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Integer Multiplication
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Karatsuba Algorithm
Karatsuba Algorithm

We multiply aband cd. Let x; = a- c,xx=b-c,x3=a-d, and
x4s = b-d. Then,

ab - cd = 100x; + 10(x2 + x3) + xa.

This is the “naive” way, using four multiplications.
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Karatsuba Algorithm

We multiply aband cd. Let x; = a- c,xx=b-c,x3=a-d, and
x4s = b-d. Then,

ab - cd = 100x; + 10(x2 + x3) + xa.

This is the “naive” way, using four multiplications.

Instead, let yy = a-c, yo = b-d, and y3 = (a+ b)(c + d). Then,
ab-cd = 100y1 + 10(y3 — y1 — y2) + yo.

This method only uses three multiplications, at the cost of a few more
additions/subtractions. Note that, when referring to the number of
multiplications, we are talking about the number of unique multiplications
involving input variables.
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Integer Multiplication Karatsuba Algorithm

Karatsuba Algorithm Continued

The multiplication of two two-digit numbers (using only three

multiplications) will be the base case for our recursion. The recursion uses
a divide-and-conquer approach.
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Karatsuba Algorithm
Karatsuba Algorithm Continued

The multiplication of two two-digit numbers (using only three
multiplications) will be the base case for our recursion. The recursion uses
a divide-and-conquer approach.

Let u = Upp_1Uzp_2...U0g and v = V5,,_1Vo,_5...vp. Then we split u into
p

p=Ts,_1...U, and g = Up_1...4g and v into r = V»,,_1...v, and

S = Vp_1...vg. Since u = pl0”" 4+ g and v = r10" + s, we see that

u-v=prl0® +((p+q)(r+s)—pr—gs) 10"+ gs,

which only requires three multiplications. The subsequent multiplications
of pr, (p+ q)(r +s), and gs are done recursively via further splitting.
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Karatsuba Algorithm
Karatsuba Algorithm Continued

The multiplication of two two-digit numbers (using only three
multiplications) will be the base case for our recursion. The recursion uses
a divide-and-conquer approach.

Let u = Upp_1Uzp_2...U0g and v = V5,,_1Vo,_5...vp. Then we split u into
p

p=Ts,_1...U, and g = Up_1...4g and v into r = V»,,_1...v, and

S = Vp_1...vg. Since u = pl0”" 4+ g and v = r10" + s, we see that

u-v=prl0® +((p+q)(r+s)—pr—gs) 10"+ gs,

which only requires three multiplications. The subsequent multiplications
of pr, (p+ q)(r +s), and gs are done recursively via further splitting.

The computational complexity is O(n'°823) ~ O(n'-%8). Check out my
paper for a Python implementation.
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Toom-Cook Algorthm
Toom-Cook Algorithm

Toom-Cook splits the input numbers into more parts; e.g. Toom-3 splits
them into three parts each (so Karatsuba can be thought of as Toom-2).
We discuss Toom-3, which can be easily generalized to Toom-n.

Shamik Khowala Evolution of Multiplication Algorithms for Int: July 13, 2025 6/24



Toom-Cook Algorthm
Toom-Cook Algorithm

Toom-Cook splits the input numbers into more parts; e.g. Toom-3 splits
them into three parts each (so Karatsuba can be thought of as Toom-2).
We discuss Toom-3, which can be easily generalized to Toom-n.

