
EVOLUTION OF MULTIPLICATION ALGORITHMS FOR INTEGERS,
MATRICES, AND MORE

SHAMIK KHOWALA

1. Abstract

We explain increasingly faster algorithms for computing the multiplication of two inte-
gers and of two matrices. We explain the Karatsuba, Toom-Cook, and Schönhage-Strassen
algorithms, which successively improve on the naive integer multiplication approach taught
in school. Then we take a slight detour into complex number and polynomial multiplica-
tion algorithms, which employ similar techniques for basic optimization as the algorithms
for integers. Finally we discuss improvements in matrix multiplication, everything from the
naive O(n3) approach to the first algorithm introduced by Strassen with O(n2.81) time to the
Laser Method and Refined Laser Method, which achieved O(n2.3729) time. Both integer and
matrix multiplication have had even more recent developments reducing these computational
complexities further; we do not discuss these, but provide references.

2. Introduction

Before the 1960s, mathematicians and computer programs alike employed näıve approaches
for integer and matrix multiplication. They would multiply the digits of the integers digit by
digit and add up the results multiplied by powers of ten; matrices would be multiplied via
a laborious row by row, column by column, entry by entry approach. Anatoly Karatsuba’s
1960 discovery of his namesake Karatsuba algorithm (published in 1962, [KO62]) sparked the
beginning of a search for more optimal multiplication algorithms. Karatsuba showed that the
number of single-digit multiplications required in multiplying two two-digit numbers can be
reduced from four (in the naive approach) to three, at the cost of a few additions and subtrac-
tions. This, combined with a divide-and-conquer approach, led to a significant improvement
to integer multiplication. Then Toom described a ‘generalized’ approach of Karatsuba which
further improved on the time complexity of integer multiplication by splitting the input in-
tegers into more parts and utilizing a polynomial interpretation; his approach was refined by
Cook in 1966 and came to be known as the Toom-Cook algorithm. The next major improve-
ment was by Schönhage and Strassen in 1971 ([SS71]), utilizing the Fast Fourier Transform
over the integers (mod 2n + 1). After this, improvements continued by Fürer, Harvey, and
van der Hoeven which led to a galactic algorithm with complexity O(n log n) in 2021 (we do
not discuss these in this paper, but see [Für09],[HvdHL16],[HvdH21]).

In the realm of matrix multiplication, Volker Strassen published his Strassen algorithm
in 1969 which proved that the normal, widely used matrix multiplication algorithm was
in fact not optimal ([Str69]). Similar to Karatsuba, he showed that the number of multi-
plications required in multiplying two 2 × 2 matrices could be reduced from eight (in the
naive approach) to only seven; this combined with a recursive divide-and-conquer method

Date: July 13, 2025.
1

2 SHAMIK KHOWALA

led to an improvement in the time complexity of matrix multiplication algorithms. After
this the next major improvement came with the Laser Method, introduced by Strassen in
1987 and optimized by Coppersmith and Winograd the same year, which brought down
the time complexity to O(n2.38) ([CW90][Str88]). Further refinements continued, using the
Laser Method, until very recent breakthroughs which introduced the Refined Laser Method
and techniques such as asymmetric hashing ([LG14],[AW24],[ADW+24],[WXXZ24]); how-
ever, recent improvements have only reduced the computational complexity in increments
of one-hundredths or one-thousandths (to the exponent of n). DeepMind’s groundbreaking
AlphaTensor has also contributed to the optimization of matrix multiplication algorithms,
by discovering a vast number of more algorithms as well as improvements to existing algo-
rithms; for example, it found an algorithm for multiplying two 4 × 4 matrices using only 47
multiplications, an improvement from the 49 used via Strassen’s algorithm ([FBH+22]).

Besides integer and matrix multiplication, we will also go through some methods for com-
plex number and polynomial multiplication, which are very similar to integer multiplication
techniques. The paper finally ends with a discussion of applications of multiplication algo-
rithms, further questions, and suggestions for further reading.

3. Multiplication in Z, C, and Z[x]

3.1. Karatsuba Algorithm.
We first show that we can reduce the number of multiplications required to multiply two

two-digit numbers. First, note that multiplying by a constant such as 10 or 22n will not be
considered a true multiplication. These are usually cyclic shifts in the base we are using
(and cyclic shifts are only linear time), or they are of much smaller length compared to the
inputs in the algorithms; thus, they are considered negligible with respect to computational
complexity. Secondly, note that the “number” of multiplications we refer to will be the
number of unique multiplications needed. Also note that anan−1 . . . a0 denotes the quantity
10nan + 10n−1an−1 + . . . + 10a1 + a0.

To multiply the two integers ab and cd, regular techniques would use four multiplications:
x1 = a · c, x2 = b · c, x3 = a · d, and x4 = b · d. Then,
(3.1) ab · cd = 100x1 + 10(x2 + x3) + x4.

Karatsuba showed that we can define y1 = a · c, y2 = b · d, and y3 = (a + b)(c + d). Now
ad + bc = y3 − y1 − y2 so we can write
(3.2) ab · cd = 100y1 + 10(y3 − y1 − y2) + y2.

Thus, we have reduced the number of multiplications from four to three at the cost of a
few extra additions. With this base case, Karatsuba applies a divide-and-conquer algorithm.
We define two 2n-digit integers, u = u2n−1u2n−2...u0 and v = v2n−1v2n−2...v0. Then we split
u into p = u2n−1...un and q = un−1...u0 and v into r = v2n−1...vn and s = vn−1...v0. Since
u = p10n + q and v = r10n + s, we see that
(3.3) u · v = pr 102n + ((p + q)(r + s) − pr − qs) 10n + qs,

which only requires three multiplications. To summarize, Karatsuba’s algorithm simplifies
the multiplication of two n-digit numbers into three multiplications involving four n/2-digit
numbers, which are split parts of the n-digit numbers. Then the multiplications involving the
n/2-digit numbers are further simplified into multiplications involving n/4-digit numbers,
and so on. This divide-and-conquer approach combined with the mathematical trick to

EVOLUTION OF MULTIPLICATION ALGORITHMS FOR INTEGERS, MATRICES, AND MORE 3

reduce the number of multiplications results in a more time efficient approach. We also note
that, if n is not a power of two or the two numbers being multiplied are of different lengths,
we can simply “pad” our numbers by prepending zeroes to them.

Moreover, as multiplication algorithms are very useful in the context of computers, we
can find the complexity of the Karatsuba algorithm. Let T (n) denote the time required to
multiply two 2n-digit numbers. Then, with the algorithm described above, it can be seen
that
(3.4) T (n) = 3 · T (⌈n/2⌉) + O(n).
Using the well-known master theorem for divide-and-conquer recurrences, we obtain
(3.5) T (n) = O(nlog2 3).
This is a clear improvement over the normal method of multiplying numbers, which is of
complexity n2, as nlog2 3 ≈ n1.58.

