The Black-Scholes Model

Sankar Jonnalagadda

July 14, 2025

Historical Context and Motivation

- 1973: Fischer Black, Myron Scholes, and Robert Merton
- Foundation for modern financial engineering

Stochastic Processes

A stochastic process is a collection of random variables indexed by time:

- Denoted $\{X_t\}_{t\in\mathcal{T}}$, where each X_t maps outcomes to values
- Examples:
 - Stock price S_t over time
 - ullet Brownian motion W_t as building block
- Key properties:
 - Independent increments of $X_{t+h} X_t$

Brownian Motion: Definition and Properties

A real-valued stochastic process $\{W_t\}_{t\geq 0}$ such that:

- $W_0 = 0$ (starts at zero)
- Independent increments: $W_t W_s$ independent for t > s
- Continuous path

Key consequences:

- $E[W_t] = 0$, $Var(W_t) = t$
- Paths are nowhere differentiable (fractal)
- Quadratic variation over [0, t] equals t

Geometric Brownian Motion

$$dS_t = \mu S_t dt + \sigma S_t dW_t.$$

- ullet μ : drift parameter
- \bullet σ : volatility parameter
- Interprets real-world stock movement

Geometric Brownian Motion: Risk-Neutral Perspective

In a risk-neutral world, all assets are expected to grow at the risk-free rate r. Thus, we replace the real-world drift μ with r in the GBM:

$$dS_t = r S_t dt + \sigma S_t dW_t.$$

- **Drift term** $r S_t dt$: the "fair" expected increase per unit time
- **Diffusion term** $\sigma S_t dW_t$: random fluctuations around the drift
- Implication for pricing: Option values depend only on r and σ , not on investors' risk preferences.

Geometric Brownian Motion Illustration

Itô Process Form

An Itô process satisfies:

$$dX_t = a(t, X_t) dt + b(t, X_t) dW_t.$$

- General framework for SDEs
- Functions a, b are adapted processes

Itô's Lemma

For twice-differentiable f(x, t) and Itô process X_t :

$$d(f(X_t)) = f'(X_t) dX_t + \frac{1}{2} f''(X_t) (dX_t)^2$$

• Chain-rule for randomness

Sankar Jonnalagadda

Quadratic Variation

In stochastic calculus, Brownian increments scale as $O(\sqrt{\Delta t})$, so their squares scale as $O(\Delta t)$:

$$(W_{t+\Delta t}-W_t)^2=O(\Delta t).$$

The limit of the sum of these squared increments defines the quadratic variation:

$$[W]_t = \lim_{n \to \infty} \sum_{i=0}^{n-1} (W_{t_{i+1}} - W_{t_i})^2 = t.$$

Properties due to Quadratic Variation:

- $(dW_t)^2 = dt$
- $dW_t dt = 0$
- $dt^2 = 0$

Key Assumptions

- Risk-free rate r constant; no dividends or carrying costs
- Frictionless markets: no transaction costs; unlimited borrowing/lending
- Short-selling of the underlying asset is permitted
- Underlying asset follows Geometric Brownian Motion:

$$dS_t = \mu \, S_t \, dt \, + \, \sigma \, S_t \, dW_t$$

Deriving the Black-Scholes PDE

Our option price will be denoted as $V(S_t, t)$ as the option price is dependent on time and stock price.

Apply Itô's Lemma to $V(S_t,t)$ where $dS_t = \mu S_t dt + \sigma S_t dW_t$:

$$dV = \frac{\partial V}{\partial t} dt + \frac{\partial V}{\partial S} dS_t + \frac{1}{2} \frac{\partial^2 V}{\partial S^2} (dS_t)^2$$

Expanded Differential of V

Substituting $dS_t = \mu S_t dt + \sigma S_t dW_t$ and $(dS_t)^2 = \sigma^2 S_t^2 dt$:

$$dV = \left(\frac{\partial V}{\partial t} + \mu S_t \frac{\partial V}{\partial S} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial^2 V}{\partial S^2}\right) dt + \sigma S_t \frac{\partial V}{\partial S} dW_t$$

Delta-Hedged Portfolio Construction

Create a portfolio of one call option, V, and Δ shares of stock:

$$\Pi = V + \Delta S_t.$$

Then,

$$d\Pi = (\frac{\partial V}{\partial t} + \mu S_t \frac{\partial V}{\partial S} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial^2 V}{\partial S^2} + \Delta \mu S_t) dt + \sigma S_t (\frac{\partial V}{\partial S} + \Delta) dW_t$$

Eliminating the Stochastic Term

The dW_t is the source of randomness. To eliminate this term, we can set $\Delta = -\frac{\partial V}{\partial S}$

Our equation now becomes:

$$d\Pi = \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial^2 V}{\partial S^2}\right) dt$$

No-Arbitrage

Since we assume there is no arbitrage, and there is no random term, the portfolio grows at a risk-free rate r, such that

$$d\Pi = r\Pi dt = r(V - S_t \frac{\partial V}{\partial S}) dt$$

Black Scholes PDE

Using the substitution from the pervious slide, we can equate these terms to get:

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial^2 V}{\partial S^2} = r(V - S_t \frac{\partial V}{\partial S})$$

Rearranging the terms, we get the Black-Scholes PDE

$$\frac{\partial V}{\partial t} + rS_t \frac{\partial V}{\partial S} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial^2 V}{\partial S_t^2} - rV = 0$$

Sankar Jonnalagadda

Black-Scholes Pricing Formula

$$C=N(d_1)\,S_t-N(d_2)\,K\mathrm{e}^{-rt}$$
 where $d_1=rac{\lnrac{S_t}{K}+ig(r+rac{1}{2}\sigma^2ig)t}{\sigma\sqrt{t}}, \quad d_2=d_1-\sigma\sqrt{t}.$

Notation:

- C: call option price
- N(x): cumulative normal distribution
- S_t : spot price of underlying
- K: strike price
- r: risk-free interest rate
- t: time to maturity
- σ : asset volatility

These simulations can help us estimate the price of a call option; If we assume $S_0=100$, K=100, r=0.05, $\sigma=0.3$, T=1, then the Monte Carlo estimation gives us

$$\hat{C} = e^{-rT} \frac{1}{N} \sum_{i=1}^{N} \max(S_T^{(i)} - K, 0).$$

- 10 simulations: Option price estimate of 5.91 dollars
- 50 simulations: Option price estimate of 16.73 dollars
- 100 simulations: Option price estimate of 12.53 dollars

Black-Scholes pricing equation tells us the theoretical value of a call option. In this case, the true value is 14.23 dollars.

References

- Øksendal, B. (2003). Stochastic Differential Equations, University of California, Los Angeles
- Dunbar, S. "Deriving the Black–Scholes Solution," University of Nebraska–Lincoln.
- "Lecture 7: Black–Scholes Theory," Department of Statistics, University of Chicago.
- Haugh, M. (2015). Foundations of Financial Engineering, Columbia University.
- Björk, T. (2009). Arbitrage Theory in Continuous Time.