Split x into xp, x1, and xp; likewise, we split y into y», y1, and yg. Let

X(t) = xot? + x1t + xg and Y(t) = yot? + y1t + yo. Then our desired
output is determined by

W(t) = X(t) : Y(t) = W4t4 + W3l‘3 + W2t2 + wit + wp.
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Toom-Cook Algorthm
Toom-3 Algorithm

Regular polynomial multiplication and matching up the coefficients gives

Wyq = X2 2,

W3 = X2 - y1 + X1 Y2,

wo =x2-yo+ X1 y1+ X0 Y2, (1.1)
w1 =Xx1- Yo+ Xo-y1, and

Wo = Xo - Yo-

This can be solved as a system of equations in order to determine
wo, . .. wg. However, the total number of multiplications is 9.
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Integer Multiplication Toom-Cook Algorithm

Toom-3 Algorithm Continued

Instead, we introduce a method that only requires 5 multiplications.
Evaluate W(t) = X(t)- Y(t) at t =0,1,—1,2, and oo:

Wo = X0 * Y0,
wg + w3 4+ wo + wy + wp = (X2 + x1 + x0)(y2 + 1 + Y0),
wg — w3 +wp —wp +wo = (x2 — x1 +x0)(y2 — y1+ Y0),
16wy + 8ws + 4wy + 2wy + wo = (4x2 + 2x1 + x0)(4y2 + 21 + o),
Wy = X2 Y2.

(1.2)

Then, this system of equations can be solved (since there are five unknown
variables and five equations) to determine wa, ws, wy, wi, and wy.
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e
Toom-3 Algorithm Continued

With this approach reducing the amount of multiplications, the
Toom-Cook algorithm further utilizes a divide-and-conquer method to
perform the 5 multiplications above (like Karatsuba). Since Toom-3
divides the input numbers into three parts through five multiplications, we
see that its computational complexity is O(n'°83%) ~ O(n'4%).
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Toom-3 Algorithm Continued

With this approach reducing the amount of multiplications, the
Toom-Cook algorithm further utilizes a divide-and-conquer method to
perform the 5 multiplications above (like Karatsuba). Since Toom-3
divides the input numbers into three parts through five multiplications, we
see that its computational complexity is O(n'°83%) ~ O(n'4%).

This is better than the Karatsuba algorithm, which we recall is around
O(n'%®). However, as Toom-3 needs much more additions, subtractions,
and multiplication by constants (more ‘elementary’ operations than
multiplication) than Karatsuba, it only holds an advantage for input
numbers of large lengths (above a certain cutoff point).
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Toom-3 Algorithm Continued

With this approach reducing the amount of multiplications, the
Toom-Cook algorithm further utilizes a divide-and-conquer method to
perform the 5 multiplications above (like Karatsuba). Since Toom-3
divides the input numbers into three parts through five multiplications, we
see that its computational complexity is O(n'°83%) ~ O(n'4%).

This is better than the Karatsuba algorithm, which we recall is around
O(n'%®). However, as Toom-3 needs much more additions, subtractions,
and multiplication by constants (more ‘elementary’ operations than
multiplication) than Karatsuba, it only holds an advantage for input
numbers of large lengths (above a certain cutoff point).

Check out my paper for a Python implementation of Toom-3.
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Toom-Cook Algorthm
Toom-n Algorithm

Split both x and y into n parts to obtain X(t) = x,_1t" "1 +... + xo and
Y(t) =y, 1t" 1+ ...+ yo. Then W(t) = X(t)- Y(t) is a degree 2n — 2
polynomial. By the interpolation theorem, k + 1 points are needed to
determine a polynomial of degree k. Thus, we evaluate our degree 2n — 2
polynomial W at 2n — 1 points.
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Toom-Cook Algorthm
Toom-n Algorithm

Split both x and y into n parts to obtain X(t) = x,_1t" "1 +... + xo and
Y(t) =y, 1t" 1+ ...+ yo. Then W(t) = X(t)- Y(t) is a degree 2n — 2
polynomial. By the interpolation theorem, k + 1 points are needed to
determine a polynomial of degree k. Thus, we evaluate our degree 2n — 2
polynomial W at 2n — 1 points.

