
ON THE COMBINATORICS OF DETERMINANTS

SAI CHINTAGUNTA

1. The Lindström-Gessel-Viennot Lemma

The Lindström-Gessel-Viennot Lemma (LGV Lemma) relates the number of non-intersecting
path systems in an acyclic directed graph to the determinant of a matrix. The lemma was
first introduced by Bernt Lindström in 1972, but it was popularized by Ira Gessel and Gerard
Viennot in 1985. Before we can introduce the lemma, we need to talk about some important
preliminaries. First, we will talk about permutations.

Definition 1.1. A permutation is a bijective function σ where σ : {1, . . . , n} → {1, . . . , n}.
The permutation for which σ(i) = i for all i ∈ {1, . . . , n} is called the identity permutation.

In practice, a permutation is often referred to as a reordering of a set {1, . . . , n} where
1, 2, 3, . . . , n is assumed to be the initial order.

Example. A simple example of a permutation can be seen in Figure 1. This reorders 1, 2, 3
to 2, 1, 3.

1 1

2 2

3 3

σ

Figure 1. A typical permutation.

We can now introduce a special case of a permutation.

Definition 1.2. We call a permutation a transposition if there exist distinct elements i and
j such that i < j, σ(i) = j, σ(j) = i, and every other element is fixed under the permutation.
We can denote it by πij

1.

A transposition can be thought of as swapping two elements and keeping the rest the
same.

Example. The permutation illustrated by Figure 1 is a transposition because you are swap-
ping 1 and 2 while sending the 3 to itself. Thus, it can be denoted as π12.

We can now make the following observation.

Proposition 1.3. Every permutation can be expressed as a composition of transpositions.

1The reason we have i < j is so we can’t have πij and πji for the sake of notation.
1
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1 1

2 2

3 3

σ

Figure 2. The permutation σ = π12 ◦ π13.

Example. The permutation in Figure 2 reorders 1, 2, 3 to 2, 3, 1. So, expressing it as a
composition of transpositions, we can write it as π12 ◦ π13 (the order in which we apply the
transpositions is right to left as in function composition).

You can also note here that applying these transpositions in reverse to the permutation
will give you the identity permutation. So for Figure 2 we have π13 ◦π12 ◦σ = id. In general,
it is true that if you express a given permutation as a composition of transpositions, reversing
the order of transpositions and applying it to the permutation will give you the identity.

A natural question arises: given a reordering of a set, can you say anything about the
number of transpositions needed to express the permutation? In fact, there is a neat answer
to this question!

Lemma 1.4. The number of transpositions needed to express a given permutation is always
odd or always even.

The proof of this lemma requires machinery outside of the scope of this paper. However,
if you are interested in the proof it can be accessed here: [reference]. With Lemma 1.4 the
following definition is quite natural:

Definition 1.5. We call a permutation even if it is composed by an even number of trans-
positions, and odd if it is composed by an odd number of transpositions.

Lemma 1.4 and Definition 1.5 allow us to introduce a new notion: the sign of a permuta-
tion.

Definition 1.6. Given a permutation σ, we define sign(σ) as

sign(σ) =

{
1 if σ is even

−1 if σ is odd

Example. Since permutation in Figure 2 is π12 ◦ π13, we have that its sign is 1.

A natural question would be how is this related to determinants? So far, we have been
talking about mathematical tools used in the world of combinatorics. So, the connection to
linear algebra is not immediately obvious. The connection comes in the form of the Leibniz
formula for determinants.

Lemma 1.7 (Leibniz Expansion). The determinant of an n× n matrix A is given by:

detA =
∑
σ∈Sn

sign(σ) a1σ(1)a2σ(2) · · · anσ(n),

where Sn is the set of all permutations on {1, . . . , n}.
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Figure 3. The sets A and B along with the edges between them and their
respective weights. Taken from [reference].

The proof of this lemma is quite long will and thus be omitted from this paper. However,
it can be found in [reference].

Now recall that the LGV-Lemma relates the determinant of a matrix to a graph. Even
though the LGV-Lemma applies to the more general acyclic directed graphs, to build intu-
ition, we explore a special case: directed bipartite graphs.