Finally, we end our discussion of the Karatsuba algorithm with an example: performing
the multiplication 1234 · 567. First, we must “pad” 567 with zeroes, making 0567, in order
to match the length of 1234. Since both numbers are of length four, a power of two, we can
now proceed with the algorithm. We split 1234 into 12 and 34 as well as 0567 into 05 and
67. So now we have

1234 · 567 = (12 · 05) · 1002 + ((12 + 34)(05 + 67) − 12 · 05 − 34 · 67) · 100 + 34 · 67.
Now we perform 12 · 05 with only three multiplications:

12 · 05 = (1 · 0) · 102 + ((1 + 2)(0 + 5) − 1 · 0 − 2 · 5) · 10 + 2 · 5 = 60.
Similarly, we perform 34 · 67,

34 · 67 = (3 · 6) · 102 + ((3 + 4)(6 + 7) − 3 · 6 − 4 · 7) · 10 + 4 · 7 = 2278,
and (12 + 34) · (05 + 67) = 46 · 72,

46 · 72 = (4 · 7) · 102 + ((4 + 6)(7 + 2) − 4 · 7 − 6 · 2) · 10 + 6 · 2 = 3312.
We then plug these results back into our original multiplication to obtain

1234 · 567 = 60 · 1002 + (3312 − 60 − 2278) · 100 + 2278 = 699678 .
Below is a Python implementation of Karatsuba’s algorithm, following the method outlined
above:
def karatsuba (x, y):

if x <10 or y <10:
return x * y

maxl = max(len(str(x)), len(str(y)))
maxl2 = maxl // 2
p = x // (10 ** (maxl2))
q = x % (10 ** (maxl2))
r = y // (10 ** (maxl2))
s = y % (10 ** (maxl2))

a = karatsuba (q, s)
b = karatsuba ((p + q), (r + s))
c = karatsuba (p, r)

4 SHAMIK KHOWALA

return c *(10**(2* maxl2)) + (b-a-c)*(10**(maxl2)) + a

3.2. Toom-Cook Algorithm.
The Toom-Cook algorithm is a ‘generalized’ version of Karatsuba, as it splits the input

numbers into more parts. We begin with a discussion of Toom-3 and then discuss Toom-
n. Toom-3 works much like Karatsuba, except that it splits the operands into three parts
instead of two. Note that the lengths of these parts do not have to be all exactly equal; they
can differ by at most 1.

Let x and y be the numbers we wish to multiply. Using the idea of Toom-3, we split x into
x2, x1, and x0; likewise, we split y into y2, y1, and y0. Now an important idea comes into play:
defining a polynomial in which the coefficients are the split parts. We let X(t) = x2t

2+x1t+x0
and Y (t) = y2t

2 + y1t + y0. Then our desired output is easily determined by W (t) =
X(t) · Y (t) = w4t

4 + w3t
3 + w2t

2 + w1t + w0. Using regular polynomial multiplication and
matching up the coefficients, we can find w4, w3, w2, w1, and w0 in terms of x2, x1, x0, y2, y1,
and y0 as

(3.6)

w4 = x2 · y2,

w3 = x2 · y1 + x1 · y2,

w2 = x2 · y0 + x1 · y1 + x0 · y2,

w1 = x1 · y0 + x0 · y1, and
w0 = x0 · y0.

However, this would require 9 multiplications. Instead, we introduce a method that only
requires 5 multiplications, at the cost of more additions and subtractions. We evaluate
W (t) = X(t) · Y (t) at t = 0, 1, −1, 2, and ∞:

(3.7)

w0 = x0 · y0,

w4 + w3 + w2 + w1 + w0 = (x2 + x1 + x0)(y2 + y1 + y0),
w4 − w3 + w2 − w1 + w0 = (x2 − x1 + x0)(y2 − y1 + y0),

16w4 + 8w3 + 4w2 + 2w1 + w0 = (4x2 + 2x1 + x0)(4y2 + 2y1 + y0), and
w4 = x2 · y2.

Then, this system of equations can be solved (since there are five unknown variables and

five equations) to determine w4, w3, w2, w1, and w0. First, note that, for the evaluation of

t = ∞, we are simply using the leading coefficients; more rigorously, we are using

w4 = limz→∞
W (z)

z4 ,

x2 = limz→∞
X(z)

z2 ,

y2 = limz→∞
Y (z)

z2 .
Also note that our new method only requires 5 multiplications, albeit more additions

and subtractions. With this approach reducing the amount of multiplications, the Toom-
Cook algorithm further utilizes a divide-and-conquer method to perform the 5 multiplications
above. Since Toom-3 divides the input numbers into three parts through five multiplications,
we see that its computational complexity is O(nlog3 5) ≈ O(n1.46). This is better than the
Karatsuba algorithm, which we recall is around O(n1.58). However, as Toom-3 needs many

EVOLUTION OF MULTIPLICATION ALGORITHMS FOR INTEGERS, MATRICES, AND MORE 5

more additions, subtractions, and multiplication by constants (more ‘elementary’ operations
than multiplication) than Karatsuba, it only upholds an advantage for inputs of large lengths.
Finally, to end our discussion of Toom-3, we provide an example.

Let’s multiply x = 123 and y = 456 via the Toom-3 algorithm. Then we have X(t) =
t2 + 2t + 3 and Y (t) = 4t2 + 5t + 6. Now we evaluate W (t) = X(t) · Y (t) at t = 0, 1, −1, 2,
and ∞:

(3.8)

w0 = 3 · 6 = 18,

w4 + w3 + w2 + w1 + w0 = (1 + 2 + 3) · (4 + 5 + 6) = 90,

w4 − w3 + w2 − w1 + w0 = (1 − 2 + 3)(4 − 5 + 6) = 10,

16w4 + 8w3 + 4w2 + 2w1 + w0 = (4 · 1 + 2 · 2 + 3)(4 · 4 + 2 · 5 + 6) = 352, and
w4 = 1 · 4 = 4.

Solving this system of equations, we obtain w0 = 18, w1 = 27, w2 = 28, w3 = 13, and w4 = 4,
so W (t) = 4t4 + 13t3 + 28t2 + 27t + 18. Now we evaluate at t = 10 to get

x · y = X(10) · Y (10) = W (10) = 4 · 104 + 13 · 103 + 28 · 102 + 27 · 10 + 18 = 56088 ,

which is indeed correct.
Now we describe the Toom-n algorithm on the multiplication of two numbers, x and

y. We split both x and y into n parts to obtain X(t) = xn−1t
n−1 + . . . + x0 and Y (t) =

yn−1t
n−1 + . . .+y0. Then W (t) = X(t) ·Y (t) is a degree 2n−2 polynomial. The interpolation

theorem shows that k + 1 points are needed to determine a polynomial of degree k. Thus,
we must evaluate our degree 2n − 2 polynomial W at (2n − 2) + 1 = 2n − 1 points to
obtain an expression for it. While any set of 2n − 1 t’s would work, it is popular among
implementations of the Toom-cook algorithm to use t = 0, ∞, 1, −1, and ±2i, as some of the
additions and subtractions needed are repeated and so running time is shortened. With this
splitting and evaluation, Toom-n then runs a divide-and-conquer method to determine the
2n − 1 necessary multiplications. Overall, Toom-n splits multiplication of two numbers into
n parts via 2n − 1 multiplications. Note that Toom-2 is simply the Karatsuba algorithm in
section 4.1 and Toom-3 is the algorithm described above.

We can also find the computational complexity of Toom-n. If we let T (N) be the time
required to multiply two N − digit numbers, then it can be seen that

(3.9) T (N) = (2n − 1) · T (N

n
) + O(n).

Thus, we obtain

(3.10) T (N) = O(nlogn 2n−1).

