THE PROBABILISTIC METHOD

SIMON MEYERS

1. INTRODUCTION

Combinatorics is often concerned with the existence or enumeration of structures that
satisfy particular properties. In many cases, proving the existence of such objects directly
— through construction or exhaustive enumeration — is extremely difficult or even infeasi-
ble. The probabilistic method, pioneered by Paul Erdods in the mid-20th century, offers
a powerful and elegant alternative: instead of explicitly constructing the desired object,
one demonstrates that a randomly chosen object has the required property with non-zero
probability. From this it follows, sometimes non-constructively, that such an object must
exist.

The central idea is beautifully counterintuitive: one uses randomness not to describe
average-case behavior, but to prove existence theorems. At its heart, the probabilistic
method is based on a single principle:

If the probability that a randomly chosen object has a certain property is
greater than zero, then there must exist at least one object with that property.

This simple idea can be amplified in many powerful directions, through the use of expecta-
tions, variance, concentration inequalities, and more sophisticated tools such as the Lovasz
Local Lemma, alterations, and entropy compression.

A Motivating Example: Ramsey Numbers. Perhaps the most well-known early appli-
cation of the probabilistic method is Erdos’s classic lower bound for the diagonal Ramsey
number R(k, k). The Ramsey number R(k, k) is defined as the smallest integer n such that
every red-blue coloring of the edges of the complete graph K, contains a monochromatic Kj.

In 1947, Erdés showed that R(k, k) > 2¥/2 by considering a uniformly random 2-coloring
of the edges of K, and showing that, with nonzero probability, no monochromatic K}, exists.
We will revisit this proof in detail in Section [2l For now, the key insight is that by applying
the The First Moment Method — a probabilistic expectation argument — we can prove the
existence of a coloring with the desired property, despite having no knowledge of how to
construct it.

The Evolution of the Method. Since its inception, the probabilistic method has become
one of the most fundamental tools in discrete mathematics and theoretical computer science.
It has been developed extensively in works such as Alon and Spencer’s foundational text The
Probabilistic Method |[AS08|, which organizes the method into several powerful techniques:
e The First and Second Moment Methods: Basic expectation and variance argu-
ments that yield existence results and concentration bounds.
e Alterations: A hybrid method in which a random object is slightly modified (al-
tered) to improve its properties.
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e Lovasz Local Lemma (LLL): A powerful result that extends the reach of the
method to settings with mild dependencies.

¢ Randomized Constructions and Entropy Methods: More advanced techniques
often involving information theory or algorithmic perspectives.

Each of these techniques enables us to move beyond naive existence proofs and tackle
problems of increasing subtlety. In particular, methods like the LLL can yield existence
results even when events are not fully independent — a crucial advance for many applications
in graph coloring, satisfiability, and hypergraph theory.

Goals of This Paper. The aim of this paper is to provide a rigorous, self-contained intro-
duction to the probabilistic method and to survey several of its central tools and applications.
In particular, T will:

(1) Introduce the probabilistic method via the first and second moment methods, and
illustrate each with foundational examples.

(2) Explore the alteration technique as a way to refine random constructions.

(3) Present the Lovédsz Local Lemma in both its symmetric and general forms, including
proofs and applications.

(4) Apply these techniques to problems in Ramsey theory, hypergraphs, and graph dom-
ination.

Throughout the paper, I will state and prove key theorems, provide interesting examples,
and highlight important probabilistic constructions. My goal is not only to understand the
technique, but to appreciate its surprising power and its deep connections to the structure
of combinatorial objects.

Historical Perspective. Paul Erdds famously remarked, “A mathematician is a machine
for turning coffee into theorems.” Perhaps no area reflects this playful yet profound insight
better than the probabilistic method. With seemingly simple tools, expectations, variances,
and bounds, Erdos and his intellectual descendants created an entire field of existence proofs
that often outperform constructive methods.

Over the decades, the method has been refined and extended by many researchers, in-
cluding Spencer, Alon, Beck, and others. The probabilistic method is now a standard part
of the toolkit not only for combinatorialists, but also for computer scientists, information
theorists, and probabilists.