Definition 1.8. A bipartite graph is a graph whose vertices can be split into two disjoint
sets, U and V such that every edge in the graph connects a vertex in U with a vertex in V .

Notice we want to relate our graph to the determinant of a matrix, and determinants are
only defined on matrices of sizes n × n. Thus, we examine a bipartite graph without multi
edges, whose disjoint sets of vertices are both of size n. We call these sets A and B where
A = {A1, . . . , An} and B = {B1, . . . , Bn}. Additionally, we can assign a weight to each edge
in the graph.

Now we can very naturally define a matrix. We define our path matrix M as the n × n
matrix with mij equal to the weight of the edge between Ai and Bj

2. The graph with the
weights is depicted in Figure 3.

Now take a look at the formula for the determinant of M :

detM =
∑
σ∈Sn

sign(σ) m1σ(1)m2σ(2) · · ·mnσ(n).

How do we interpret the right hand side? First, we need to understand what the permu-
tation σ is actually doing. Every σ, corresponds to the set of edges

A1 → Bσ(1), . . . , An → Bσ(n).

This gives us a path system (We define this later in Definition ??) . We can denote it by
Pσ. Now we can define the weight of a path system Pσ as

w(Pσ) = w(A1 → Bσ(1)) · · ·w(An → Bσ(n)).

2We assume that there exists an edge between every two vertices Ai and Bj . In the case where there does
not exist an edge, we can simply set its weight equal to 0
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So, we notice immediately that that w(Pσ) = m1σ(1) · · ·mnσ(n). Thus, we are able to rewrite
our formula for the determinant of M as

detM =
∑
σ∈Sn

sign(σ)w(Pσ).

This is a nice way to think of the determinant. But we can actually generalize this way of
thinking to acyclic directed graphs. This is what the LGV-Lemma is all about! Before we
can introduce the formal statement of the lemma we need to talk about some of the tools
that will be used in its proof.

The graph in the LGV-Lemma is denoted G = (V,E). G is finite, acyclic, and directed.

Definition 1.9. A graph is acyclic if it contains no cycles.

The graph being acyclic prevents there from being infinite paths between two vertices3.
We can also give every edge e in the graph a weight. We can call it w(e) ∈ R.

Additionally, we are able to split G into two sets of vertices A = {A1, . . . , An} and
B = {B1, . . . , Bn} where they are both of size n.

In the bipartite case we simply took the weight of the edge. However, in the general
case we consider paths with more than just one edge. Thus, we come up with the following
definition.

Definition 1.10. Suppose we have a path P between vertices A ∈ A and B ∈ B, denoted
P : A → B, then we define its weight as

w(P ) =
∏
e∈P

w(e).

Now, just as in the bipartite case, we need to define a path matrix. We can define the
path matrix M as having

mij =
∑

P :Ai→Bj

w(P ).

If there do not exist any paths between Ai and Bj we let mij = 0. In other words, mij is
the sum of the weights of all paths between Ai and Bj. Now we can return to the idea of a
path system.

Definition 1.11. A path system from A to B consists of a permutation σ together with n
paths from Pi : Ai → Bσ(1), for i = 1, . . . , n

Example. Figure 4 is a graph with A = {A1, A2} and B = {B1, B2}.The path system contains
P1 (the blue path) and P2 (the red path). The permutation associated with the path system
is π12.

Just as we defined a weight for a path, it makes sense to define weights for a path system.

Definition 1.12. We define the weight of a path system as the product of its path weights.
That is,

w(P) =
n∏

i=1

w(Pi)

3if you have a cycle, you can keep going in loops i.e. infinite paths.
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A1 B1

◦

A2 B2

2

103
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35

7

Figure 4. A path system.

where the Pi are the paths associated with the path system.

Since a path system P is associated with a permutation σ, it makes sense to give it a
notion of sign.

Definition 1.13. We define sign(P) as being equal to sign(σ) where σ is the permutation
associated with P .

Now we give a word to describe path systems whose paths are non-intersecting.

Definition 1.14. We say a path system P = (P1, . . . , Pn) is vertex disjoint if the paths of
P are pairwise disjoint.

We now have everything to state the Lindström-Gessel-Veinnot Lemma.

