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Abstract. This paper introduces fundamental concepts from probability theory, Brown-
ian motion, and stochastic calculus to show the basic ideas behind dynamic pricing models.
From these ideas, the paper will go on to derive the Black-Scholes partial differential equa-
tion (PDE). By solving this PDE, the paper derives the Black-Scholes pricing model, an
expression for the value of a European call option. Finally, the applications of the model
are explored through the simulation of stock prices.
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1. Introduction

The Black-Scholes-Merton model, or more commonly known as the Black-Scholes model,
is a mathematical model that shows the theoretical estimate of the price of a European call
option. This paper will serve as an introduction to the model: We will explore fundamental
concepts in Brownian motion, stochastic calculus, probability theory (Sections 2.1, 2.2, 2.3)
and derive the following Black-Scholes pricing equation with Ito’s Lemma (Section 4)

C = S0N(d1)−N(d2)Ke−rt

d1 =
ln

S0
K

+
(
r+σ2

2

)
t

σ
√
t

d2 = d1 − σ
√
t

Where C is the fair value of a European call option, S0 is the initial price of a stock, K
is the strike price, N(x) is the cumulative normal distribution (CDF) of a standard normal
variable, σ is the volatility of the asset, r is the risk-free interest rate, and t is the time until
maturity. Additionally, after deriving this equation, we will look into the applications of the
model, simulating stock prices using two different methods (Section 5.1, 5.2). By the end of
this paper, the reader should have both an analytical and conceptual understanding of the
mathematical ideas within the Black-Scholes framework.

2. Mathematical Background Knowledge

2.1. Probability. Probability is the basis for modeling uncertainty. As a result, it is im-
perative that we understand basic probability theory before we move on to more advanced
topics. However, probability theory is a vast subject, and this paper will only include con-
cepts that are important for the discussion of the mathematical framework behind the Black-
Scholes model. Specifically, this Section (2.1) will only introduce concepts such as probability
spaces, random variables, probability density functions (PDF), and the cumulative distribu-
tion function (CDF). Readers seeking a more complete understanding of probability theory
are encouraged to reference Probability and Random Processes by Geoffrey Grimmett and
David Stirzaker.

Definition 2.1. A probability space is a mathematical construct consisting of three ele-
ments: (Ω,F ,P).

Ω: The sample space, which is the set of all possible outcomes in an experiment.

F : A σ-algebra of Ω, which is a collection of subsets under Ω with three properties.
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(1) ∅ ∈ F
(2) If an event A ∈ F , then Ac ∈ F
(3) If A1, A2, · · · ∈ F , then

∞⋃
i=1

Ai ∈ F

In finance, a σ-algebra can be thought of as an information set: It specifies what events are
known, and helps figure out the probability associated with those outcomes.

P: A function that assigns a probability to each event in F .

For example, a six-sided die has the sample space Ω = {1, 2, 3, 4, 5, 6}. Now, the event that
an odd number is rolled is A={1,3,5}.

Since A = {1, 3, 5}, the probability function P shows that

P(A) = P({1, 3, 5}) = 1

2

Definition 2.2. A random variable X is a function that assigns a real number to each
outcome in the sample space Ω. There are two types of random variables: Discrete and
continuous. A discrete random variable has values that are finite and countable over some
interval. A continuous random variable takes on some uncountable number of values over
an interval.

Definition 2.3. A cumulative distribution function (CDF), denoted as FX(x), shows the
probability that the discrete random variable X is less than or equal to x. This can be
represented by FX(x) = P(X ≤ x)

Definition 2.4. A probability distribution function (PDF), denoted as fX(x), shows how
likely it is for the continuous random variable X to fall within a small interval around x.
This can be represented by

fX(x) = lim
∆→0+

P(x < X ≤ x+∆)

∆
=

dFX(x)

dx
= F ′

X(x)

Definition 2.5. Expected Value, denoted as E[X], is the weighted average of the outcomes
and probabilities (Also known as the mean) of a random variable X. For example, the
expected value for a six-sided die is:

E[X] =
6∑

i=1

i · 1
6
=

1 + 2 + 3 + 4 + 5 + 6

6
=

21

6
= 3.5

Definition 2.6. Variance, denoted as V ar(X), is a measure of how spread the distribution
of a random variable is. This concept is quite important for us, as variance can be used to see
how much risk an investment carries. Variance is represented by V ar(X) = E[X2]−(E[X])2.
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With our understanding of basic probability theory from definitions 2.1-2.6, we are now
ready to move onto our next topic.