For n = 2, 3, 4 we obtain O(n1.58), O(n1.46), and O(n1.40). We see that as n gets larger
and larger, our computational complexity approaches O(n), since limn→∞ logn (2n − 1) = 1.
However, this becomes impractical for large numbers, as the number of additions, sub-
tractions, and multiplications by constants (i.e., the constant term we have omitted in the
computational complexity) grows unreasonably. At that point, we turn to FFT-based mul-
tiplication, as described in the next section. Thus, the Toom-Cook algorithm is practical
only for intermediate-sized multiplication. Below is a Python implementation of the Toom-3
algorithm (running the code in an IDE for x = 123 and y = 456 returns 56088, which is
indeed what we obtained in our above example):

6 SHAMIK KHOWALA

def toom3(x, y):
if x < 10 or y < 10:

return x * y

n_x = len(str(abs(x)))
n_y = len(str(abs(y)))
maxl = max(n_x , n_y)
k = (maxl + 2) // 3 # digits per part (rounded up)

base = 10**k
base2 = base * base

x2 = x // base2
x1 = (x // base) % base
x0 = x % base
y2 = y // base2
y1 = (y // base) % base
y0 = y % base

a = toom3(x2 , y2) # t -> infinity
b = toom3 (4* x2 + 2*x1 + x0 , 4*y2 + 2*y1 + y0) # t = 2
c = toom3(x2 - x1 + x0 , y2 - y1 + y0) # t = -1
d = toom3(x2 + x1 + x0 , y2 + y1 + y0) # t = 1
e = toom3(x0 , y0) # t = 0

w4 = a
w2 = (c + d - 2*a - 2*e) // 2
w3 = (b - 16*a - 4*w2 - d + c - e) // 6
w1 = (d - c) // 2 - w3
w0 = e

return (w4 * base **4) +
(w3 * base **3) +
(w2 * base **2) +
(w1 * base) +
w0

3.3. Schönhage-Strassen Algorithm.
Before introducing the actual Schönhage-Strassen algorithm, we discuss FFT, a.k.a. the

Fast Fourier Transform. In addition to being used in multiplication algorithms, FFT can
be applied in various other fields such as error-correcting codes and signal processing. Its
most popular implementation, introduced by Cooley and Tukey in 1965, requires O(n log n)
operations. Many languages already have FFT implemented, and it can be called with a
simple method imported from a library.

EVOLUTION OF MULTIPLICATION ALGORITHMS FOR INTEGERS, MATRICES, AND MORE 7

So what is FFT? FFT is an algorithm to efficiently evaluate a polynomial. Let us evaluate
A(x) = an−1x

n−1 + . . . + a1x + a0 at n points, x0, . . . xn−1. We can write these n evaluations
as a matrix multiplication:

(3.11)


A(x0)
A(x1)

. . .
A(xn−1)

 =


x0

0 x1
0 . . . xn−1

0
x0

1 x1
1 . . . xn−1

1
. . .

x0
n−1 x1

n−1 . . . xn−1
n−1

 ·


a0
a1
. . .

an−1

 .

Now we also define ωn to be a primitive nth root of unity in a finite field if ωi
n ̸= 1 for

0 < i < n and ωn
n = 1. For example, in Z37, the set of all integers modulo 37, 2 is a

primitive 36th root of unity and in Z5, the set of all integers modulo 5, 4 is a 2nd root
of unity since 42 ≡ 1 (mod 5). Now we plug into equation 3.11 values for x0, . . . , xn−1 as
x0 = ω0, . . . , xi = ωi, . . . , xn = ωn, where ω is a primitive nth root of unity. Thus, we get

(3.12)


A(1)
A(ω)
. . .

A(ωn−1)

 =


1 1 . . . 1
1 ω . . . ωn−1

. . .
1 ωn−1 . . . ω(n−1)(n−1)

 ·


a0
a1
. . .

an−1

 .

When the Fourier Transform is used outside of mathematics, typically in engineering fields,
ω is a primitive nth root of unity in the complex plane, i.e. ω = e2πi/n. Now to make this a
Fast Fourier Transform, we apply an algorithm introduced by Cooley and Tukey [CT65].

If n is an even number, n = 2m, then we can split A(x) into the even-indexed and odd-
indexed coefficients. Let A0(x) = ∑m−1

i=0 a2ix
i and A1(x) = ∑m−1

i=0 a2i+1x
i. Then we see that

A(x) = A0(x2) + xA1(x2). Now we can rewrite the left-hand side of equation 3.12 as

(3.13)



A(1)
A(ω)
. . .

A(ωm)
. . .

A(ω2m−1)


=



A0(1) + A1(1)
A0(ω2) + ωA1(ω2)

. . .
A0(1) + ωmA1(1)

. . .
A0(ω2m−2) + ω2m−1A1(ω2m−2)


,

using the fact that ω2m = ωn = 1 by our definitions of n and ω. Equation 3.13 can be further
simplified to

(3.14)



A(1)
A(ω)
. . .

A(ωm)
. . .

A(ω2m−1)


=



A0(1)
A0(ω2)

. . .
A0(1)

. . .
A0(ω2m−2)


+



A1(1)
ωA1(ω2)

. . .
ωmA1(1)

. . .
ω2m−1A1(ω2m−2)


.

The red term is simply the 2m Fourier Transform of A. The blue term is the m Fourier
Transform of A0 duplicated twice vertically. The orange term, besides the constant wi’s,
is the k Fourier Transform of A1 duplicated twice vertically. Subsequently, the smaller
transforms can be computed recursively. Thus, FFT splits the Fourier Transform into two
smaller transforms and more additions.

8 SHAMIK KHOWALA

We can also find the complexity of FFT. Specifically, if T (n) is the running time for a
degree n polynomial, we obtain
(3.15) T (n) = T (n/2) + O(n),
because of the splitting and additional O(n) additions. Then we obtain the running time of
(3.16) T (n) = O(n log2 n).

Below is a Python implementation of Fast Fourier Transform, following the method out-
lined above:
def fft(a): #where a is the list of coefficients of A

n = len(a) # degree of A
if n <= 1:

return a
a_0 = fft(a [::2]) #even indices
a_1 = fft(a [1::2]) #odd indices
b = [0] * n
for i in range (0, n//2):

b[i] = a_0[i] + root_of_unity (n, i) * a_1[i]
b[i+n//2] = a_0[i] + root_of_unity (n, i+n//2) * a_1[i]

return b

A second component necessary for completing the Schönhage-Strassen algorithm is the
concept of the inverse FFT. In other words, if we are given the n evaluations A(1), A(ω), . . . ,
and A(ωn−1), then can we compute A, and how fast can we do this? The answer is yes, it
can in fact be done in the same O(n log2 n) time. Let B(x) = ∑n−1

i=0 Aix
i where Ai = A(ωi).

For the inverse FFT, we evaluate B(x) at x = ωj for some j in the range [0, n − 1]. Then
we get

(3.17) B(ωj) =
n−1∑
i=0

Aiω
ij =

n−1∑
i=0

(
n−1∑
m=0

amωkm)ωij =
n−1∑
m=0

am

n−1∑
i=0

ωi(j+k).

We can use the geometric series sum formula to get that
∑n−1

i=0 ωi(j+k) =

n j + k ≡ 0 (mod n)
ωn(j+k)−1

ωj+k−1 = 0 j + k ̸≡ 0 (mod n)
Therefore, using this fact, equation 3.17 becomes
(3.18) B(ωj) = n · an−j.

We can then scale this result by multiplying by 1
n

and then reversing it (so that the order
is reverted back) for all such j to finally get the coefficients of our original polynomial A(x).
Thus, the inverse FFT of the FFT of A(x) returns A(x) – an important property of FFT.
Moreover, since inverse FFT is simply another FFT (of O(n log2 n)) and more multiplications
(of O(n), it bears the same complexity of O(n log2 n). From now on in our discussion, we will
use the name NTT, standing for number-theoretic transform, to refer to FFT over integers
(as the more widely used FFT refers to the transform over complex numbers).

The final idea that we need for the Schönhage-Strassen algorithm is the idea of convolu-
tions, both positive-wrapped and negative-wrapped. But first, what even is a convolution?

EVOLUTION OF MULTIPLICATION ALGORITHMS FOR INTEGERS, MATRICES, AND MORE 9

Suppose that A(x) and B(x) are degree n−1 polynomials in the ring Zq[x] (as a reminder,
Zq is the set of integers modulo q, or just 0, 1, 2, . . . , q − 1; also, Zq[x] is the set of all poly-
nomials where the coefficients are members of the ring Zq). Then polynomial multiplication
gives

(3.19) C(x) = A(x) · B(x) =
2n−2∑
i=0

cix
i,

where

(3.20) ci =
i∑

j=0
ajbi−j.

We define the convolution of the coefficient vectors of the polynomials A(x) and B(x) as

(3.21) a ∗ b =
n∑

i=0
aibn−i.