Lemma 1.15 (Lindström-Gessel-Viennot). Let G = (V,E) be a finite weighted acyclic di-
rected graph, A = {A1, . . . , An} and B = {B1, . . . , Bn} two sets of n vertices, and M the
path matrix from A to B. Then

det(M) =
∑

P vertex-disjoint
path system

sign(P) w(P).

Proof. We know from the Leibnitz expansion that

detM =
∑
σ∈Sn

sign(σ) m1σ(1)m2σ(2) · · ·mnσ(n).

However, recalling that miσ(i) is the sum of all the paths between Ai and Bσ(i) we can write

miσ(i) =
∑

Pi:Ai→Bσ(i)

w(Pi).

Substituting into m1σ(1)m2σ(2) · · ·mnσ(n) we get the following:

m1σ(1)m2σ(2) · · ·mnσ(n) =

 ∑
P1:A1→Bσ(1)

w(P1)

 ∑
P2:A2→Bσ(2)

w(P2)

 · · ·

 ∑
Pn:An→Bσ(n)

w(Pn)

 .

Now imagine expanding the product of sums. What you will end up with is the sum of
all possible products of weights where the ith term (from the left) in each product is the
weight of a path from Ai → Bσ(i). Recalling Definition 1.12, we can notice that the sum of
these products is actually the sum of the weights of all path systems associated with σ. By
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Figure 5. The first intersection of two paths in P .

Definition 1.13 the sign of a path system associated with a permutation σ is sign(σ). Thus,
it follows that

sign(σ) m1σ(1)m2σ(2) · · ·mnσ(n) =
∑

P associated
with σ

sign(P) w(P).

This immediately gives us

det(M) =
∑
P

sign(P) w(P).

We now need to somehow make the jump to the statement of the LGV-Lemma. We will do
this by showing that ∑

P∈N

sign(P) w(P) = 0,

where N is the set of all intersecting path systems. We accomplish this by making a very
elegant bijective argument.

First take a P ∈ N with Pi : Ai → Bσ(i), where σ is the permutation associated with P .
We know by definition that some two paths in P will intersect. Now we define i0 as the
minimal index such that Pi0 ∈ P shares some vertex with another path. We can let the first
common such vertex be called X. We let j0 be minimal index (j0 > i0) such that Pj0 has
the vertex X in common with Pi0 . This intersection is depicted in Figure 5.

Now we will define a function γ : N → N . We say that γ(P) = (P
′
1, . . . , P

′
n) where we

have the following:

• P
′

k = Pk if k ̸= i0, jo.

• P
′
i0

goes from Ai0 to X and then continues along the path of Pj0 until it reaches

Bσ(j0). Similarly, P
′
j0

goes from Aj0 to X at which point it goes along Pi0 until it
reaches Bσ(i0).
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Figure 6

We will clearly have γ(γ(P)) = P since all γ does is flip the paths. So, applying it twice will
flip it back to its initial state. We also know that w(γ(P)) = w(P) since both path systems
have exactly the same edges. Finally, we have that if the permutation associated with γ(P)
is σ

′
, then sign(σ

′
) = −sign(σ). This is because we have πi0jo ◦ σ = σ

′
.

Thus, we are able to pair up all P ∈ N with another path system with opposite sign and

same weight. Therefore,
∑
P∈N

sign(P) w(P) = 0. It immediately follows that

det(M) =
∑

P vertex-disjoint
path system

sign(P) w(P),

proving the lemma.
■

2. Applications Of The Lindström-Gessel-Viennot Lemma

How do we use the LGV-Lemma in practice? This lemma is incredibly adaptable since
you can either solve a determinant to get an answer to a combinatorics problem, or you can
analyze a combinatorics problem to solve for a determinant. We can first look at solving a
combinatorics problem through solving a determinant.

We begin with the problem of the determined ants which was originally stated in [refer-
ence].

Question 2.1. If an ant can only move to the right along the grid, how many ways are there
for the ants in Figure 6 to reach different pieces of food without their paths crossing each
other?