Notation and Conventions. Throughout this paper:

e We use [n] to denote the set {1,2,... n}.

e The binomial coefficient (Z) counts the number of k-element subsets of an n-element
set.

e All logarithms are natural logarithms unless otherwise stated.

e We adopt standard probability notation: E[X] denotes the expected value of the
random variable X, and Pr[A] the probability of event A.

We now begin with the first and second moment methods — two foundational techniques
that illustrate the core ideas of the probabilistic method.

2. THE FIRST MOMENT METHOD

The First Moment Method is perhaps the most fundamental tool in the probabilistic
method. It relies on a simple idea: if the expected number of “bad” configurations is less
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than one, then there must exist some configuration for which none of these bad events occur.
This is formalized using the linearity of expectation and the union bound.

2.1. The Method. We begin with a formal statement of the method.

Theorem 2.1 (First Moment Method). Let X be a non-negative integer-valued random
variable. If E[X] < 1, then Pr[X = 0] > 0.

Proof. Since X > 0,
E[X] =) k-Pr[X =k >> Pr[X =k =Pr[X >0]=1-Pr[X =0]
k=1

k=1
Thus, if E[X] < 1, then 1 — Pr[X =0] < 1, so Pr[X =0] > 0. [

This result is often paired with the union bound:

Lemma 2.2 (Union Bound). Let Ay, As, ..., A, be events in a probability space. Then

i=1 i=1

Proof. The probability that at least one event occurs is less than or equal to the sum of
the probabilities of each individual event. This follows directly from the subadditivity of
measures. |

Pr

Together, these give a powerful technique: define X as the number of “bad” events that
occur, show that E[X] < 1, and conclude that with positive probability, no bad events occur.

2.2. Application: Lower Bounds on Ramsey Numbers. One of the most famous
applications of the first moment method is Erdos’s 1947 proof that the diagonal Ramsey
number R(k, k) grows exponentially in k.

Definition 2.3. The diagonal Ramsey number R(k, k) is the smallest n such that every
red-blue edge-coloring of K, contains a monochromatic Kj.

Theorem 2.4 (Erdds, 1947). If (}) 2(2) < 1, then R(k,k) > n. In particular,
R(k, k) > 2%2 for all k > 3.

Proof. Let n be a positive integer, and consider the complete graph K,. Color each edge
independently red or blue with equal probability 1/2. For a fixed set S of k vertices, let Ag
be the event that all (];) edges between vertices in .S are monochromatic. There are two such
colorings: all red or all blue.

For a given S, we compute:

NI
Pr[Ag] = 2- (_) —91-(),
Let X be the total number of monochromatic K subgraphs:

Bx) = 3 Pilas) = () 20

se(i)
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If E[X] < 1, then by the first moment method, there exists a 2-coloring of K, with no
monochromatic Ky, and thus R(k, k) > n.

Now observe that for large k, choosing n = [2%/2] suffices. Indeed, using Stirling’s ap-
proximation:

k
(V< (@) w2 pseonn

Hence, E[X] < 1 when n < 2¥/2 proving the claim. [ |

This non-constructive proof shows that large graphs exist which avoid monochromatic
cliques of size k, but no explicit construction is known that achieves this bound.

2.3. Another Example: Tournaments with Property S;. The first moment method
can be used in contexts beyond Ramsey theory. One striking example involves random
tournaments.

Definition 2.5. A tournament on n vertices is an orientation of the edges of the complete
graph K,,: for every pair of vertices u,v, exactly one of the directed edges (u,v) or (v,u) is
present.

Definition 2.6. A tournament has property Sy if for every subset of k vertices, there exists a
vertex that dominates all of them (i.e., has directed edges pointing to each of the k vertices).

(Z) S(1—2Rnh <,

then there exists a tournament on n vertices with property Sk.

Theorem 2.7. If

Proof. Consider the uniform random tournament on n vertices where each edge is indepen-
dently oriented with probability 1/2 in either direction. Fix a k-subset S of vertices. Let Ag
be the event that no vertex outside S dominates all of S.