2.2. Brownian Motion.

Brownian motion is essential for our study of random movements. It’s key properties of
independently distributed increments, zero starting value, and continuous paths allow it to
be a good choice for modeling asset price fluctuations. This section introduces these concepts
to help the reader understand this critical component of the Black-Scholes model.

Definition 2.6. A stochastic process is a collection of random variables {Xt}t∈T that de-
scribe how a quantity changes over time in a random way. Each Xt represents the value of
the process at time t, and the set T is usually a set of time points (such as [0,∞)).

Definition 2.7.Brownian motion (The Wiener process) is a real-valued stochastic process
{W (t)}t≥0 defined on a probability space (Ω,F ,P), satisfying:

(1) W (0) = 0.
(2) For any 0 ≤ t1 < t2 < · · · < tn, the increments W (ti)−W (ti−1) are independent.
(3) For all s < t, W (t)−W (s) ∼ N (0, t− s).
(4) The map t 7→ W (t) is almost surely continuous.

These properties show us that standard Brownian motion randomly fluctuates around zero
such that at any time t, E[W (t)] = 0. However, real-world stock prices do not fluctuate
around zero. Rather, they always stay positive. To account for this, we add a positive drift
term. The drift shifts the overall behavior upward, fluctuating the Brownian motion over
some function.

Definition 2.8. Geometric Brownian Motion is a stochastic process in which the logarithm
of a random quantity follows Brownian Motion. In other words, Geometric Brownian Motion
is a specific exponential transformation of Brownian Motion.

Definition 2.9 Stochastic Differential Equation, also known as an SDE, is a differential
equation where one of the terms is a stochastic process. SDEs are the basis of modeling for
growth behavior, jump processes, and more importantly for us: Stock prices.

Now, we can introduce a basic model of our asset (St), defined by: dSt = µStdt+ σStdWt

This SDE will be essential as we move on, as it’s used in our later derivations for the Black-
Scholes model. Additionally, to help the reader visualize this section, the following graphic
has been included.



BLACK-SCHOLES MODEL 5

Figure 1

2.3. Stochastic Calculus.

Stochastic calculus finds the rate of change of a stochastic model, which is essential for
predicting future asset prices. In this section we introduce Itô processes, Itô’s lemma, and
stochastic differential equations.

Definition 3. An Itô integral of a process Xt with respect to a Brownian motion Wt over
[0, T ] is defined as the mean-square limit of Riemann sums∫ T

0

Xt dWt := lim
∥Π∥→0

n−1∑
i=0

Xti

(
Wti+1

−Wti

)
,

Conceptually, an Ito integral adds extremely small increments of dWt over [0, T ], each
weighted by the stochastic process Xt; In finance, this integral gives you the cumulative
gain or loss generated by continuously adjusting your position Xt in response to random
changes in dWt

Definition 3. An Itô process on the probability space (Ω,F ,P) is a process Xt of the form

Xt = X0 +

∫ t

0

µ(s,Xs) ds +

∫ t

0

σ(s,Xs) dWs,

which can also be written in the form

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt
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where µ and σ are adapted processes and Wt is a standard Wiener process.

Ito processes are important because they are the generalized form of different asset models.
In addition, they will be used to solve pricing partial differential equations, form risk-neutral
measures, and appear in Ito’s Lemma.

Theorem 3.1: Itô’s Lemma. Let Xt be an Itô process

dXt = µt dt+ σ dWt,

and let f(x) be a twice differential function that is continuous. Then, f(Xt) is again an Itô
process, and

d(f(Xt)) = f ′(Xt) dXt +
1
2
f ′′(Xt) (dXt)

2

Theorem 3.2: Multiplication Properties of Stochastic Calculus.

(dWt)
2 = dt,

dWt dt = 0,

dt2 = 0.

