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Historical Context and Motivation

1973: Fischer Black, Myron Scholes, and Robert Merton

Foundation for modern financial engineering
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Stochastic Processes

A stochastic process is a collection of random variables indexed by time:

Denoted {Xt}t∈T , where each Xt maps outcomes to values

Examples:

Stock price St over time
Brownian motion Wt as building block

Key properties:

Independent increments of Xt+h − Xt
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Brownian Motion: Definition and Properties

A real-valued stochastic process {Wt}t≥0 such that:

W0 = 0 (starts at zero)

Independent increments: Wt −Ws independent for t > s

Continuous path

Key consequences:

E [Wt ] = 0, Var(Wt) = t

Paths are nowhere differentiable (fractal)

Quadratic variation over [0, t] equals t
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Geometric Brownian Motion

dSt = µSt dt + σSt dWt .

µ: drift parameter

σ: volatility parameter

Interprets real-world stock movement
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Geometric Brownian Motion: Risk-Neutral Perspective

In a risk-neutral world, all assets are expected to grow at the risk-free rate
r . Thus, we replace the real-world drift µ with r in the GBM:

dSt = r St dt + σ St dWt .

Drift term r St dt: the “fair” expected increase per unit time

Diffusion term σ St dWt : random fluctuations around the drift

Implication for pricing: Option values depend only on r and σ, not
on investors’ risk preferences.
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Geometric Brownian Motion Illustration
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Itô Process Form

An Itô process satisfies:

dXt = a(t,Xt) dt + b(t,Xt) dWt .

General framework for SDEs

Functions a, b are adapted processes
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Itô’s Lemma

For twice-differentiable f (x , t) and Itô process Xt :

d(f (Xt)) = f ′(Xt) dXt +
1
2 f

′′(Xt) (dXt)
2

Chain-rule for randomness
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Quadratic Variation

In stochastic calculus, Brownian increments scale as O(
√
∆t), so their

squares scale as O(∆t):

(Wt+∆t −Wt)
2 = O(∆t).

The limit of the sum of these squared increments defines the quadratic
variation:

[W ]t = lim
n→∞

n−1∑
i=0

(
Wti+1 −Wti

)2
= t.

Properties due to Quadratic Variation:

(dWt)
2 = dt

dWt dt = 0

dt2 = 0
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Key Assumptions

Risk-free rate r constant; no dividends or carrying costs

Frictionless markets: no transaction costs; unlimited
borrowing/lending

Short-selling of the underlying asset is permitted

Underlying asset follows Geometric Brownian Motion:

dSt = µ St dt + σ St dWt

Sankar Jonnalagadda The Black–Scholes Model July 14, 2025 11 / 23



Deriving the Black-Scholes PDE

Our option price will be denoted as V (St , t) as the option price is
dependent on time and stock price.

Apply Itô’s Lemma to V (St , t) where dSt = µSt dt + σSt dWt :

dV =
∂V

∂t
dt +

∂V

∂S
dSt +

1
2

∂2V

∂S2
(dSt)

2
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Expanded Differential of V

Substituting dSt = µSt dt + σSt dWt and (dSt)
2 = σ2S2

t dt:

dV =
(∂V
∂t

+ µ St
∂V

∂S
+ 1

2σ
2S2

t

∂2V

∂S2

)
dt + σ St

∂V

∂S
dWt
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Delta-Hedged Portfolio Construction

Create a portfolio of one call option, V , and ∆ shares of stock:

Π = V +∆ St .

Then,

dΠ = (∂V∂t + µSt
∂V
∂S + 1

2σ
2S2

t
∂2V
∂S2 +∆µSt)dt + σSt(

∂V
∂S +∆)dWt
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Eliminating the Stochastic Term

The dWt is the source of randomness. To eliminate this term, we can set
∆ = −∂V

∂S

Our equation now becomes:

dΠ = (
∂V

∂t
+

1

2
σ2S2

t

∂2V

∂S2
)dt
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No-Arbitrage

Since we assume there is no arbitrage, and there is no random term, the
portfolio grows at a risk-free rate r , such that

dΠ = rΠdt = r(V − St
∂V

∂S
)dt
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Black Scholes PDE

Using the substitution from the pervious slide, we can equate these terms
to get:

∂V

∂t
+ 1

2σ
2S2

t

∂2V

∂S2
= r(V − St

∂V

∂S
)

Rearranging the terms, we get the Black-Scholes PDE

∂V

∂t
+ rSt

∂V

∂S
+

1

2
σ2S2

t

∂2V

∂S2
t

− rV = 0
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Black–Scholes Pricing Formula

C = N(d1)St − N(d2)Ke
−rt where

d1 =
ln St

K +
(
r + 1

2σ
2
)
t

σ
√
t

, d2 = d1 − σ
√
t.

Notation:

C : call option price

N(x): cumulative normal distribution

St : spot price of underlying

K : strike price

r : risk-free interest rate

t: time to maturity

σ: asset volatility
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Applications
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Applications
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Applications

These simulations can help us estimate the price of a call option; If we
assume S0 = 100, K = 100, r = 0.05, σ = 0.3, T = 1, then the Monte
Carlo estimation gives us

Ĉ = e−rT 1

N

N∑
i=1

max
(
S
(i)
T − K , 0

)
.

1 10 simulations: Option price estimate of 5.91 dollars

2 50 simulations: Option price estimate of 16.73 dollars

3 100 simulations: Option price estimate of 12.53 dollars

Black-Scholes pricing equation tells us the theoretical value of a call
option. In this case, the true value is 14.23 dollars.
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