For a fixed vertex v ¢ S, the probability that v dominates all k vertices in S is 27*. Hence,
the probability that v fails to dominate S is 1 — 27%. Since the n — k vertices outside S are
independent, the probability that no such vertex dominates S is

Pr[Ag] = (1 —27F)"F,

There are (”

k) such subsets S, so

E[X] = ; Pr[Ag] = (Z) (1 — 27 Rynk

If this is less than 1, then with positive probability X = 0, so every S has a dominating
vertex, and the tournament has property Sj. |

This is a classic example of using the probabilistic method to prove the existence of highly
structured objects without providing an explicit construction.
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3. THE SECOND MOMENT METHOD

The first moment method is a powerful tool, but it sometimes yields only crude existence
results. To refine our analysis, especially when the variance of a random variable is controlled,
we use the Second Moment Method. This technique leverages the variance of a random
variable to show concentration around its expectation, allowing us to prove the existence of
objects with certain properties more robustly.

3.1. Statement of the Method. Recall that for a random variable X, its variance is
defined as
Var(X) = E[X?] — E[X]*.
The second moment method provides a lower bound on the probability that X is positive.

Theorem 3.1 (Second Moment Method). Let X be a non-negative random variable with
finite variance. Then

Pr[X > 0] >

Proof. By the Cauchy—-Schwarz inequality,
E[X] =E[X - 1xs0] < VE[X?] - Pr[X > 0].

Rearranging gives

&=

[XT°
(X2

Pr[X > 0] >

=

This bound is often more informative than the first moment method alone, especially when
X is highly concentrated.

3.2. Application: Existence of Graphs with Many Triangles but Few 4-Cycles.
We illustrate the power of the second moment method by proving the existence of graphs
with many triangles but comparatively few 4-cycles, an important problem in extremal
combinatorics.

Definition 3.2. Let G = (V, E) be a graph on n vertices. Denote by T(G) the number of
triangles and by Cy4(G) the number of 4-cycles in G.

Theorem 3.3. For sufficiently large n, there exists a graph G on n vertices with
T(G) > cen®? and C4(G) < Cn?,
for some absolute constants ¢, C' > 0.
Sketch of Proof. Consider the random graph G(n,p), where each edge is present indepen-
dently with probability p = n~'/2. Define random variables:
X = T(G) = number of triangles in G,

and
Y = C4(G) = number of 4-cycles in G.
The expectation of X is

3/2

n n? n
EX| = S — =
X ( )p 6 " 6
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Similarly,

4 2
n* 5 n

E[Y] = number of 4-cycles x p* ~ =" =5

Using Chebyshev’s inequality (which derives from the second moment), we can show X
is tightly concentrated around its mean and that Y does not deviate too far above its
expectation with positive probability.

By deleting one edge from each 4-cycle in G (at most Y deletions), we remove all 4-cycles.
Since each edge is contained in at most O(n!/?) triangles, we lose at most O(n*?) triangles.
Because E[X] is on the order of n%?2, there still remain many triangles after deletions.

Hence, there exists a graph with many triangles and few 4-cycles.

3.3. Remarks and Further Applications. The second moment method is a corner-
stone in probabilistic combinatorics, often used to prove concentration results and existence
theorems where dependencies between events exist.

It underlies key results in random graph theory, number theory, and computer science, for
example:

e Proving thresholds for the emergence of a giant component in random graphs.
e Existence of arithmetic progressions in subsets of integers.
e Concentration of measure phenomena in algorithmic randomized constructions.

In the next section, we will build upon these ideas with the alteration method, which
refines random constructions to obtain even stronger results.

4. ALTERATIONS

While the first and second moment methods give elegant existence results, they sometimes
produce random objects that only approximately satisfy the desired properties. The alter-
ation method is a key technique introduced by Erdos and Lovasz that improves such prob-
abilistic constructions by making carefully chosen modifications—alterations—to eliminate
“bad” configurations. This hybrid approach combines randomness and explicit correction
steps to prove stronger existence theorems.

4.1. Basic Idea of Alterations. The alteration method typically proceeds in two steps:

(1) Choose a random object according to some probability distribution, ensuring it has
a near-desired structure but possibly with some flaws (e.g., some bad substructures).

(2) Remove or modify a small part of the object (an alteration) to eliminate all flaws
while maintaining most of the desired properties.

The key is to balance the expected number of flaws with the size or extent of the alteration,
so that after removal, the remaining object still meets the target requirements.