These properties are extremely useful in our derivation of the Black-Scholes model, and will
be used in multiple examples throughout this paper. A quick proof will be shown for each:

For the property (dWt)
2 = dt,

(1) The time interval [0, T ] is split into n equal subintervals of length ∆t = T/n
(2) We define the ith subinterval [ti, ti+1] such that ∆Wi = Wi+1 −Wti

(3) Brownian motion tell us that V ar(∆Wi) = ∆t, so the standard deviation is
√
V ar(∆Wi) =√

∆t.
(4) So, (∆Wi)

2 and ∆t are of the same order.
(5) As they are same order, Σ(∆Wi)

2 = Σ∆t, giving (dWt)
2 = dt

For the property dWtdt = 0

(1) We know that Brownian motion has increments of order ∆W =
√
∆t and the time

increment is t = ∆t
(2) The product (∆W )(∆t) = (

√
∆t)(∆t) = ∆t3/2

(3) As the increments of t approach zero, ∆t3/2 becomes negligible compared to ∆t.

For the property dt2 = 0

(1) We know that the time increment of t is just the order of ∆t, so (∆t)2 = ∆t2

(2) As ∆t → 0, ∆t2 approaches zero much faster than ∆t
(3) So, ∆t2 is negligible compared to ∆t, and we get (dt)2 = 0
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If the reader is interested in a more in-depth proof, he or she is recommended to read Chapter
5.1, An Existence and Uniqueness Result from Stochastic Differential Equations by Bernt
Øksendal.

Example 1: let f(x) = x2 and Xt = Wt, where µt = 0 and σ = 1. Then, dXt = dWt,
f ′(x) = 2x, f ′′(x) = 2

Using Itô’s Lemma, we find

d
(
f(Xt)

)
= 2Xt dXt +

1
2

(
2
)
(dXt)

2.

Given Xt = Wt,
d
(
W 2

t

)
= 2Wt dWt + (dWt)

2.

Simplifying with (dWt)
2 = dt,

d
(
W 2

t

)
= 2Wt dWt + dt.

This final equation allows us to calculate how a function changes when input into a random
process. Specifically for this example, we can calculate how the function g(x) = x2 changes
when applied to the stochastic process Xt = Wt.

Example 2: Assuming that f(St) = ln(St), we can find the closed form solution of Geo-
metric Brownian Motion using Ito’s Lemma.

Starting with Itô’s Lemma, we get

df(St) = f ′(St) dSt +
1
2
f ′′(St) (dSt)

2.

Substituting f ′(St) =
1
St
, f ′′(St) = − 1

S2
t
and dSt = µSt dt+ σSt dWt, we have

df(St) =
1

St

(
µSt dt+ σSt dWt

)
+ 1

2

(
− 1

S2
t

)(
µSt dt+ σSt dWt

)2
.

Now, simplifying using (dt)2 = 0, (dWt)
2 = dt, we get

df(St) = µ dt+ σ dWt − σ2

2
dt = σ dWt +

(
µ− σ2

2

)
dt.

Integrating from 0 to t:

lnSt − lnS0 =

∫ t

0

σ dWs +

∫ t

0

(
µ− σ2

2

)
ds = σWt +

(
µ− σ2

2

)
t.

Solving for St gives us



8 SANKAR JONNALAGADDA

St = S0 e
σWt+(µ−σ2

2
) t.

This expression in fundamental to fields like quantitative finance and risk management be-
cause it follows most market observations: It is strictly positive, yields log-normally dis-
tributed returns, and is easy to model. Additionally, this formula is used to derive the
Black-Scholes pricing formula under a risk-neutral measure.

3. Financial Background Knowledge

The final step before we dive into the Black-Scholes model is that the reader has financial
knowledge. Black-Scholes, after all, does indeed model the financial world, and thus it is
necessary to understand what is going on conceptually.

Definition 3.3. An Asset is anything that is owned and has monetary value. Black-Scholes
and Brownian motion are used to model these assets.

One type of asset we have worked with already are stocks. During our study of Geometric
Brownian Motion, we modeled a stock as St = µStdt + σStdWt. Later, in our study of
stochastic calculus, we found the closed-form solution of Geometric Brownian Motion using
a log transform of f(St) = ln(St).

Definition 3.4. A financial option is an agreement to buy or sell an asset at a specified
future date.

Definition 3.5. A European Call Option is a type of financial derivative contract where the
individual has the right, but not the obligation, to buy or sell an asset at a predetermined
strike price K, at a fixed expiration date T .

Definition 3.6. The Strike Price (K) is the price at which you buy the underlying if you
exercise your right to buy or sell.