Then, from equations 3.19 and 3.20, we simply obtain
(3.22) a ∗ b = c,

which is the coefficient vector of the output polynomial C(x). Now, for a positive wrapped
convolution, we also have the restriction that A(x) and B(x) must be in the ring Zq[x]/(xn−
1) (as a reminder, this denotes the set of polynomials in Zq[x] taken modulo xn − 1). Then
the positive wrapped convolution, denoted as the polynomial C+, is defined as

(3.23) C+(x) =
n−1∑
i=0

cix
i

where

(3.24) ci =
i∑

j=0
ajbi−j +

n−1∑
j=i+1

ajbn+i−j (mod q).

Specifically,
(3.25) C+(x) ≡ C(x) (mod xn − 1).
We similarly define the negative wrapped convolution, sometimes called the negacylic
convolution, in the ring Zq[x]/(xn + 1), as

(3.26) C−(x) =
n−1∑
i=0

cix
i,

where

(3.27) ci =
i∑

j=0
ajbi−j −

n−1∑
j=i+1

ajbn+i−j (mod q).

Specifically,
(3.28) C−(x) ≡ C(x) (mod xn + 1).
We can use NTT and the inverse NTT, denoted as NTT−1 to calculate positive wrapped
convolutions as
(3.29) c = NTT−1(NTT(a) ⊗ NTT(b)),

10 SHAMIK KHOWALA

where the ⊗ is an element-wise vector multiplication; for example, [a1, . . . , an]⊗[b1, . . . , bn] =
[a1b1, . . . , anbn]. However, Schoönhage and Strassen aim to find the negacyclic convolution.
They do this with a special trick: ‘weighting’ the coefficients of A(x) and B(x) prior to
applying a positive wrapped convolution. Define θ as a primitive 2nth root of unity, where
θn = −1 and θ2 = ω (using our previous definition of ω as the primitive nth root of unity).
Then we weight the coefficients as

(3.30) a′
i = θiai and b′

i = θibi,

for all i in [0, n−1]. Then we apply the positive wrapped convolution with a ‘counterweight’,
multiplying each ck with θk, as follows:

(3.31)

ck = θ−k(
∑

i+j=k

a′
ib

′
j +

∑
i+j=n+k

a′
ib

′
j)

= θ−k
∑

i+j=k

θi+jaibj + θ−k
∑

i+j=n+k

θi+jaibj

= θ−k
∑

i+j=k

θkaibj + θ−k
∑

i+j=n+k

θn+kaibj

=
∑

i+j=k

aibj + θn
∑

i+j=n+k

aibj

=
∑

i+j=k

aibj −
∑

i+j=n+k

aibj,

which is, according to our definition, the negacyclic convolution! We also note that, if ck is
negative, we can add multiples of 2n + 1 to get ck into the range [0, 2n].

We quickly sidetrack to a discussion on finding primitive nth roots of unity. We can then
choose a prime p = kn + 1 where k = 2i for some i. We subsequently work in the prime field
Zp. Then, to find a nth root of unity, we randomly pick any q then set r = qk. r is an nth
root of unity because rn = qkn = qp−1 ≡ 1 (mod p), where the last step follows by Fermat’s
little theorem. However, r is not always primitive. If qk/2 ̸= 1 then qk = r is a primitive
nth root of unity; however, if qk/2 = 1, then we can apply this method again (i.e. check if
qk/4 is 1, and so on). This is a fast method of finding primitive nth roots of unity; usually,
however, computers will already have hard-coded lists of primitive roots up to large n, so
this is unnecessary. Moreover, if we desire a 2nth root of unity in Z2n+1 for θ, we see that 2 is
a possible value, since 2n ≡ −1 (mod 2n +1) and 22n ≡ (2n −1)(2n +1)+1 ≡ 1 (mod 2n +1).
This is very helpful, since multiplications by power of two in the equations above can simply
be done by bit shifts (i.e. multiplying by 4 is equivalent to appending 00 to the end of
a binary number) and some modular reductions (i.e. subtracting/adding by a multiple of
2n + 1), only taking linear O(n) time.

Now we wish to apply FFT in order to achieve a faster integer multiplication algorithm.
Suppose we are multiplying x and y. The Schönhage-Strassen algorithm splits x and y
into parts, transforms them into the coefficients of a polynomial, evaluates the polynomial,
multiplies these values, and interpolates back to find the product polynomial, yielding the
final product x · y. Furthermore, this algorithm applies FFT in the field Z2n+1. Note that
n must be chosen appropriately such that it can store the convolution sums and ultimately
the final product. Let n = r · m, where r = 2k is the largest power of two dividing n. r will
the size of our FFT we use in the procedure. Now, the algorithm is as follows:

EVOLUTION OF MULTIPLICATION ALGORITHMS FOR INTEGERS, MATRICES, AND MORE 11

(1) Split x and y into r parts, each of length m, and store these into two arrays, which
can be thought of as coefficients of two r degree polynomials.

(2) Weight both coefficient vectors with the powers of θ as described above – cyclic shifts
makes this process faster.

(3) Perform NTT on the coefficient vectors – powers of ω are also cyclic shifts here.
(4) Multiply the coefficient vectors as defined previously, with ⊗. These multiplications

are performed recursively, via this algorithm again, alike to a divide-and-conquer
approach.

(5) Perform NTT−1 on the c coefficient vector.
(6) Apply the ‘counterweight’ discussed previously, θ−k.
(7) Multiply the c coefficient vector by 1

r
, as discussed with the inverse NTT previously.

Since r = 2m, multiplying by 1
r

= 2−m is simply a cyclic shift.
(8) Reconstruct the integer product from the coefficient vector by adding and carrying,

or in other words evaluate C(x) at x = 10.
Note that, throughout this process, the sequence of the coefficients in the coefficient vector
should be handled carefully.

We will now find the runtime of the Schönhage-Strassen algorithm – the main reason why
it is very useful for larger numbers. Let T (n) denote the time taken to multiply two n-digit
numbers. Then we have that

(3.32) T (n) = O(n log2 n) + n · O(log2 n log2 log2 n),

ignoring the lower order O(n) time operations. O(n log2 n) arises from the FFT multiplica-
tion in the multiplication of the two n-digit numbers. Then the n ·O(log2 n log2 log2 n) arises
from the n pointwise multiplications of pairwise integers, which are approximately of length
log2 n. Equation 3.32 then turns into

(3.33) T (n) = O(n · log2 n · log2(log2 n)).

A more detailed analysis can also be found at [Lüd15]. Schönhage and Strassen in fact
predicted that this time complexity could be reduced to simply O(n log2 n). This was almost
achieved by Harvey and van der Hoeven with a galactic algorithm [HvdH21].

3.4. Complex Number Multiplication.
In this section we show a faster method of multiplying two complex numbers. Suppose

we wish to perform the multiplication (a + bi)(c + di). Usual multiplication techniques, i.e.
the FOIL method, would use four multiplications and two additions: (a + bi)(c + di) =
ac − bd + (bc + ad)i. However, as you may have guessed, we can simplify the number of
multiplications to three. Define r = c(a + b), s = a(d − c), and t = b(c + d). Then, we have
that

(3.34)
(r − t) + (r + s)i = (c(a + b) − b(c + d)) + (c(a + b) + a(d − c))i

= (ac − bd) + (bc + ad)i
= (a + bi)(c + di).

The computation of (r − t) + (r + s)i requires three multiplications and five additions.
There are other possibilities also to simplify the number of multiplications to three. Take

12 SHAMIK KHOWALA

for example the following. Define x = ac, y = bd, and z = (a + b)(c + d). Then we have that

(3.35)
(x − y) + (z − x − y)i = (ac − bd) + ((a + b)(c + d) − ac − bd)i

= (ac − bd) + (bc + ad)i
= (a + bi)(c + di).