4.2. Classical Example: Large Independent Sets in Graphs. Let G = (V| E) be a
graph with n vertices and average degree d. A classical problem in graph theory is to find
large independent sets, sets of vertices with no edges between them.

Theorem 4.1 (Erdés’ Alteration Bound on Independence Number). Every graph G on n
vertices with average degree d contains an independent set of size at least
n

ﬁ.
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Proof. Consider the following random process:
e Select each vertex independently with probability p = %l.

Let X be the number of vertices selected, and Y be the number of edges induced by the
selected vertices (i.e., edges both of whose endpoints are chosen).
By linearity of expectation,

n
EX|=np=—
[X]=np =,
and
E[Y] = E Pr[both endpoints of e chosen] = |E|p?.

eck
Since the average degree is d, we have |E| = % Hence,

w5 (3) -5

Now, by Markov’s inequality or simply expectation arguments, there exists a choice of
vertices S with

and number of induced edges in S < %

Remove one vertex from each edge in S to eliminate all induced edges, leaving an inde-
pendent set S’.
Since each removal deletes at most one vertex per edge,

51>

a3

|S’| > |S| — number of induced edges > g — 2n_d = %

Thus, G contains an independent set of size at least 5. [ |

Remark 4.2. This proof is non-constructive but constructive algorithms inspired by this
approach exist. The alteration method shows how random selection combined with a small
cleanup yields large independent sets.

4.3. Applications: Hypergraph Coloring. The alteration method extends to more
complex structures such as hypergraphs. Consider a k-uniform hypergraph H = (V| E)
where each edge contains exactly k vertices.

Definition 4.3. A proper coloring of a hypergraph is an assignment of colors to vertices so
that no edge is monochromatic.

Using random colorings and alterations, one can prove existence of proper colorings with
fewer colors than naive bounds suggest.

Theorem 4.4 (Existence of Proper Colorings via Alterations). Let H be a k-uniform hy-
pergraph with m edges, each of size k, and maximum degree A. If the number of colors q
satisfies

q > ekAY*1)

then there exists a proper q-coloring of H.

The proof idea is:

e Randomly color each vertex independently and uniformly from ¢ colors.
e The expected number of monochromatic edges is small.
e Remove one vertex from each monochromatic edge to fix the coloring.
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e Show that the removal does not destroy too many vertices and that the leftover
coloring is proper.

A full proof involves carefully balancing probabilities and using the Lovasz Local Lemma
(to be discussed in Section [5]) or more advanced alteration arguments.

4.4. Quantitative Alteration Bounds. The alteration method often yields explicit quan-
titative bounds. The general principle can be formalized as:

Theorem 4.5 (General Alteration Principle). Suppose a random object X is chosen from a
probability space with an expected number E[B] of bad events. If for each bad event we can
remove or alter at most r elements to fix it, then there exists a modified object with at most
E[X] — rE[B] elements and no bad events.

Sketch. Let X be the size (or measure) of the chosen object and B the number of bad events.
By linearity,

E[X — rB] = E[X] — rE[B].
There exists a realization of the random choice for which
X —rB > E[X]| —rE[B].

By removing at most r elements per bad event, all bad events can be eliminated, leaving
a modified object with size at least E[X]| — rE[B]. |

This principle provides a template for designing probabilistic constructions followed by
cleanup.

4.5. Summary and Insights. The alteration method highlights a key philosophy in the
probabilistic method: sometimes randomness alone does not give perfect objects, but com-
bined with small, explicit modifications, it can produce optimal or near-optimal combinato-
rial structures.

Many important results in combinatorics, graph theory, and theoretical computer science
rely on alterations, often in combination with moment methods or local lemmas. This
technique paves the way for constructive algorithms and further probabilistic refinements.

5. LovAsz LocaL LEmMmA (LLL)

The Lovasz Local Lemma (LLL) is a cornerstone of the probabilistic method that allows
us to prove the existence of combinatorial objects under conditions of limited dependency.
Unlike the first and second moment methods, which require independence or simple union
bounds, the LLL handles events with a restricted dependency structure, vastly expanding
the method’s reach.