Definition 3.7. The Premium is the price you pay to have the right, but not the obligation,
to buy or sell an asset.

Example 3: An Apple stock is priced at $200 at time t0. An individual pays a premium
of $5 to buy an Apple stock at a strike price of $200 at some future time T . Now, three
situations can occur:

(1) At time T , the Apple stock goes up in value to $250. The individual exercises the
right to buy for $200 and resells at the market price of $250. Profit:

250 (Market Value)− 200 (Strike Price)− 5 (Premium) = 45.
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(2) At time T , the Apple stock goes up in value to $205. The individual exercises the
right to buy for $200 and resells at the market price of $205. Profit (break even):

205 (Market Value)− 200 (Strike Price)− 5 (Premium) = 0.

(3) At time T , the Apple stock stays at $200. The individual exercises the right to buy
for $200 and resells at the market price of $200. Profit:

200 (Market Value)− 200 (Strike Price)− 5 (Premium) = −5.

The understanding of a European call option is essential as the point of the Black-Scholes
model is to calculate the fair value price of a premium.

Definition 3.8. The risk-free rate is the rate of return on an investment with no risk. The
risk-free rate is determined by market supply and demand.

Definition 3.9. A risk neutral measure means that every asset, on average, earns the
risk-free rate. Mathematically, we represent this as

C(A, 0) = e−rt E
[
C(A, t)

]
where

C(A, 0) : The initial price of the contract

e−rt : The discount factor over period t at the risk-free rate r,

E
[
C(A, t)

]
: The risk-neutral expected payoff of the contract at time t.

Definition 4.0 A Portfolio is a collection of assets usually held by an investor or trader.

Definition 4.1 Arbitrage is a risk-less portfolio that is not the risk-free asset. The Black-
Scholes model assumes that there is no arbitrage so that the return of a hedged portfolio
must equal the risk-free rate.

4. Derivation with Ito’s Lemma

This section will combine everything we have seen so far to derive the Black-Scholes model.
This will involve two steps: Deriving the Black-Scholes PDE and solving the PDE to get the
equation for a European call option. Finally, before we start, it’s important to note some
assumptions that help us throughout this process.

Assumptions

(1) The short-term interest rate r is known and constant.
(2) The underlying asset pays no dividends during the option’s life.
(3) There are no transaction costs or taxes on trading.
(4) Investors may trade fractional shares and borrow or lend unlimited amounts at the

risk-free rate.
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(5) Short-selling of the underlying asset is permitted without restriction.
(6) The underlying asset follows Geometric Brownian Motion, represented as

dSt = µStdt + σStdWt

Deriving the Black Scholes PDE

(1) First, our option price will be denoted as V (St, t) as the option price is dependent
on time and stock price.

(2) Now, we need to see how the function V evolves over time. Using Ito’s Lemma on
the function V (St, t), we find that

dV =
∂V

∂t
dt +

∂V

∂S
dSt + 1

2

∂2V

∂S2
(dSt)

2

(3) Using properties from Theorem 3.2, we find the quadratic term

(dSt)
2 = (µStdt + σStdWt)

2 = (µStdt)
2 + 2(µStdt)(σStdWt) + (σStdWt)

2 = σ2S2
t dt

(4) Substituting in (dSt)
2 = σ2S2

t dt and dSt = µStdt + σStdWt, the equation becomes

dV =
(∂V
∂t

+ µSt
∂V

∂S
+ 1

2
σ2 S2

t

∂2V

∂S2

)
dt + σ St

∂V

∂S
dWt

(5) We proceed by creating a portfolio consisting of a call option, V , with ∆ shares of
stock. The total value of the portfolio can be represented by: Π = V +∆St

(6) To understand how this portfolio moves over time,

dΠ = d
(
V +∆St

)
=

(
∂V
∂t

+ µSt
∂V
∂S

+ 1
2
σ2 S2

t
∂2V
∂S2 +∆µSt

)
dt + σ St

(
∂V
∂S

+∆
)
dWt

(7) The dWt term is stochastic, and as a result, is the source of randomness and risk. To
make our portfolio risk-free, let ∆ = −∂V

∂S
be used to eliminate the random term.

dΠ =

(
∂V

∂t
+ 1

2
σ2 S2

t

∂2V

∂S2

)
dt.