This also uses five additions/subtractions. A third interesting method is also possible as
follows. We assume that a2 + b2 = 1. We can then define t = 1−a

b
and the three variables

x = c − td, y = d + bx, and z = x − ty. Then we can see that

(3.36)

z + yi = (x − ty) + (d + bx)i
= ((c − td) − t(d + b(c − td))) + (d + b(c − td))i
= (c − 2td − tbc + t2bd) + (d + bc − tbd)i
= (ac − bd) + (bc + ad)i
= (a + bi)(c + di),

where the second to last step follows from numerous algebraic manipulations and use of our
assumption that a2+b2 = 1. This algorithm requires three multiplications. The calculation of
t is not actually a multiplication, since if we interpret a and b as cos θ and sin θ, respectively,
then t = 1−a

b
= tan θ

2 via trigonometric identities. While this algorithm has only three
multiplications, its assumption that a2 + b2 = 1 limits its use. Generalizing this to an a + bi
of any norm (i.e. no restrictions on a2 + b2), we would need to multiply by this norm to
our final result. For example, if a = 3 cos θ and b = 4 sin θ, then we would need to compute√

a2 + b2 = 5 to perform the multiplication via this algorithm. The calculation of the norm
would make this algorithm longer than those previously suggested in equations 4.19 and
4.20.

3.5. Polynomial Multiplication.
Techniques for polynomial multiplication follow from the previous Karatsuba, Toom-Cook,

and other algorithms since we interpret our input numbers as polynomials. Thus the same
methods of splitting recursively and solving a system of equations or interpolating to ob-
tain the final result work. We will discuss another method for polynomial multiplication,
Kronecker substitution. This technique reduces polynomial multiplication to a potentially
simpler problem of multiplying two integers. If we are given p(x) and q(x) and wish to find
r(x) = p(x) · q(x), we can input a large enough power of two for x such that we can simply
read off the coefficients of r(x) from the binary product. In base ten, we could likwise sub-
stitute a sufficiently large power of ten. For example, if we had p(x) = 12x2 + 34x + 56 and
q(x) = 98x2 + 76x + 54, we can compute the product p(104) · q(104), which is just r(104), as
follows:

12|0034|0056 · 98|0076|0054 = 1176|4244|8720|6092|3024.
Note that using 103 or 102 results in overlap in the product, so then the result is indecipher-
able. The numbers are also marked with bars every four digits from the right for clarity.
Finally, we simply read off the answer: r(x) = 1176x4 + 4244x3 + 8720x2 + 6092x + 3024.

A “multipoint” Kronecker substitution has been introduced by Harvey [Har09]. Instead of
evaluating at only point, like 104 in the above example or just one power of two, we evaluate
at multiple points. If the normal Kronecker substitution evaluates the polynomials at 10z,

EVOLUTION OF MULTIPLICATION ALGORITHMS FOR INTEGERS, MATRICES, AND MORE 13

then a two-point Kronecker substitution would evaluate them at ±10z′ , where z′ = ⌈ z
2⌉.

Continuing the example from above, we can evaluate at ±102 to get

r(102) = p(102) · q(102) = 123456 · 987654 = 121931812224 and
r(−102) = p(−102) · q(−102) = 116656 · 972454 = 113442593824.

Then we simply do

r(102)+r(−102)
2 = 1176|8720|3024 and

r(102)−r(−102)
2 = 4244|6092|00.

We have marked the splitting into the numbers. We can then combine these two to ob-
tain 1176|4244|8720|6092|3024 as our product, from which we read off the answer: r(x) =
1176x4 +4244x3 +8720x2 +6092x+3024. This method works because inputting the positive
and negative values produces one evaluation in which the coefficients are all added together
and one evaluation in which the coefficients are added and subtracted in an alternating fash-
ion. Adding these two evaluations and dividing by two then results in the coefficients of x
to the power of an even number while subtracting the two evaluations and dividing by two
results in the coefficients of x to the power of an odd number. Superimposing these two thus
gives us our entire product polynomial. Harvey also proposes evaluating at 10±z′ and even
a “four-point” Kronecker substitution by evaluating at ±10±z′ .

4. Matrix Multiplication

4.1. Strassen Algorithm.
The Strassen algorithm is a method to optimize the multiplication of two matrices. From

here on, we will define our matrix multiplication problem to be A · B = C, where A and
B are square matrices of size 2n. Note that, if given matrices where the dimensions are not
powers of two, we can simply ‘pad’ the remaining rows and columns with zeroes to obtain
the desired dimensions. We will first show how the number of multiplications required for
the multiplication of two 2 × 2 matrices can be reduced. Define

A =
[
A11 A12
A21 A22

]
, B =

[
B11 B12
B21 B22

]
, and C =

[
C11 C12
C21 C22

]
.

Then the “naive” algorithm would compute C as

(4.1)
C = A · B[

C11 C12
C21 C22

]
=
[
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22
A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

]
.

We can see that this requires 8 multiplications. The complexity of such an algorithm would
be O(n3).

14 SHAMIK KHOWALA

The Strassen algorithm, much like Karatsuba, introduces seven variables which can be
calculating in 7 multiplications and then manipulated with some extra additions and sub-
tractions to obtain the desired result. The variables defined are

(4.2)

X1 = (A11 + A22)(B11 + B22),
X2 = B11(A21 + A22),
X3 = A11(B12 − B22),
X4 = A22(B21 − B11),
X5 = B22(A11 + A12),
X6 = (A21 − A11)(B11 + B12),
X7 = (A12 − A22)(B21 + B22).

Then we see that

(4.3)

[
C11 C12
C21 C22

]
=
[
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22
A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

]

=
[
X1 + X4 − X5 + X7 X3 + X5

X2 + X4 X1 − X2 + X3 + X6

]
using the variables defined in equation 4.2. It can be counted that this method uses 7 mul-
tiplications and 18 addition/subtractions. Using this trick, the Strassen algorithm employs
a divide-and-conquer strategy which subdivides the input matrices until reaching this base
case of 2 × 2, performs the multiplications, and then reconstructs the final C. Also note
that if we had padded A and/or B with rows/columns of zeroes, we would delete those in
the C obtained. We can analyze the computational complexity of the Strassen algorithm. If
T (n) is the time required to multiply two 2n × 2n square matrices, then since the Strassen
algorithm is performing seven multiplications for every division by two, we obtain

(4.4) T (n) = O(nlog2 7) ≈ O(n2.807).

However, note that for small enough matrices the n3 approach is more efficient; the cutoff
point between these two algorithms depends on numerous factors though, including hardware
efficiency and code optimization.

Winograd (see [Knu98],[Win71]) reduces the number of additions/subtractions needed
from 18 to 15 by defining a different set of variables:

(4.5)

Y1 = A11B11,

Y2 = (A21 − A11)(B12 − B22),
Y3 = (A21 + A22)(B12 − B11),
Y4 = Y1 + (A21 + A22 − A11)(B11 + B22 − B21).

Then we see that

(4.6)

C

=
[
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22
A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

]

=
[

Y1 + A12 · B21 Y3 + Y4 + B22(A11 + A12 − A21 − A22)
Y2 + Y4 + A22(B12 + B21 − B11 − B22) Y2 + Y3 + Y4

]

EVOLUTION OF MULTIPLICATION ALGORITHMS FOR INTEGERS, MATRICES, AND MORE 15

using the variables defined in equation 4.5. Note that this only requires 15 additions because
we can store intermediate calculations. For example, the calculation of A11 +A12 −A21 −A22
only actually requires one addition since it is equal to A12 −(A21 +A22 −A11). A21 +A22 −A11
was already calculated in the calculation of Y4, so we need only perform its subtraction from
A12. Furthermore, the minimum number of multiplications in the multiplication of two 2×2
matrices was proven by Winograd (again, see [Win71]) to be 7 – this fact will be useful later
on, in section 4.2.