5.1. Statement of the Symmetric Lovasz Local Lemma. Consider a finite collection
of “bad” events {Aj, As,..., A,} in a probability space. Suppose that each event A; is
mutually independent of all other events except for at most d of them (i.e., it depends on
at most d other events). The LLL provides a criterion ensuring that the probability none of
the A; occur is positive.
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Theorem 5.1 (Symmetric Lovasz Local Lemma, Erdés—Lovasz 1975). Let A, As, ..., A,
be events in a probability space, each with probability at most p. Suppose each event A; is
mutually independent of all but at most d other events, and

ep(d+1) <1,

where e is Euler’s number (e =~ 2.718). Then

Pr > 0.

i=1
Remark 5.2. The LLL asserts the existence of an outcome avoiding all bad events simulta-

neously, even when events are not fully independent, provided dependencies are sufficiently
limited and event probabilities are small enough.

5.2. Intuition and Dependency Graph. The dependency condition can be encoded by a
dependency graph G = (V, E) on the vertex set {1,2,...,n}, where an edge between vertices
¢ and j means that A; and A; are dependent events. The lemma requires each vertex to have
degree at most d.

Intuitively, if bad events are rare and each event only “interferes” with a limited number
of others, it is possible to avoid all of them simultaneously with positive probability.

5.3. Proof of the Symmetric Lovasz Local Lemma. We present a classical proof based
on an inductive argument on conditional probabilities.

Proof. Define, for any subset S C {1,...,n}, the event

ZS = /\ E
€S

Our goal is to show that Pr[A},] > 0.
By the chain rule of probability,

Pr[A,] = HPr [A; | Ap iy -
=1

It suffices to show each factor is bounded away from zero. We will prove by induction on
|S| that for every i and every S C {1,...,n}\ {i},

— 1
Pr(A; | Ag| < ——.
P A <
This implies
. — 1 d
Pr|A;|Ag| =1—-Pr|A;|Ag| > 1 — —— = ——.
[ 4] As) A A 21 - = T
Because there are n terms, the product is at least

d n
— ] >0.
(7
To verify the induction, note:
- By the definition of dependency, A; is independent of all events not connected to it in
the dependency graph, so conditioning on events disjoint from its neighborhood does not
increase its probability.
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- Using the condition ep(d + 1) < 1, we can bound Pr[4;] <p < m and use combina-
torial estimates and inclusion-exclusion to control the conditional probabilities.
The detailed combinatorial calculations are classic; see, for example, |[ASO§| for the full

proof.

5.4. Applications of the Lovasz Local Lemma. The LLL is used to prove many
nontrivial existence results in combinatorics, such as:

e Graph Coloring: Showing that certain sparse graphs admit proper colorings avoid-
ing monochromatic structures even under complex constraints.

e Hypergraph Matchings: Existence of matchings or independent sets avoiding
small forbidden configurations.

e Satisfiability Problems: Proving satisfiability of certain CNF formulas with bounded
clause dependencies.

5.5. General and Algorithmic Versions. The General Lovdsz Local Lemma relaxes the
symmetric probability bound to allow different event probabilities and asymmetric depen-
dency structures. It uses a system of real-valued weights and functions called LLL criteria.

Recent advances have developed algorithmic versions of the LLL, such as the Moser-
Tardos algorithm, which constructively find objects guaranteed to exist by the LLL. These
algorithmic versions have significant applications in randomized algorithms and combinato-
rial optimization.

5.6. Summary. The Lovasz Local Lemma is a fundamental tool extending the probabilistic
method beyond independence, enabling existence proofs under limited dependencies. Its
power lies in combining combinatorial structure with probability, making it one of the most
widely used and celebrated results in modern discrete mathematics.

6. RAMSEY NUMBERS AND THE PROBABILISTIC METHOD

6.1. Definition and Basic Properties. The Ramsey number R(k, k) is defined as the
smallest positive integer n such that in every red-blue coloring of the edges of the complete
graph K, there exists a monochromatic complete subgraph K. Formally:

Definition 6.1. For positive integers k, the diagonal Ramsey number R(k, k) is the minimal
n such that

V red-blue edge-colorings ¢ : F(K,) — {red,blue}, IS CV(K,),|S| =k,
with all edges in Kj[S] monochromatic.