(8) Since the random component has been eliminated, the risk-free portfolio must grow
at a risk-free rate r, as the assumption of no arbitrage implies that the portfolio has
the risk-free asset. Thus, the change in the portfolio is

dΠ = rΠdt = r(V +∆St)dt = r(V − St
∂V

∂S
)dt
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(9) Substituting in dΠ = r(V −St
dV
dS
) and simplifying, we get the Black-Scholes equation

∂V

∂t
+ rSt

∂V

∂S
+

1

2
σ2S2

t

∂2V

∂S2
t

− rV = 0

Solving the Black Scholes PDE

We begin with the Black–Scholes partial differential equation and terminal condition:

∂V

∂t
+

1

2
σ2 S2

t

∂2V

∂S2
t

+ r St
∂V

∂St

− r V = 0, V (ST , T ) = max
(
ST −K, 0

)
.

(1) Backwards time transforms

τ = T − t,
∂V

∂t
= − ∂V

∂τ
.

The PDE becomes

∂V

∂τ
=

1

2
σ2 S2

t

∂2V

∂S2
t

+ r St
∂V

∂St

− r V.

(2) The Log-price change of variable.

x = ln
(
St

K

)
, St = K ex, v(x, τ) =

V (St, t)

K
.

By the chain rule:

∂V

∂St

=
1

St

∂v

∂x
,

∂2V

∂S2
t

=
1

S2
t

(
vxx − vx

)
.

Substitution yields

vτ =
1

2
σ2 (vxx − vx) + r vx − r v.

(3) Remove drift and zeroth-order terms so we can get to the heat equation, which is a
PDE with a known solution.

v(x, τ) = e ax+bτ u(x, τ).

Choosing

a = −
r − 1

2
σ2

σ2
, b = −

(
r + 1

2
σ2
)2

2σ2

cancels the ux and u terms, leaving the heat equation.
(4) The Heat equation.

∂u

∂τ
=

1

2
σ2 ∂

2u

∂x2
, u(x, 0) = e−ax max

(
ex − 1, 0

)
.
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(5) Heat-kernel solution is:

u(x, τ) =

∫ ∞

−∞

1√
2π σ2 τ

exp

(
−(x− y)2

2σ2 τ

)
u(y, 0) dy.

(6) Revert transforms.
First set v = eax+bτu, then V = K v, and finally x = ln(St/K), τ = T − t. Evaluate

the Gaussian integrals in terms of the normal CDF Φ(z) =
∫ z

−∞
1√
2π
e−y2/2 dy.

(7) Evaluate the convolution integrals.
From Step 6 we have

V (St, t) = K eax+bτ

∫ ∞

−∞

1√
2π σ2 τ

exp
(
−(x− y)2

2σ2τ

)
e−ay max(ey − 1, 0) dy,

where x = ln(St/K) and τ = T − t. Since max(ey − 1, 0) = 0 for y ≤ 0 and ey − 1 for
y > 0, split the integral:

V =

∫ ∞

0

ey w(y) dy −
∫ ∞

0

w(y) dy =: I1 − I2,

with

w(y) =
K√

2π σ2 τ
exp

(
a(x− y) + bτ − (x−y)2

2σ2τ

)
.

(8) For I1, set

z =
y −

(
x+ (r + 1

2
σ2)τ

)
σ
√
τ

,

which shows

I1 = St

∫ d1

−∞

e−z2/2

√
2π

dz = StΦ(d1).

(9) For I2, set

z =
y −

(
x+ (r − 1

2
σ2)τ

)
σ
√
τ

,

giving

I2 = K e−rτ

∫ d2

−∞

e−z2/2

√
2π

dz = K e−rτ Φ(d2).

(10) Final Black Scholes formula.

V (St, t) = I1 − I2 = StΦ(d1)−K e−r (T−t) Φ(d2),

where

d1,2 =
ln(St/K) +

(
r ± 1

2
σ2
)
(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t.

A more in depth solution can be found by Dunbar, S (n.d) Deriving the Black-Scholes
solution, University of Nebraska-Lincoln.
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5. Applications

This last section will be used to highlight the applications of the Black-Scholes model. More
specifically, we will explore how Black-Scholes and Monte Carlo simulations connect through
price option estimates.