While any set of 2n — 1 t's theoretically work, it is popular to use

t =0,00,1,—1, and £2/, as some of the additions and subtractions
needed are repeated and so running time is shortened. With this splitting
and evaluation, Toom-n then runs a divide-and-conquer method to
determine the 2n — 1 necessary multiplications.
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Toom-Cook Algorthm
Toom-n Algorithm

Split both x and y into n parts to obtain X(t) = x,_1t" "1 +... + xo and
Y(t) =y, 1t" 1+ ...+ yo. Then W(t) = X(t)- Y(t) is a degree 2n — 2
polynomial. By the interpolation theorem, k + 1 points are needed to
determine a polynomial of degree k. Thus, we evaluate our degree 2n — 2
polynomial W at 2n — 1 points.

While any set of 2n — 1 t's theoretically work, it is popular to use

t =0,00,1,—1, and £2/, as some of the additions and subtractions
needed are repeated and so running time is shortened. With this splitting
and evaluation, Toom-n then runs a divide-and-conquer method to
determine the 2n — 1 necessary multiplications.

Overall, Toom-n splits multiplication of two numbers into n parts via
2n — 1 multiplications.
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NSV Schonhage-Strassen Algorithm

Fast Fourier Transform

FFT is an O(nlog n) approach to evaluate the DFT of a polynomial. The
DFT of a polynomial A is

A(1) 11 1 a0
Aw) | |1 w ... w1 | oA (1.3)
A(w"™ 1) 1 W™l o w1 an_1

where w is a primitive nth root of a field (e.g. generators modulo some
number). FFT splits A into Ag and A; where A(x) = Ag(x?) + xA1(x?):

A1) 7 T A1) ]

Aw) Ao(w?)

A('L'u'm) = A'O'('l) + : (1.4)
_A(w'Z'n;fl)_ _Ao(u.J.Zr'n_2)_
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NSV Schonhage-Strassen Algorithm

Convolutions

Suppose that A(x) and B(x) are degree n — 1 polynomials in the ring
Zg[x]. Then polynomial multiplication gives

2n—2 i

Cx)=AX)-B(x)=>_ (O ajbij)x'. (1.5)

i=0 j=0

We define the convolution of the coefficient vectors of the polynomials
A(x) and B(x) as

axb=> aiby . (1.6)
i=0

Then,
axb=c, (1.7)

which is the coefficient vector of the output polynomial C(x).
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NSV Schonhage-Strassen Algorithm

Positive Wrapped Convolutions

The positive wrapped convolution, denoted as the polynomial C™, is

defined as )
=> cx (1.8)
i=0
where
Zaj i—j + Z ajbpyi—j (mod q). (1.9)
j=i+1
Actually,
C*(x) = C(x) (mod x" — 1). (1.10)
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ST S e AT
Negative Wrapped Convolution

We similarly define the negative wrapped convolution, sometimes called
the negacylic convolution, in the ring Zg[x]/(x" + 1), as

n—1
C(x)=) ax, (1.11)
i=0

where ) .
ci = Zajb,’_j - Z ajb,,+,-_j (mod q). (1.12)
j=0 j=i+1
Actually,
C™(x) = C(x) (mod x" +1). (1.13)
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NSV Schonhage-Strassen Algorithm

Convolutions Continued

The positive wrapped convolution can be expressed as
ci = FFT Y(FFT(a) ® FFT(b)). (1.14)

If we ‘weight’ a and b according to a; = 0'a; and b} = 0'b;, where 0 is a
primitive 2nth root of unity, then

c. =FFTYFFT(d) ® FFT(V)). (1.15)

Note that since w and 6 are powers of 2 in the field Zon 1, then

multiplying by powers of them is equivalent to cyclic shifts in binary, which
is very efficient computationally.
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Schanhage:Strassen Algoithm
Schonhage-Strassen Algorithm

To multiply x - y we apply FFT in the field Zony1. Let n = r - m, where
r = 2¥ is the largest power of two dividing n. The algorithm is as follows:
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Schanhage:Strassen Algoithm
Schonhage-Strassen Algorithm

To multiply x - y we apply FFT in the field Zony1. Let n = r - m, where
r = 2¥ is the largest power of two dividing n. The algorithm is as follows:

@ Split x and y into r parts, each of length m, which can be thought of
as coefficients of two r degree polynomials.
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r = 2¥ is the largest power of two dividing n. The algorithm is as follows:

@ Split x and y into r parts, each of length m, which can be thought of
as coefficients of two r degree polynomials.