Below is a Python implementation of the Strassen algorithm, following the 18 addition
method outlined above, which only works for A and B which have dimensions of powers of
two (implementations for different dimensions need to include code which pads with zeroes,
as discussed previously):

def strassen (A, B):
n=len(A)
if n <3:

return numpy.dot(A, B)

#split A and B into four submatrices each
A_11 = A[:n//2, :n//2]
A_12 = A[:n//2, n//2:]
A_21 = A[n//2: , :n//2]
A_22 = A[n//2: , n//2:]
B_11 = B[:n//2, :n//2]
B_12 = B[:n//2, n//2:]
B_21 = B[n//2: , :n//2]
B_22 = B[n//2: , n//2:]

define our seven variables
M_1 = strassen (A_11 + A_22 , B_11 + B_22)
M_2 = strassen (B_11 , A_21 + A_22)
M_3 = strassen (A_11 , B_12 - B_22)
M_4 = strassen (A_22 , B_21 - B_11)
M_5 = strassen (A_11 + A_12 , B_22)
M_6 = strassen (A_21 - A_11 , B_11 + B_12)
M_7 = strassen (A_12 - A_22 , B_21 + B_22)

#find submatrices of C
C_11 = M_1+M_4 -M_5+M_7
C_12 = M_3+M_5
C_21 = M_2+M_4
C_22 = M_1 -M_2+M_3+M_6
C = numpy. vstack ((numpy. hstack ((C_11 , C_12)),

numpy. hstack ((C_21 , C_22))))
return C

16 SHAMIK KHOWALA

4.2. Laser Method.
We start with two n×n matrices, A and B. We define C = A·B with Ci,j = ∑n

k=1 Ai,k ·Bk,j.
Moreover, we will refer to the exponent of n in the time complexity of the algorithms. If
the time complexity is O(nω), we will just refer to ω now. Note that there is a trivial lower
bound on ω, namely ω ≥ 2. Any algorithm for multiplying the two n × n matrices must
at least go through all 2n2 entries in both matrices, thus the lower bound of O(n2). For
reference, we provide a timeline of improvement in bounds for ω (along with the years in
which these discoveries were made, by whom, and with what methods):

Year Author(s) ω Note
1969 Strassen 2.8074 First Sub-Cubic Algorithm
1978 Pan 2.795
1981 Schönhage 2.522
1987 Strassen; Coppersmith, Winograd 2.3755 Laser Method and CW tensor
2010 Stothers 2.3737 CW ⊗4

2011 Williams 2.372873 CW ⊗8

2014 Le Gall 2.372864 CW ⊗32

2020 Alman, Williams 2.3728596 CW ⊗32 with Refined Laser Method
2022 Duan, Wu, Zhou 2.371866 Asymmetric Hashing
2024 Williams et al. 2.371552
2024 Alman et al. 2.371339 More Asymmetry

An important component of the improvements after the Strassen algorithm utilize ten-
sors. Tensors can be thought of as hypermatrices, bilinear maps, trilinear maps, and mul-
tilinear polynomials. Here we use the last form, specifically representing our tensor T as
a trilinear polynomial. If we have the sets X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}, and
Z = {z1, z2, . . . , zn}, then we define T as

(4.7) T =
n∑

i=1

n∑
j=1

n∑
k=1

qijk · xi · yj · zk.

Matrix Multiplication as a Tensor. We can represent the multiplication of two n×n matrices
as a tensor. We use the notation ⟨n, n, n⟩ to define this tensor. Then we have that

(4.8) T = ⟨n, n, n⟩ =
n∑

i=1

n∑
j=1

n∑
k=1

xijyjkzki,

where xij is in matrix A and yjk is in matrix B. Then the coefficient of zki is just the entry
at position (i, k) in matrix C. This also generalizes to the multiplication of an n × m and
m × p matrix, where we represent T by ⟨n, m, p⟩ and sum from 1 to n, 1 to m, and 1 to p.

Tensor Rank and the Bound on ω. Now we define tensor rank, which is like the ‘complexity’
of a tensor. A rank one tensor is a tensor which can be expressed as a product of linear
combinations of the x, y, and z variables. In other words, the trilinear form of a tensor S
from equation 4.7 can be split into the product of three linear polynomials, as

(4.9) S = (
n∑

i=1
aixi)(

n∑
j=1

bjyj)(
n∑

k=1
ckzk) =

n∑
i=1

n∑
j=1

n∑
k=1

aibjckxiyjzk.

EVOLUTION OF MULTIPLICATION ALGORITHMS FOR INTEGERS, MATRICES, AND MORE 17

Then the rank of a tensor, R(T), is the minimum number of rank one tensors that sum to
T (this is also analogous to the rank of matrices). If R(T) = r, we also have the following
lemma:

Lemma 4.1. If R(⟨n, n, n⟩) = r, then ω ≤ logn r.

Proof. We first express ⟨n, n, n⟩ as a sum of r rank one tensors, by our definition of tensor
rank:

(4.10)
⟨n, n, n⟩ =

n∑
i=1

n∑
j=1

n∑
k=1

xijyjkzki

=
r∑

p=1
((
∑
i′,j

api′jxi′j)(
∑
j′,k′

bpj′k′xj′k′)(
∑
k,i

cpkizki)).

Now we also use the following recursive algorithm: split each n×n matrix into four n/2×n/2
matrices. Then we recursively compute Sp = (∑i′,j api′jxi′j)(

∑
j′,k′ bpj′k′xj′k′) for all 1 ≤

p ≤ r. Then the coefficient of zki is just ∑r
p=1 cpkiSp. Computing the linear combinations∑

i′,j api′jxi′j and ∑j′,k′ bpj′k′xj′k′ can be done in linear time. ∑r
p=1 cpkiSp is also just a linear

combination, done easily in linear time. The recursive steps give us the O(logn r) time. ■

Note that for n = 2, Strassen showed that R(⟨2, 2, 2⟩) ≤ 7, giving ω ≤ log2 7 ≈ 2.8074,
exactly what we got in section 4.1! Pan, in his 1978 paper, showed that R(⟨2, 2, 2⟩) ≤ 143640,
giving ω ≤ log70 143640 ≈ 2.795.

Zeroing Out. One main idea of the laser method is to start with a tensor for which we know
a decent rank bound, then reduce our matrix multiplication tensor to that tensor. This can
be done via zeroing out. For example, if we had the tensor

P = (x11y11 + x12y21)z11 + (x11y12 + x12y22 + x33y33)z12 + (x21y11 + x22y21)z21+
(x21y12 + x22y22)z22 + (x11y11 + x22y22)z3,

then we can ‘zero out’ some variables, e.g. set x33 and z3 to 0. This gives us the tensor
P ′ = (x11y11 + x12y21)z11 + (x11y12 + x12y22)z12 + (x21y11 + x22y21)z21 + (x21y12 + x22y22)z22,
which is in fact just our matrix multiplication tensor for n = 2.

Direct Sums of Tensors. Now we introduce another critical component, direct sums. Let
T = x1y2z1 +x2y1z2. Then the direct sum of two copies of T is the sum of T for independent
variable sets (i.e. the copies of T cannot have overlap of variables). The variable sets of T
are x1, x2 and y1, y2. Now the second copy of T must shifted over to the variable sets x3, x4
and y3, y4 as x3y4z3 + x4y3z4. Then the direct sum of two copies of T , which we will denote
now by A, is A = x1y2z1 + x2y1z2 + x3y4z3 + x4y3z4.

Let B denote the direct sum of k copies of T . Then R(B) ≤ k · R(T). This is because T is
expressed as the sum of R(T) rank one tensors and so B is expressed as the sum of k · R(T)
rank one tensors. If it is possible to combine some of these rank one tensors to somehow
still yield a rank one tensor, that would only decrease the rank of B, so R(B) has an upper
bound of k · R(T). If R(B) = r, then R(T) ≥ r

k
. Applying this to Lemma 4.1, we obtain

ω ≤ logn
r
k
. This is an important result and is a simplified version of Schönhage’s τ -theorem

(see [Sch81]).