Definition 4.2 A Monte Carlo Simulation is an algorithm that uses repeated random sam-
pling to obtain the probability of a range of results occurring.

Conceptually, a Monte Carlo Simulation is just a possible path that can occur. For example,
let us say that the current stock of Apple is 200 dollars. A possible path the stock could have
is that it increases 5 dollars tomorrow and falls 3 dollars the day after. Another possible path
the stock could have is that it decreases 5 dollars tomorrow and then increases 10 dollars
the day after. By randomly generating thousands of such paths, we can eventually build a
probability distribution of what the stock price could be tomorrow. Using these distributions
and the number of simulations made, we can find an estimate of the option price, given by
te formula:

Ĉ = e−rT 1

M

M∑
i=1

max
(
S
(i)
T −K, 0

)
,

A quick proof of the formula is shown.

(1) Under a risk-neutral measure Q, with no arbitrage, the price of a European call is:

C = e−rtEQ[(ST −K, 0]

(2) We can approximate EQ[.] by simulating random independent samples S
(1)
T , ..., S

(M)
T

(3) Using the law of large numbers,

1

M

M∑
i=1

max
(
S
(i)
T −K, 0

) M→∞−−−−→ EQ
[
max(ST −K, 0)

]
.

(4) Rearranging the terms, we get that

Ĉ = e−rT 1

M

M∑
i=1

max
(
S
(i)
T −K, 0

)
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Now, let us explore our Monte Carlo simulations and its formulas with the following
example: We have the parameters that the initial stock price S0 = 100, the strike price
K = 100, the volatility is σ = 0.3, time to maturity is T = 1 year, and our risk-free rate
r = 0.05. What should be our option price?

To tackle this question, one method is to utilize Monte Carlo Simulations with varying
number of paths. To begin, we can use 10 paths.

These are all possible paths that the stock price could take, where the small green x marks
show a ending price higher than the strike price, and the small red x marks show an ending
price less than the strike price.

Using our formula for an estimate of a Monte Carlo Simulation, we see that:

CMC = e−rT 1

M

M∑
i=1

max
(
S
(i)
T −K, 0

)
=⇒ CMC = e−0.05·1 1

10

10∑
i=1

max
(
S
(i)
T − 100, 0

)
.

Simplifying, we get that the option price using 10 paths should be approximately 5.91 dollars.

Now, let us say that we want to hae a better understanding of the possible outcomes that
the stock price could take. Thus, we use 50 paths in our simulation.
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With 50 paths, we can now see many more possibilities. Using our Monte Carlo price
estimate formula, we can once again calculate the option price:

CMC = e−rT 1

50

50∑
i=1

max
(
S
(i)
T − 100, 0

)
≈ 16.43.

Finally, we can run the simulation one last time with 100 paths.

Our formula shows the option price:

CMC = e−rT 1

100

100∑
i=1

max
(
S
(i)
T − 100, 0

)
≈ 12.83.
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If each scenario gives us a different option price, which is the true value? Well, the true
option price is actually none of them. Rather, the true option price is given as we approach
infinitely many paths. However, it is expensive and time taking to create millions of paths,
making it difficult to find the true option price. This is where the Black-Scholes pricing
equation becomes useful. Instead of simulating millions and billions of paths, we can simply
plug in the necessary values into the pricing equation. Mathematically, we can represent the
connection between the Black-Scholes pricing equation and the Monte Carlo estimate as:

lim
M→∞

CMC(M) = CBS = S0Φ(d1) − Ke−rT Φ(d2).

Using this formula, and the parameters outlined on page 14, we can find the true value of
the option:

CBS = S0Φ(d1) − K e−rT Φ(d2),

d1 =
ln
(
S0/K

)
+
(
r + 1

2
σ2
)
T

σ
√
T

=
0 + (0.05 + 0.5 · 0.09) · 1

0.3
=

0.095

0.3
≈ 0.3167,

d2 = d1 − σ
√
T ≈ 0.3167− 0.3 = 0.0167,

Φ(d1) ≈ 0.6246, Φ(d2) ≈ 0.5067, e−rT = e−0.05 ≈ 0.9512,

CBS ≈ 100 · 0.6246 − 100 · 0.9512 · 0.5067 ≈ 62.46− 48.20 = 14.26.

With that, we have now found the connection between the Black-Scholes model and Monte
Carlo simulations.
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