@ Weight both coefficient vectors with the powers of 6.
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Schonhage-Strassen Algorithm

To multiply x - y we apply FFT in the field Zony1. Let n = r - m, where
r = 2¥ is the largest power of two dividing n. The algorithm is as follows:

@ Split x and y into r parts, each of length m, which can be thought of
as coefficients of two r degree polynomials.

@ Weight both coefficient vectors with the powers of 6.

@ Perform FFT on the coefficient vectors.
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Schanhage:Strassen Algoithm
Schonhage-Strassen Algorithm

To multiply x - y we apply FFT in the field Zony1. Let n = r - m, where
r = 2¥ is the largest power of two dividing n. The algorithm is as follows:

@ Split x and y into r parts, each of length m, which can be thought of
as coefficients of two r degree polynomials.

@ Weight both coefficient vectors with the powers of 6.
@ Perform FFT on the coefficient vectors.
o

Multiply the coefficient vectors as defined previously, with ®. These
multiplications are performed recursively, via this algorithm again,
alike to a divide-and-conquer approach.
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as coefficients of two r degree polynomials.
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Schanhage:Strassen Algoithm
Schonhage-Strassen Algorithm

To multiply x - y we apply FFT in the field Zony1. Let n = r - m, where
r = 2¥ is the largest power of two dividing n. The algorithm is as follows:

@ Split x and y into r parts, each of length m, which can be thought of
as coefficients of two r degree polynomials.

@ Weight both coefficient vectors with the powers of 6.
© Perform FFT on the coefficient vectors.

@ Multiply the coefficient vectors as defined previously, with ®. These
multiplications are performed recursively, via this algorithm again,
alike to a divide-and-conquer approach.

@ Perform FFT™! on the ¢ coefficient vector.
@ Apply the ‘counterweight’, 67k,
(7]

Reconstruct the integer product from the coefficient vector by adding
and carrying; in other words, evaluate C(x) at x = 10.

Shamik Khowala Evolution of Multiplication Algorithms for Int: July 13, 2025 16 /24



Matrix Multiplication

Matrix Multiplication
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Strassen Algorthm
Strassen Algorithm

_ |A11-Bii + A1 By A1 Bio+ A1z - B

C =
Az1 - Bi1+ A - Bor Apr - Bio + Ax - B

(2.1)

requires 8 multiplications. However, if we define, with 7 multiplications,

X1 = (A1 + A22)(B11 + B2),

X2 = B11(Ao1 + A2),

X3 = Au (B2 — B22),

X3 = A2 (Bo1 — Bu1),

X5 = Bz (A1 + A12),

Xo = (A21 — A11)(B11 + Bi2),

X7 = (A12 — A22)(B21 + B22), then

C— X1+ Xy — X5 + X7 X3+ X5
Xo+ X4 X1—Xo+ X3+ X
Evolution of Multiplication Algorithms for Int: July 13, 2025
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Strassen Algorthm
Strassen Algorithm Continued

Using this trick, the Strassen algorithm employs a divide-and-conquer
strategy which subdivides the input matrices until reaching this base case
of 2 x 2, performs the multiplications, and then reconstructs the final C.
Also note that if we had padded A and/or B with rows/columns of zeroes,
we would delete those in the C obtained. The computational complexity of
this is O(n'°827) ~ O(n?8%7). However, note that for small enough
matrices the O(n3) approach is more efficient; the cutoff point between
these two algorithms depends on numerous factors though, including
hardware efficiency and code optimization.
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Strassen Algorthm
Strassen Algorithm Continued

Using this trick, the Strassen algorithm employs a divide-and-conquer
strategy which subdivides the input matrices until reaching this base case
of 2 x 2, performs the multiplications, and then reconstructs the final C.
Also note that if we had padded A and/or B with rows/columns of zeroes,
we would delete those in the C obtained. The computational complexity of
this is O(n'°827) ~ O(n?8%7). However, note that for small enough
matrices the O(n3) approach is more efficient; the cutoff point between
these two algorithms depends on numerous factors though, including
hardware efficiency and code optimization.