18 SHAMIK KHOWALA

Products of Tensors and Asymptotic Rank. We also define the Kronecker product of two
tensors, S = ∑

pijkxiyjzk (over the variable sets X, Y , Z) and T = ∑
qi′j′k′xi′yj′zk′ (over the

variable sets X ′, Y ′, Z ′), as
S ⊗ T = ∑

pijkqi′j′k′xixi′yjyj′zkzk′ ,
where we are summing over all i, j, k, i′, j′, k′ (i.e. all the variables in the variable sets). One
can think of the Kronecker product as simply multiplying the trilinear polynomials which
represent S and T . Also note that we had defined the Kronecker product for two vectors
as an element-wise multiplication, previously in section 3.3, which would be consistent with
the above definition. Another notation we will use from now on is T ⊗m = T ⊗ T ⊗ . . . ⊗ T ,
where the Kronecker product is done m times.

Another useful property of the Kronecker product is explained in the following lemma:

Lemma 4.2. R(S ⊗ T) ≤ R(S) · R(T).

Proof. We first prove that the Kronecker product of two rank one tensors is also a rank one
tensor. Write the rank one tensors

W = (∑n
i=1 aixi)(

∑n
j=1 bjyj)(

∑n
k=1 ckzk) and

W ′ = (∑n
i=1 a′

ix
′
i)(
∑n

j=1 b′
jy

′
j)(
∑n

k=1 c′
kz′

k).

Then

W ⊗ W ′ = (∑n
i=1 aixi)(

∑n
j=1 bjyj)(

∑n
k=1 ckzk)(∑n

i=1 a′
ix

′
i)(
∑n

j=1 b′
jy

′
j)(
∑n

k=1 c′
kz′

k),

which is also has a rank of one since it can be written as linear combinations of x, y, z, x′, y′, z′.
Now we write S ⊗T while expressing S and T as in equation 4.10, with the sums of the rank
one tensors:
(4.11)

S ⊗ T =

(
R(S)∑
p=1

((
∑
i′,j

api′jxi′j)(
∑
j′,k′

bpj′k′xj′k′)(
∑
k,i

cpkizki))) · (
R(T)∑
p=1

((
∑
i′,j

api′jxi′j)(
∑
j′,k′

bpj′k′xj′k′)(
∑
k,i

cpkizki))),

which (applying the distributive property, expanding) turns into the sum of R(S) · R(T)
rank one tensors. Now, it is possible for some of these rank one tensors to be combined and
simplified into another rank one tensors – this would only reduce the number of rank one
tensors in the final expression. Thus, R(S ⊗ T) is bounded above by R(S) · R(T). ■

Lemma 4.2 implies that

(4.12) R(T ⊗m) ≤ R(T)m = rm.

We finally define the asymptotic rank of a tensor T as

(4.13) R̃(T) = lim
n→∞

R(T ⊗m) 1
m .

R̃(T) is well-defined and inspired by Lemma 4.2. There are many tensors for which R̃(T) <
R(T); these will be important for the Laser Method later.

EVOLUTION OF MULTIPLICATION ALGORITHMS FOR INTEGERS, MATRICES, AND MORE 19

Tensor Partitioning. Additionally, we discuss how to partition our tensor into subtensors.
Recall that the variable sets from which we defined T were X = {x1, x2, . . . , xn}, Y =
{y1, y2, . . . , yn}, and Z = {z1, z2, . . . , zn}. We can partition our variable sets disjointly: X is
partitioned into X1, X2, . . . Xd, Y into Y1, . . . , Yd, and Z into Z1, . . . Zd. Then we define
(4.14) Tijk =

∑
xf ∈Xi

∑
yg∈Yj

∑
zh∈Zk

pfghxfygzh.

With this definition, T = ∑d
i=1

∑d
j=1

∑d
k=1 Tijk. An example of this partitioning is in the

Coppersmith-Winograd tensor. This tensor is defined as

(4.15) CWq =
q∑

i=1
(x0yizi + xiy0zi + xiyiz0) + x0y0zq+1 + x0yq+1z0 + xq+1y0z0.

Here, the variable sets X = {x0, . . . , xq+1}, Y = {y0, . . . , yq+1}, and Z = {z0, . . . , zq+1} have
been split; specifically, X into X0 = {x0}, X1 = {x1, . . . , xq}, and X2 = {xq+1} and similarly
for Y and Z. The definition of Tijk in equation 4.14 leads us to rewrite equation 4.15 as

(4.16) CWq = T002 + T020 + T200 +
q∑

i=1
(T011 + T101 + T110).

Furthermore, we can actually rewrite equation 4.16 in terms of matrix multiplication tensors.
Note that x0y0zq+1, x0yq+1z0, and xq+1y0z0 can each be represented by ⟨1, 1, 1⟩, since they are
each just one term; they are akin to just multiplying two numbers. Moreover, ∑q

i=1 x0yizi,∑q
i=1 xiy0zi, and ∑q

i=1 xiyiz0 are represented by ⟨1, 1, q⟩, ⟨1, q, 1⟩, and ⟨q, 1, 1⟩, respectively
(this can be seen from our definition of ⟨n, m, p⟩ previously). If we were to zero out some
variables in CWq, many of the matrix multiplication tensors would be canceled; for example,
zeroing out x0 would remove three of the terms in equation 4.15. What the Laser Method
does is that it takes a large power of the tensor, e.g. CWq, and then zeroes out some
variables; taking the large power gives more ‘freedom’ in a sense. Also, Coppersmith and
Winograd showed that the asymptotic rank of CWq is R̃(CWq) = q + 2 ([CW90]). This is
significant, because the rank is exactly the number of variables of each variable set of CWq,
or its dimensions. Thus, the asymptotic rank of CWq is as low as it can be.

The Method. We can combine the tensor partitioning and idea of taking the tensor to a large
power. We partition T into Tijk, which are all matrix multiplication tensors. Then, taking
the mth power of T , we have
(4.17) T ⊗m = (

∑
Tijk)⊗m = T1 ⊗ . . . ⊗ Tm,

where T1, . . . , Tm are each chosen independently from the set {Tijk | i, j, k ∈ {1, 2, . . . , d}}.
Note that, since all of T1, . . . , Tm are matrix multiplication tensors, equation 4.17 actually
writes T ⊗m as a sum of (much bigger) matrix multiplication tensors. Now we zero out our
tensors. Specifically, we set some variables to 0 such that all the products T1 ⊗ . . . ⊗ Tm that
we are left with will consist of the same distribution of Tijk; in other words, we want to be
left with a direct sum. If we were left with some k products, then the result from Lemma
4.1 that we found previously, ω ≤ logn

r
k
, tells us that

(4.18) ω ≤ logn

R(T ⊗m)
k

.

To minimize this upper bound on ω, we want to make k as large as possible; basically, we
desire to zero out the minimum number of variables such that the remaining subtensors can

20 SHAMIK KHOWALA

be expressed disjointly, as a direct sum. To maximize this k, we first define a1, . . . , an. Each
al (for l from 1 to n) is the number of times that one of the tensors T1, . . . , Tm (from before)
is of the form Tljk. Then, by our definition of direct sums, we must have the variable sets
of our subtensors be unique; therefore, the maximum number of disjoint subtensors in our
post-zeroing out expression will be

(4.19) k ≤
(

m

a1, a2, . . . , am

)
,

which denotes the multinomial coefficient, or m!
a1!...am! . This is because, having chosen a1, . . . , am,

the maximum number of possible different variable sets (as this is will be the maximum
possible number of disjoint subtensors) is given, by basic combinatorics, according to the
multinomial coefficient. To summarize, we have zeroed out a power of a tensor into a direct
sum of other subtensors.