Ramsey theory fundamentally asserts that complete disorder is impossible; sufficiently
large structures inevitably contain well-organized substructures.

6.2. Erd6s’s Probabilistic Lower Bound. One of the landmark achievements in com-
binatorics was Erdés’s 1947 non-constructive lower bound on R(k, k), proving exponential
growth in k. His insight was to show that a random coloring of K, contains no monochro-
matic K} with positive probability when n is suitably small.
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(Z) 2-(5) < 1,

then R(k,k) > n. In particular, for all sufficiently large k,
R(k, k) > 2k/2,

Theorem 6.2 (Erdds, 1947). If

Proof. Consider the uniform probability space € of all red-blue colorings of F(K,,), with
each edge independently colored red or blue with probability 1/2. For a fixed k-subset
S C V(K,), define the event Ag that S forms a monochromatic Kj.

The number of edges in K}, is (g), SO

Pr[Ag] = 2. (1) &) _ 9=,

accounting for all red or all blue.
Define the random variable

Yo Y L
se('?)

counting monochromatic K}’s in the coloring. By linearity of expectation,

E[X] = (Z) 21-(3).

If E[X] < 1, then by the first moment method, there exists a coloring with X = 0, i.e., no
monochromatic K. Hence,

R(k, k) > n.

To get the asymptotic bound, note Stirling’s approximation:

(1)=(5)"
k:) _k(k=1)

and the exponent (2 =5 & %2 dominates, so setting n = |2%/2] makes the expectation

less than 1 for large k. [ |

6.3. Refinements and Improvements. Erdos’s bound has stood for decades as a foun-
dational result. Improvements have been subtle and incremental:

e Lower Bound Improvements: The current best-known lower bound, due to
Spencer and others, improves the constant factor in the exponent. For example,

V2
e
achieved through delicate combinatorial constructions and sophisticated probabilistic
arguments [Spe75, CFS19).
e Upper Bounds: On the other hand, classical constructive arguments and the
Erdos—Szekeres theorem yield exponential upper bounds of roughly

R(k, k) < 4,
but narrowing the gap remains a central open problem.

e Off-Diagonal Ramsey Numbers: The study of R(k, () for k # [ introduces asym-
metry and more complex probabilistic behavior, with only partial results available.

R(k, k) > ~Zk2F2(1 + (1)),
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6.4. Connections to the Second Moment Method and Beyond. While the first mo-
ment method suffices for Erdés’s classical bound, more refined probabilistic tools like the
second moment method and the Lovasz Local Lemma have been applied to related problems
to tighten bounds on Ramsey-type parameters.

For instance, to estimate the concentration of the number of monochromatic cliques or
to tackle multicolor Ramsey numbers, variance analysis and dependency graphs come into
play, often requiring subtle combinatorial estimates.

6.5. Challenges in Constructive Approaches. A significant limitation of the probabilis-
tic method in Ramsey theory is its inherent non-constructiveness: the existence proof does
not provide an explicit coloring.

Recent advances have addressed this:

e The Moser-Tardos algorithmic Local Lemma gives constructive versions for
many existence results, though explicit constructions for Ramsey numbers remain
elusive.

e Explicit Constructions: Few explicit constructions match the probabilistic bounds.
Notably, the Frankl-Wilson construction uses algebraic methods to give explicit lower
bounds, but these do not reach Erdos’s exponential level.

6.6. Open Problems and Research Directions. The precise growth rate of R(k, k) re-
mains an open problem of fundamental importance. Specific questions include:

e Does there exist ¢ > 0 such that
R(k,k) > c-2%?

for all sufficiently large k7

e Can constructive methods reach the same asymptotic bounds as the probabilistic
method?

e How can the probabilistic method be extended or combined with other combinatorial
techniques to improve bounds?

6.7. Summary. Ramsey numbers exemplify the power and limitations of the probabilistic
method. Erdos’s pioneering proof opened a vast field blending combinatorics, probability,
and algorithmics. The method’s elegance lies in transforming existential combinatorial ques-
tions into probabilistic computations, revealing deep structural properties of graphs and
colorings.