The problem is just asking to count the number of non-intersecting path systems. But is
the LGV-Lemma even applicable? One thing that we can immediately notice is that even
though the graph in Figure 6 doesn’t have any arrows to indicate direction, it implicitly has
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Figure 7. Recursively counting paths for Ant 2.

direction because of the condition that the ants can only move to the right. This condition
also forces the graph to be acyclic since in order for a cycle to exist an ant would have
to move left at least once. We also have a very natural choice of points for our two sets
of vertices. The 4 origin points (the ants), and the 4 destinations (the food). Thus, the
LGV-Lemma is applicable! We will first compute the path matrix M .

Label the ants from bottom to top as Ant 1 to Ant 4, and the destinations (apple, banana,
etc.) as Destination 1 to Destination 4. We will also set the weight of each edge to be 1.
This makes sense because then each path will have weight 1 which forces all path systems to
also have weight 1. This is ideal since each path system will only contribute a 1 or −1 to the
final sum. With this weight condition the mij entry of the path matrix becomes the number
of paths from Ant i to Destination j. How do we count this? It’s actually pretty simple
using recursion as shown in Figure 7. Using recursion we can see that m21 = 20, m22 = 15,
m23 = 6, and m24 = 1. Doing the same thing for each of the ants, we end up with the path
matrix

M =


14 6 1 0
20 15 6 1
15 20 15 6
6 20 15 14

 .

A very natural question is why would the LGV-Lemma actually work here? The statement
would says that

det(M) =
∑

P vertex-disjoint
path system

sign(P) w(P).

What is stopping some path systems from contributing a −1 and erasing other path systems
from the sum. It all comes from the key observation that the only way for a non-intersecting
path system to exist in Figure 6 is if Ant i goes to Destination i.4 In fact, this property is
so special we give a name.

4This is pretty clear just by looking at it, but if you are confused trying some examples should help.
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(6, 6)

(0, 0)

Figure 8. A route from (0, 0) to (6, 6).

Definition 2.2. graph G = (V,E) that satisfies the conditions of the LGV-Lemma is called
nonpermutable if all vertex-disjoint path systems are associated with the identity permuta-
tion.

Having a nonpermutable graph gives us a crucial piece of information as all vertex-disjoint
path systems are now forced to have their sign equal to 1. This leads to a neat result.

Corollary 2.3. If a graph G = (V,E) satisfies the conditions for the LGV-Lemma, is
nonpermutable, and all its edges have weight 1, then

det(M) = number of vertex-disjoint path systems associated with id .

Proof. Since G is nonpermutable, we know that all its vertex-disjoint path systems have sign
equal to 1. Additionally, since the weight of every edge is equal to 1 we get by Definition
1.10 that the weight of every path is 1. It immediately follows from Definition 1.12 that the
weight of all the path systems is 1. Thus, we get

det(M) =
∑

P vertex-disjoint
path system

sign(P) w(P) =
∑

P vertex-disjoint
path system

1

which is just the number of vertex-disjoint path systems. ■

It follows directly from Corollary 2.3 that the number of non-intersecting path systems in
Figure 6 is just det(M) = 889.

We will now introduce two problems in which we can use a combinatorial way of thinking
to prove identities for determinants.

We begin with introducing the Catalan Number. Say we have a standard coordinate grid.
Our origin point will be (0, 0) and our destination will be (n, n). We can consider paths
along the grid from (0, 0) to (n, n). Specifically, paths that only go up or right.

It is fairly easy to count paths that go up and right without any other restrictions. This
is because in order to get from, (0, 0) to (n, n), you need to make n ups and n rights.All of
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the satisfying paths will just be some reordering of these ups and rights. Thus, the total
number of these paths is just

(
2n
n

)
.

Example. In Figure 8 the number of paths from (0, 0) to (6, 6) that only go up and right
along the grid will be

(
12
6

)
= 924.

Now we can explore another special type of path. We call this path a route.

Definition 2.4. We call a path a route if it goes up and right along the grid, but every
coordinate (x, y) on the path satisfies y ≤ x.

In other words, a route should stay below the line y = x.

Example. The path depicted in Figure 8 is a route.

The problem of counting routes is significantly more difficult then just counting up and
right paths. However, we are able to accomplish this using the Catalan Numbers.

Lemma 2.5. the number of routes from (0, 0) to (n, n) is the nth Catalan Number where

Cn =
1

n+ 1

(
2n

n

)
,

and n ≥ 0.