Now, when zeroing out, if we end up with k subtensors, where we have made k as close
to the multinomial coefficient as possible, then we will inevitably end up with some “bad”
subtensors: junk terms that share variables with the “good” k subtensors and which we
want to remove (this only really becomes a major issue for larger powers of CWq). However,
removing these extra subtensors by zeroing out more variables will also reduce the number
of good subtensors. In particular, if we had k good subtensors and s · k bad subtensors,
our approach is to repeatedly pick a good subtensor S which shares variables with O(s) bad
subtensors. Then we zero out the O(s) variables that are not in S to remove the O(s) bad
subtensors. Each variable that we zero out will zero out at most one good subtensor. Thus,
for each good subtensor, we are actually zeroing out roughly O(s) other good subtensors.
Repeating this, we end up with roughly k

s
good subtensors. This greedy approach can be

improved by the Refined Laser Method by Alman and Williams ([AW24]). In this method,
we randomly pick a subset of roughly k/

√
s good subtensors and zero out variables which

are not used in any of them. This will actually remove all the bad subtensors with some
probability. Thus, this probabilistic approach allows more good subtensors to remain, which
is especially helpful for large s, as improving from k/s to k/

√
s is a significant improvement.

Large s generally occur for large tensors such as CW ⊗32.
To summarize this entire section, we took our matrix multiplication tensor ⟨n, n, n⟩, wrote

it as a direct sum of other matrix multiplication tensors (going between these two results
in our upper bound of ω from the simplified version of Schönhage’s τ -theorem previously),
then expressed this direct sum as a power of a tensor via the laser method (and refined laser
method, which both use tensor partitioning and the idea of zeroing out variables) described
in the previous paragraphs; the rank of the power of this tensor is bounded by the power of
the rank of the tensor. Therefore, having a known rank-bounded tensor ultimately leads to
a bound on ω via these three steps taken backwards.

5. Further Questions, Reading, and Applications

Improvements in integer multiplication algorithms have had great impacts on numerous
fields, everything from financial calculations to physical modeling. Optimizing the intense
calculations involved in these leads to faster results. Matrix multiplication is utilized possibly
even more. Multiplying two matrices is the heart of numerous operations in linear algebra,
such as finding matrices’ inverses and ranks. Linear algebra in turn is applied to a variety
of areas, such as cryptography, data analysis, and graphics. Graph theory also heavily relies

EVOLUTION OF MULTIPLICATION ALGORITHMS FOR INTEGERS, MATRICES, AND MORE 21

on matrices: shortest path problem, maximum matching, spanning trees, etc. Matrices used
in graph theory include everything from adjacency matrices to degree matrices to Laplacian
matrices, all of which represent various properties of graphs.

We encourage interested readers to learn the integer multiplication algorithms published
by Fürer ([Für09]); Harvey, van der Hoeven, and Lecerf ([HvdHL16]); and Harvey and van
der Hoeven ([HvdH21]). There are also many tricks for optimization that can be employed in
integer multiplication problems, such as the

√
2 trick, Harley’s trick, Granlund’s trick, and

Nussbaumer’s trick (see [GKZ07],[Nus80]). Implementations of Karatsuba, Toom-Cook, and
Schönhage-Strassen can be found in the GNU Multiple Precision Arithmetic Library, along
with useful documentation. On the matrix multiplication side, we encourage readers to learn
the recent papers published by Alman, William, and others in 2022 and 2024 ([WXXZ24],
[ADW+24]) which utilize asymmetry to improve bounds on ω. Textbooks such as [Knu98]
and [CLRS09] were also very useful in researching for this paper.

Some further areas of research include improving on Harvey and van der Hoeven’s galactic
algorithm for integer multiplication to achieve practical usage; improving on matrix multi-
plication algorithms by finding a different starting tensor than the Coppersmith-Winograd
tensor for the Laser Method or discovering an entirely new method.

Acknowledgements

I would like to thank Simon Rubinstein-Salzado and Dean Menezes for their mentorship
and help while researching and writing this paper.

References
[ADW+24] Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei

Zhou. More asymmetry yields faster matrix multiplication, 2024.
[AW24] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multi-

plication. TheoretiCS, 3:32, 2024. Id/No 21.
[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to

algorithms. Cambridge, MA: MIT Press, 3rd ed. edition, 2009.
[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex

Fourier series. Math. Comput., 19:297–301, 1965.
[CW90] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. J.

Symb. Comput., 9(3):251–280, 1990.
[FBH+22] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mo-

hammadamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grze-
gorz Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix
multiplication algorithms with reinforcement learning. Nature, London, 610(7930):47–53, 2022.

[Für09] Martin Fürer. Faster integer multiplication. SIAM J. Comput., 39(3):979–1005, 2009.
[GKZ07] Pierrick Gaudry, Alexander Kruppa, and Paul Zimmermann. A GMP-based implementation of

Schönhage-Strassen’s large integer multiplication algorithm. In Proceedings of the 2007 interna-
tional symposium on symbolic and algebraic computation, ISSAC 2007, Waterloo, ON, Canada,
July 29–August 1, 2007., pages 167–174. New York, NY: Association for Computing Machinery
(ACM), 2007.

[Har09] David Harvey. Faster polynomial multiplication via multipoint Kronecker substitution. J. Symb.
Comput., 44(10):1502–1510, 2009.

[HvdH21] David Harvey and Joris van der Hoeven. Integer multiplication in time O(nlogn). Ann. Math.
(2), 193(2):563–617, 2021.

[HvdHL16] David Harvey, Joris van der Hoeven, and Grégoire Lecerf. Even faster integer multiplication. J.
Complexity, 36:1–30, 2016.

22 SHAMIK KHOWALA

[Knu98] Donald E. Knuth. The art of computer programming. Vol. 2: Seminumerical algorithms. Bonn:
Addison-Wesley, 3rd ed. edition, 1998.

[KO62] Anatoly Karatsuba and Yuri Ofman. Multiplication of many-digital numbers by automatic com-
puters. Dokl. Akad. Nauk SSSR, 145:293–294, 1962.

[LG14] François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th
international symposium on symbolic and algebraic computation, ISSAC 2014, Kobe, Japan, July
23–25, 2014, pages 296–303. New York, NY: Association for Computing Machinery (ACM), 2014.

[Lüd15] Christoph Lüders. Fast multiplication of large integers: Implementation and analysis of the
DKSS algorithm. CoRR, abs/1503.04955, 2015.

[Nus80] Henri J. Nussbaumer. Fast polynomial transform algorithms for digital convolution. IEEE Trans.
Acoust. Speech Signal Process., 28:205–215, 1980.

[Sch81] A. Schönhage. Partial and total matrix multiplication. SIAM J. Comput., 10:434–455, 1981.
[SS71] A. Schönhage and V. Strassen. Fast multiplication of large numbers. Computing, 7:281–292,

1971.
[Str69] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–356, 1969.
[Str88] V. Strassen. The asymptotic spectrum of tensors. Journal für die reine und angewandte Mathe-

matik, 384:102–152, 1988.
[Win71] S. Winograd. On multiplication of 2 × 2 matrices. Linear Algebra Appl., 4:381–388, 1971.
[WXXZ24] Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for matrix

multiplication: from alpha to omega. In Proceedings of the 35th annual ACM-SIAM symposium
on discrete algorithms, SODA 2024, Alexandria, Virginia, January 7–10, 2024, pages 3792–
3835. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM); New York,
NY: Association for Computing Machinery (ACM), 2024.

	1. Abstract
	2. Introduction
	3. Multiplication in Z, C, and Z[x]
	3.1. Karatsuba Algorithm
	3.2. Toom-Cook Algorithm
	3.3. Schönhage-Strassen Algorithm
	3.4. Complex Number Multiplication
	3.5. Polynomial Multiplication

	4. Matrix Multiplication
	4.1. Strassen Algorithm
	4.2. Laser Method

	5. Further Questions, Reading, and Applications
	Acknowledgements
	References