7. OTHER APPLICATIONS OF THE PROBABILISTIC METHOD

While the probabilistic method is famously associated with Ramsey theory, its versatility
extends far beyond to various branches of combinatorics, number theory, geometry, and
algorithm design. In this section, we explore several notable applications that showcase the
breadth and power of probabilistic techniques.

7.1. Graph Theory.
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7.1.1. Turdn-type Problems. Turan-type extremal problems ask: What is the maximum num-
ber of edges in a graph on n vertices that avoids a fized forbidden subgraph H ¢ The proba-
bilistic method provides lower bounds on these extremal functions by constructing random
graphs that with high probability avoid H.

For example, the classical Erdés—Stone theorem asymptotically determines the extremal
number ex(n, H) for non-bipartite H using probabilistic and combinatorial arguments.

Moreover, probabilistic constructions can improve lower bounds for graphs avoiding large
cliques or cycles by analyzing random graphs with carefully tuned edge probabilities.

7.1.2. Chromatic Number Bounds. Determining or bounding the chromatic number x(G) of
a graph is a central problem. The probabilistic method is instrumental in demonstrating the
existence of graphs with large chromatic number but without large cliques.

Erdés’s famous construction of graphs with arbitrarily large girth (length of shortest cy-
cle) and chromatic number relies on random graph models. By proving that certain random
graphs simultaneously avoid small cycles and have large chromatic number with positive
probability, the probabilistic method yields counterintuitive examples challenging determin-
istic intuition.

7.2. Number Theory.

7.2.1. Sum-Free Sets and Arithmetic Progressions. In additive combinatorics, the probabilis-
tic method establishes the existence of large subsets of integers avoiding specific configura-
tions.

For instance, sum-free sets are subsets A C {1,2,...,n} containing no solutions to a+b = ¢
with a,b,¢c € A. Random sampling arguments show that sum-free subsets of size at least
n/3 exist.

Similarly, Roth’s theorem on 3-term arithmetic progressions has probabilistic analogues
where random constructions demonstrate the existence of large subsets with no 3-term pro-
gression under certain density conditions.

7.3. Geometry and Discrete Geometry.

7.3.1. Sets in General Position. A classical problem in discrete geometry asks for the maxi-
mum size of a subset of points in the plane with no three collinear points (points in general
position).

Using the probabilistic method, one can select subsets of points randomly from a large set
and show that with positive probability the subset contains no three collinear points, thus
proving existence of large subsets in general position.

7.3.2. Discrepancy Theory. Discrepancy theory studies how uniformly elements can be dis-
tributed among subsets. The probabilistic method is a key tool in showing low-discrepancy
colorings or partitions exist.

For example, Spencer’s celebrated siz standard deviations suffice theorem states that for
any family of sets, a coloring exists with discrepancy bounded by O(y/n), proved via proba-
bilistic techniques combined with careful combinatorial arguments.

7.4. Algorithmic Combinatorics.
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7.4.1. Randomized Rounding. Probabilistic methods extend naturally into algorithms, no-
tably via randomized rounding in approximation algorithms.

Given a fractional solution to a linear programming relaxation of a combinatorial problem
(e.g., max cut, set cover), randomized rounding uses probabilistic sampling to convert frac-
tional variables into integral ones while approximately preserving constraints and objectives.

The probabilistic method guarantees that with positive probability the rounding yields
near-optimal integral solutions.

7.4.2. The Moser-Tardos Algorithm. The Lovasz Local Lemma (LLL) provides existential
proofs of combinatorial objects avoiding a set of mostly independent “bad events.” The
Moser-Tardos algorithm gave a constructive framework to efficiently find such objects by
iteratively resampling variables associated with violated constraints.

This algorithmic breakthrough bridged the gap between the probabilistic existence proofs
and explicit constructions, impacting satisfiability problems, hypergraph colorings, and be-
yond.

7.5. Summary and Further Directions. These diverse applications highlight the proba-
bilistic method as a foundational paradigm transcending pure combinatorics into algorithm
design, number theory, and geometry.

By leveraging randomness and expectation, the method often bypasses complicated ex-
plicit constructions, yielding strong existence theorems that spur further research into de-
randomization, explicit algorithms, and structural combinatorics.

