy Algorithms for Envy-Freeness Up to One Item
From our adjusted criteria for envy-freeness, one thing that is guaranteed to happen is for

a envy-free up to one item division to always exist for additive valuations.

One of the many procedures is the Lipton et al. protocol, which follows the steps below:

(1) Begin with any arbitrary allocation of items.
(2) While someone envies another by more than one item, transfer an item from the

envied person to the envious person.
(3) Repeat this process until no such envy exists.

This algorithm is guaranteed to terminate in a finite number of steps, resulting in an EF1
allocation. Here is a run-through of it in action. With the people Billy and Bob, and the
items A, B, and C.

Valuations:
A B C

Billy 6 4 1
Bob 3 5 2

Let:

• Billy get B and C
• Bob get A

Valuations:

• Billy: vi(B + C) = 4 + 1 = 5
• Bob: vo(A) = 3

Envy:

• Bob envies Billy: vo(B + C) = 5 + 2 = 7 > 3
• Envy is not EF1: even if Bob removes one item (say B), vo(C) = 2, and 3 < 2 ⇒
still envies

Transfer B from Billy to Bob.
New allocation:

• Billy: {C}
• Bob: {A,B}

Valuations:

• Billy: vi(C) = 1
• Bob: vo(A+B) = 3 + 5 = 8

Now Billy envies Bob: vi(A+B) = 6 + 4 = 10 > 1
But EF1 check: If we remove item A or B, Billy’s envy reduces:

• vi(B) = 4 ⇒ 4 > 1 (still envy)
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• vi(A) = 6 ⇒ 6 > 1 (still envy)

So it’s not EF1 yet. Transfer one more item.
New allocation:

• Billy: {A,C}
• Bob: {B}

Valuations:

• Billy: vi(A+ C) = 6 + 1 = 7
• Bob: vo(B) = 5

Bob envies Billy: vo(A+ C) = 3 + 2 = 5 < 5 ⇒ no envy
Billy does not envy Bob either.
Maximin Share Approximations
Remember the Maximin Share? One thing to know is that a Maximin Share allocation

may not exist when items are indivisible. To address this, approximation algorithms are
used to ensure that each player receives at least a fraction of their MMS value.

Another result is the 3/4-MMS guarantee, which ensures that each player receives at least
75% of their maximin share. These approximations strike a balance between fairness and
computational feasibility.

Concept Goal Guarantee Type

Envy-Free Matching
Maximize total satisfaction us-
ing preference-weighted bipartite
graphs

Approximate EF1

Greedy EF1 Algo-
rithms

Eliminate strong envy through it-
erative item transfers

Always EF1

MMS Approximations
Guarantee each player a fair frac-
tion of their worst-case fair share

Typically 3/4-
MMS

Rounding from Continuous Models Another powerful idea is to start with a fractional
division (e.g., using a market equilibrium approach or a linear program), then apply rounding
procedures to convert fractional allocations into discrete ones, while maintaining approximate
fairness and efficiency.

7.4. Applications.

• Inheritance Division: Distributing family heirlooms among siblings.
• Classroom Resources: Assigning tablets or books to students.
• Housing Allocation: Assigning dorm rooms or apartments to students or tenants.
• Work Tasks: Assigning project roles or responsibilities that cannot be split.
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