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Figure 1: A permutation on {1,2,3}.
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e A permutation is a swap if it swaps two elements and keeps the
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are swapping.

Chintagunta

Permutations
And Signs



The
Lindstrom-

Gessel- Deﬁnition 1.2

Viennot

e A permutation is a swap if it swaps two elements and keeps the
Chinamunta rest fixed. It is denoted 7;; where i and j are the elements we
are swapping.
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Figure 2: The swap 72 on {1,2,3}.
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Figure 3: 0 = w12 o m13.
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Figure 4: Since o = 715 0 713 it is even.
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Ant Problem

Tt .
Lindstrém. Question 2.1

Gessel-

Vienno If an ant can only move to the right along the grid, how many
- ways are there for the ants in Figure 5 to reach different pieces
Chintagunta of food without their paths crossing each other?
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Figure 5: Ants and Morsels.



Basic Assumptions
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Gessel- The LGV-Lemma works with graphs that are finite, weighted,
Jiennot acyclic, and directed. We also take two groups of n (not
 sai necessarily disjoint) vertices. They are usually denoted
Bl A ={A;,...,A)} and B={Bi,...,B,}. In practice, A is our

set of origins, and B is the set of destinations.

Figure 6: Weighted acyclic directed graph.
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iz denoted P : A — B, then we define its weight as

w(P) =[] w(e).
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Path Weights

Lin;tfém» ——
Sessel Definition 2.2
temma Suppose we have a path P between vertices A € A and B € B,
Sai o o B
iz denoted P : A — B, then we define its weight as

w(P) =[] w(e).
ecP
5 70 3
A ™5

Figure 7: w(P : Ay — B;) =5-3=15.
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We can define the path matrix M with respect to A and B as

having
mj= > w(P).
P:A;—)Bj

If there do not exist any paths between A; and B; then
mjj = 0.
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Figure 8: A graph with A = {A;, Ay} and B = {By, Bz}
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Path Systems
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Sai together with n paths P; : A; — By, fori=1,...,n.
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Ao = 7 > B,

Figure 9: A graph with A = {A;,A>} and B={By,By}. Py is the
blue path and P, is the red path. The permutation associated with
the path system is 715.
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We define the weight of a path system as the product of its
path weights. That is,

w(P) = [[w(P)

where the P; are the paths associated with the path system.



Weight Of A Path System
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Vienraes The weight of the path system depicted in Figure 10 is

Lemma

Sai

Chintagunta W(Pl) o W(PQ) =20-24 = 480.

Figure 10: A graph with A = {A;,Ax} and B = {By, B>}.P; is the
blue path and P, is the red path. The permutation associated with
the path system is 715.



Final Definitions

The
Lindstrom-
Gessel-
Viennot
Lemma

Sai

Chintagunta Deflnltlon 26

We define sign(P) as being equal to sign(c) where o is the
permutation associated with P.

Definition 2.7

We say a path system P = (Py,..., P,) is vertex disjoint if the
paths of P are pairwise disjoint.
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Let G = (V, E) be a finite weighted acyclic directed graph,
A={A1,...,As} and B={Bx,...,B,} two sets of n
vertices, and M the path matrix from A to B. Then

det(M) = Z sign(P) w(P).

P vertex-disjoint
path system
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Application
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How do we use the LGV-Lemma in practice? This lemma is
incredibly adaptable since you can either solve a determinant to
Interesting get an answer to a combinatorics problem, or you can analyze a
Applications combinatorics problem to solve for a determinant.



Ant Problem

Tt .
Lindstrém. Question 3.1
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Vienno If an ant can only move to the right along the grid, how many
o ways are there for the ants in Figure 11 to reach different
Chintagunta pieces of food without their paths crossing each other?
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Figure 11: Ants and Morsels.



Is The LGV-Lemma Applicable?

Lindars, Yes! Because the ants can only go to the right, the graph has

Gessel- direction. It is also easy to see that the graph is acyclic. We

Viennot

Learne also have natural choice for our two sets of vertices. The 4
- origin points (the ants) and the 4 destinations (the food).
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Figure 12: Ants and Morsels.
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Figure 13: Recursively counting paths for Ant 2.



Computation Of The Path Matrix

The 14 6 1 0
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Gessel- . . 20 15 6 ].
Viennos We obtain the path matrix M = 15 20 15 6

6 20 15 14
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Figure 14: Recursively counting paths for Ant 2.
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Why is the fact that

Interesting det(M) = Z Slgn(P) W(P)

Applications P vertex-disjoint
path system

useful?
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Figure 15: Ants and Morsels.
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Definition 3.4

graph G = (V, E) that satisfies the conditions of the
Interesting LGV-Lemma is called nonpermutable if all vertex-disjoint path
Aplicstions systems are associated with the identity permutation.




Nonpermutability
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Vienno If a graph G = (V, E) satisfies the conditions for the
Sai LGV-Lemma, is nonpermutable, and all its edges have weight
Chintagunta 1' then

Corollary 3.5

det(M) = # of vertex-disjoint path systems .
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Proof.

Since G is nonpermutable, we know that all its vertex-disjoint
path systems have sign equal to 1. Additionally, the weight of
all path systems is 1. Thus, we get

det(M)= Y signP)w(P)= > 1

P vertex-disjoint P vertex-disjoint
path system path system



The Answer!

The We can calculate the determinant of our path matrix M to be

Lindstrom-

Gessel- det(M) = 889 using a Laplace Expansion. It follows directly

Viennot

Lemma from Corollary 3.5 that the number of non-intersecting path
o systems is in fact 889.
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Figure 16: Ants and Morsels.



Another Application

The
Lindstrom-
Gessel-
Viennot
Lemma

Sai

Chintagunta Theorem 3.6 (Binet-Cauchy)

If P is a r x s matrix and Q an s X r matrix, r < s, then

det(PQ) =) (det Pz)(det Qz),

Applications zZ

where Pz is the r X r submatrix of P with column-set Z, and
Qz the r X r submatrix with the corresponding rows Z.
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