8. CONCEPTUAL NOTES AND PHILOSOPHICAL COMMENTS

The probabilistic method represents a profound shift in the philosophy and practice of
mathematical proof. Traditionally, existence theorems in combinatorics and related fields
sought explicit constructions or algorithms to exhibit the objects in question. The probabilis-
tic method, pioneered by Paul Erdos, introduced a paradigm whereby existence is established
indirectly by showing that a random object satisfies the desired properties with positive
probability. This non-constructive technique has reshaped how mathematicians think about
existence, randomness, and combinatorial structure.

8.1. From Deterministic to Probabilistic Existence Proofs. The hallmark of the prob-
abilistic method is the replacement of explicit constructions with randomized arguments. At
its core lies the principle:

If the probability that a randomly chosen object has a certain property is
greater than zero, then such an object must exist.

This elegant shift has enabled mathematicians to prove the existence of highly complex
combinatorial structures that defy direct description. For instance, Erdds’s seminal proofs
on Ramsey numbers and graphs with high girth and chromatic number rely on carefully
analyzing random graphs rather than explicit examples.

8.2. Randomness as a Rigorous Mathematical Tool. Randomness in the probabilis-
tic method is not a heuristic or a simulation; it is a rigorously defined mathematical object.
Probability spaces, expectation, variance, and inequalities such as Markov’s and Chebyshev’s
provide the language and tools to manipulate random variables encoding combinatorial prop-
erties.
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This rigor has been extended through the development of concentration inequalities (e.g.,
Chernoff bounds, Talagrand’s inequality), which allow precise quantification of how random
variables deviate from their means, further strengthening the method’s predictive power.

8.3. Constructive versus Non-Constructive Proofs. While the original form of the
probabilistic method is inherently non-constructive, substantial progress has been made in
constructing explicit examples:

e Algorithmic Versions: The Lovasz Local Lemma’s constructive proof via the
Moser-Tardos resampling algorithm enables explicit construction of combinatorial
objects previously known only to exist non-constructively.

e Derandomization: Techniques to remove randomness from probabilistic construc-
tions—such as the method of conditional expectations and pseudorandom genera-
tors—help transform existential proofs into deterministic algorithms.

These advances bridge the philosophical divide between existence and construction, mak-
ing the probabilistic method not only a theoretical tool but also a practical one.

8.4. Connections to Other Mathematical Domains. The probabilistic method’s influ-
ence extends beyond combinatorics into measure theory, entropy, and information theory.
For example:

¢ Entropy and Information Theory: Entropy methods help analyze combinatorial
configurations by quantifying uncertainty and randomness, providing alternate routes
to classical probabilistic proofs.

e Concentration of Measure: Phenomena where high-dimensional random variables
exhibit tight concentration around their means illustrate deep structural regularities
that probabilistic methods exploit.

These interdisciplinary connections underscore the probabilistic method’s centrality in
modern mathematical thought.

8.5. Philosophical Reflections. Paul Erdds famously valued not only the truth of a math-
ematical statement but also the beauty of its proof. The probabilistic method exemplifies
this ideal: it combines simplicity, elegance, and profound insight. Rather than painstak-
ing constructions, it offers a bird’s-eye view revealing hidden structures through the lens of
randomness.

Moreover, the method challenges classical intuitions about existence, urging mathemati-
cians to embrace uncertainty as a source of certainty. It exemplifies how the interplay be-
tween chance and structure can lead to deterministic conclusions, enriching the philosophy
of mathematics.

8.6. Educational Implications. Introducing the probabilistic method in mathematical
education can deepen students’ understanding of proof techniques, exposing them to sophis-
ticated tools beyond direct constructive arguments. It fosters an appreciation for the power
of expectation, variance, and independence in reasoning.

Furthermore, it exemplifies how abstract probability concepts have concrete, impactful
applications, linking probability theory and combinatorics in a tangible way.
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8.7. Conclusion. The probabilistic method is a cornerstone of contemporary combinatorics
and theoretical computer science. It has revolutionized the approach to existence proofs,
opened pathways to constructive algorithms, and deepened our philosophical understanding
of mathematics. Its continuing development promises further breakthroughs and insights,
making it a fertile area for both research and education.
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