One way you can show this is induction. However, there are many nice visual proofs that
can be found on YouTube. This is one of them [reference].

Now that we had a brief introduction to Catalan Numbers, we can start talking about an
interesting determinant identity.

Claim 2.6. If we have

S =


C0 C1 C2 · · · Cn

C1 C2 C3 · · · Cn+1

C2 C3 C4 · · · Cn+2

...
...

...
. . .

...
Cn Cn+1 Cn+2 · · · C2n

 ,

then det(A) = 1.

Proving this identity with a Leibniz Expansion seems pretty difficult. This is especially
true since you don’t know how big n is. But this problem is solved simply using the LGV-
Lemma! To do this you can construct an acyclic directed graph G that satisfies the LGV
lemma, and whose path matrix is of the form of matrix S. We will show this for the case
n = 3 but the proof for all n is the same.

Proof. We construct the graph G in Figure 9. We say that the horizontal edges in the
graph have direction going to the right, and all vertical edges have direction going upwards.
We also assume that each edge has weight 1. We make it so that our first set of vertices
is O = {O0, O1, O2, O3} (origins) and our second set D = {D0, D1, D2, D3} (destinations).
Clearly with these conditions, G satisfies the assumptions for the LGV-Lemma.
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Figure 9. The graph G for n = 3. Take from [reference].

We want to determine the path matrix for G. The first thing that we can note is that
since all edges have weight 1, every path also has weight 1. Thus, if our path matrix M has

mij =
∑

P :Oi→Dj

w(P ),

then mij is simply the number of paths from Oi to Dj. Is this simple to compute? Yes! It’s
fairly easy to see that because of the direction of the edges, all paths between origins and
destinations must be routes. Thus, we can use Catalan Numbers! Noting that the number
of paths between Oi and Dj is Ci+j, we get the path matrix

M =


C0 C1 C2 C3

C1 C2 C3 C4

C2 C3 C4 C5

C3 C4 C5 C6

 ,

where M is clearly of the form of S but for n = 3. Now we would like to show that the
determinant of M is 1. But how do we go about this? From the LGV-Lemma we have that

det(M) =
∑

P vertex-disjoint
path system

sign(P) w(P).

So, we want to find the vertex disjoint path systems. The key observation is that this graph
is nonpermutable. This is easy to see just by looking at G. This allows us to use Corollary
2.3 to say that

det(M) = number of vertex-disjoint path systems associated with id .

In fact, we can notice that there one such 1 path system. This path system is the one
depicted in Figure 9. Therefore, det(M) = 1. We can do the same thing for all n by simply
constructing a large enough graph of the same type. Doing this will prove Claim 2.6.

■

We now explore a theorem Binet and Cauchy. This theorem is yet another striking example
of the flexibility of the LGV-Lemma in determinant problems.
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Figure 10. The bipartite graph for Binet-Cauchy. Taken from [reference].

Claim 2.7 (Binet-Cauchy). If P is a r × s matrix and Q an s× r matrix, r ≤ s, then

det(PQ) =
∑
Z

(detPZ)(detQZ),

where PZ is the r × r submatrix of P with column-set Z, and QZ the r × r submatrix with
the corresponding rows Z.

Proof. As before, we want to construct a graph whose path matrix is equal to PQ. We
construct the graph G so that it is split into 3 disjoint sets of vertices A = {A1, . . . , Ar},
B = {B1, . . . , Bs}, and C = {C1, . . . , Cr}. There will exist no edges between vertices within
the same set. We put an edge between every A ∈ A and B ∈ B with direction going towards
B. Similarly, we put an edge between every B ∈ B and C ∈ C with direction going towards
C. Finally, we say that the edge between Ai and Bj has weight pij, where pij is (i, j)th entry
of P , and the edge between Bi and Cj has weight qij, where qij is the (i, j)th entry of Q.
This graph is depicted in Figure 10

We must first check if the graph satisfies the conditions of the LGV-Lemma. It is clearly
finite and directed. It is also acyclic since all edges are directed “downward”. Thus, there
couldn’t possibly exist a cycle since it would need to have an “upward” directed edge. We
can also set our two sets of vertices as A and C. Therefore, G satisfies all the conditions to
use the LGV-Lemma!