Winograd also discovered a modified version of Strassen’s algorithm that

requires the same number of multiplications but fewer
additions/subtractions.
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Matrix Multiplication Laser Method

Tensors

We can represent the multiplication of two n X n matrices as a tensor in
its trilinear form:

T = {(n,n,n) ZZ ZXUkaZk,, (2.4)

i=1 j=1 k=1

where x;; is in matrix A and yj, is in matrix B. Then the coefficient of z;
is just the entry at position (i, k) in matrix C.
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Matrix Multiplication Laser Method

Tensors

We can represent the multiplication of two n X n matrices as a tensor in
its trilinear form:

T = {(n,n,n) ZZZX’JYJ"Z"” (2.4)
i=1 j=1 k=1

where x;; is in matrix A and yj is in matrix B. Then the coefficient of z;
is just the entry at position (i, k) in matrix C.

The tensor rank of T, R(T), is defined as the minimum number of rank
one tensors which sum to T. A rank one tensor is one that can be
expressed as the product of linear polynomials:

S= (z; aiXi)(Z; bjyj)(kzjl Ckzk) = Z Z Z ajbjckxiyjzi.  (2.5)
i= j= =

i=1 j=1 k=1
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Matrix Multiplication Laser Method

A Lemma

Lemma

If R({n,n,n)) =r, then w < log, r via a recursive algorithm.

Proof.

Express (n, n, n) as a sum of r rank one tensors:

(non,n) =320 (2 @pinxin)) (O kv Bojrie X ) (X i CpkiZii))-

Split the each n x n matrix into four n/2 x n/2 matrices. Then we
recursively compute Sp = (32 ; apirjXirj)(D_jr g bpjriXjrie) for all

1 < p < r. Then the coefficient of z; is just er):l Cpki Sp- Computing the
linear combinations ZI-,J api’jxirj and qu;« bpj i Xjrkr can be done in
linear time. Z;Zl CpkiSp is also just a linear combination, being done
easily in linear time. The recursive steps give us the O(log,, r) time. |
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Cedieied
Components of the Laser Method

@ Zeroing out a tensor. This involves setting variables in a certain
tensor to 0, effectively canceling some terms and turning the tensor
into another, simpler tensor.

@ Direct sums of a tensor. This just the sum of copies of a single tensor
but each copy has independent variable sets. If A is the direct sum of
k copies of tensor T, and if R(A) = r, then by the lemma we have
w <log, 7.

© R(T®™) < R(T)™, where we define, if S =" pjxiyjzx and
T =3 quvXeYuzv, S® T =" PijkqeuvXi,tYj,uZk,v (think of this as
just a normal multiplication of the trilinear polynomials).

@ Partitioning a tensor. If we disjointly split the variable sets into d
subsets each, then define Ty =3 Zygeyj > zcz, PrehXfYgZh-

d d d
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Laser Method
The Main ldea

We take our matrix multiplication tensor (n, n, n) and write it as a direct
sum of other matrix multiplication tensors (going between these two
results in our upper bound of w < log,, © from before). Then, we express
this direct sum as a power of a tensor via partitioning and zeroing out
variables (more details in paper). Finally, the rank of the power of this
tensor is bounded by the power of the rank of the tensor. Therefore, if we
can simply bound the rank of this tensor we obtained (or do the previous
steps to get to a tensor of known rank bound), then we can ultimately
obtain a bound on w via these three steps.
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Matrix Multiplication Laser Method

Thank you for listening! Any questions?
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