Now we must construct our path matrix. We know that mij will be the sum of all the
weights of the paths from Ai to Cj. We can notice that to go from Ai to Cj we just need to
pick a vertex Bk to go through. The weight of this path will be pikqkj. Since Bk can be any
vertex in B, we know that

mij =
∑

1≤k≤s

pikqkj.
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Now that we know what our path matrix looks like, we make the following observation by
looking at PQ. Writing out the product in terms of our matrices we have

PQ =

p11 · · · p1s
...

. . .
...

pr1 · · · prs


q11 · · · q1r

...
. . .

...
qs1 · · · qsr

 .

In the matrix multiplication we have that the (i, j)th term of PQ will be the dot product of
the ith row of with P with the jth column of Q. This gives us that

(i, j)th entry of PQ =
∑

1≤k≤s

pikqkj.

It is now clear why the LGV-Lemma is useful. PQ and the path matrix are the same! So,
we can get information about the determinant of PQ by looking at the vertex-disjoint path
systems of G. But how do we relate

det(PQ) =
∑

P vertex-disjoint
path system

sign(P) w(P).

to Claim 2.7? Well we can first note that every vertex-disjoint path system needs to pass
through r of the vertices in B. Therefore, every single path system can be sorted into groups
based on which which r vertices in B they pass through (There are

(
s
r

)
subsets of B with

r vertices). Label the r sized subsets of B as Z1, . . . ,Z(sr). Since we can group the vertex

disjoint path systems, we can rewrite our above equation as the following.

det(PQ) =
∑

P vdps
correspond to Z1

sign(P) w(P) + · · · +
∑

P vdps
correspond to Z

(sr)

sign(P) w(P).

Our goal is to get each of these sums in a form that is close to that Claim 2.7.

Without loss of generality assume that Z1 = {B1, B2, . . . , Br}. We will attempt to rewrite
the term ∑

P vdps
correspond to Z1

sign(P) w(P).

We want to tackle this by breaking down our path systems into simpler parts. We first make
the observation that each of the vertex-disjoint path systems that pass through the set Z1

can actually be broken down into two different vertex disjoint path systems. We have one
vertex-disjoint path system from A to Z1, and another from Z1 to C. In fact, we can say
more. Let the set of all vertex-disjoint path systems between A and Z1 be X, and the set
of all vertex-disjoint path systems between Z1 and C be Y . Then we know that the set of
all vertex-disjoint path systems between A and C that pass through the vertices in Z1 are in
one to one correspondence with the cartesian product X × Y . this is clear because say that
P from A to C can be broken into P1 ∈ X and P2 ∈ Y . Then we can simply pair P with
(P1,P2).
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How can we use this information to solve our problem? We can make a very clever
observation. Take the r × r submatrix of P that has its r rows and its first r columns5. We
will call this matrix PZ1 . We also take the r× r submatrix of Q with the first r rows and its
r columns. This matrix will be denoted QZ1 . Then we have that∑

P vdps
correspond to Z1

sign(P) w(P) = det(PZ1) det(QZ1).

Where does this come from? From the LGV-Lemma we have that

det(PZ1) =
∑
P1∈X

sign(P1) w(P1),

and
det(QZ1) =

∑
P2∈Y

sign(P2) w(P2).

Therefore, we have that

det(PZ1) det(QZ1) =

(∑
P1∈X

sign(P1) w(P1)

)(∑
P2∈Y

sign(P2) w(P2)

)
.

Let us denote the set of all vertex-disjoint path systems from A to Z1 as X, and the set
of all vertex-disjoint path systems from Z1 to C as Y . Then expanding the product on the
right hand side we get ∑

P1∈X and P2∈Y

sign(P1)w(P1)sign(P2)w(P2).

Now recall that the set of vertex-disjoint path systems between A and C that pass through
the vertices in Z1 are in one to one correspondence with the cartesian product X × Y . Take
the path system P between A and C, passing through Z1, and its components P1 ∈ X and
P2 ∈ Y . Then we can notice that

w(P) = w(P1)w(P2).

Additionally, say that σ is the permutation corresponding with P , σ1 the permutation cor-
responding with P1, and σ2 the permutation corresponding with P2. Then we will have
that

σ = σ2 ◦ σ1.

Now we introduce the following lemma:

Lemma 2.8. If σ1, σ2 ∈ Sn, then

sign(σ2 ◦ σ1) = sign(σ2)sign(σ1)

A proof can be found here [reference]. Applying this we see that sign(σ)=sign(σ2)sign(σ1).
Therefore,

sign(P) = sign(P1)sign(P2).

This gives us ∑
P vdps

correspond to Z1

sign(P) w(P) = det(PZ1) det(QZ1).

5We do this since the numbers of the columns correspond to the subscripts of the vertices in Z1.
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Figure 11. A connected graph G (left) and its spanning tree (right). Taken
from [reference].

We showed this for Z1 = {B1, B2, . . . , Br}. But we can apply this same logic to any r sized
subset of Z ∈ B by only changing the part in the proof where we construct the submatrix.
In the general case we pick the columns that correspond to the subscripts of the vertices
in Z for our submatrix PZ , and the rows that correspond to the same subscripts for the
submatrix QZ . The Binet-Cauchy Theorem easily follows. ■

3. The Matrix-Tree Theorem

The Matrix-Tree Theorem was discovered by a man named Gustav Kirchhoff in the 1880s.
His theorem gives the number of spanning trees of a graph G in terms of the determinant of
a matrix derived from G. Before we can introduce the theorem, we need to talk about some
definitions. We first talk about the notion of a connected graph.

Definition 3.1. An undirected graph G = (V,E) is connected if for every u, v ∈ V there
exists a path between u and v.

Example. Both graphs depicted in Figure 11 are connected graphs.

We also define what it means for a graph to be loopless.

Definition 3.2. We say that a graph is loopless if there doesn’t exist an edge going from a
vertex to itself.

Example. Both graphs depicted in Figure 11 are loopless.

Now we define what a spanning tree is.

Definition 3.3. A spanning tree of a graph G is a connected acyclic subgraph of G with
the same vertex set.

Example. The graph to the right in Figure 11 is a spanning tree of the graph to the left.

Now just as in the LGV-Lemma, we want to construct a matrix that counts what we want
in the graph. In this case, spanning trees. How do we do this here? We do this by first
defining something called the adjacency matrix.

Definition 3.4. We define the adjacency matrix A of a graph G as the matrix with its aij
entry equal to the number of edges between vertex i and j.
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D − A =



2 0 −1 −1 0 0 0 0 0 0
0 3 0 0 0 −1 0 0 −1 −1
−1 0 3 0 −1 0 0 −1 0 0
−1 0 0 3 −1 0 0 0 0 −1
0 0 −1 −1 2 0 0 0 0 0
0 −1 0 0 0 3 0 −1 −1 0
0 0 −1 0 0 0 3 −2 0 0
0 0 0 0 0 −1 −2 3 0 0
0 −1 0 0 0 −1 0 0 2 0
0 −1 0 −1 0 0 0 0 0 2


.

Figure 12. The matrix D − A for the graph in Figure 11.

We also define a diagonal matrix.

Definition 3.5. We define the diagonal matrix D of a graph G as the matrix with dii equal
to the degree of the vertex i. All entries not along the diagonal are equal to 0.

The matrix we work with in the Matrix-Tree Theorem is actually the matrix D − A.

Example. The matrix in Figure 12 is D − A for the graph depicted in Figure 11.

Is the determinant of this matrix the number of spanning trees in G? No! Notice that
the sum of the entries in each row of D − A is actually 0. This is because in row i, the ith
column will just the degree of vertex i. But each of the other columns will have the negative
of the number of edges from i to another vertex. Therefore, adding all the entries in the row
together must give us 0. But this means that the columns of D−A add to 0 making them lin-
early dependent and the matrix non-invertible. This forces the determinant of D−A to be 0.

The Matrix-Tree Theorem instead looks at the submatrix that comes from deleting any
row of and column of D − A. The determinant of this matrix will give us the number of
spanning trees of G.

Theorem 3.6. Let G be a loopless undirected graph with n vertices, adjacency matrix A, and
diagonal degree matrix D. If Brs signifies the (n− 1)× (n− 1) matrix obtained by deleting
from D − A its rth row and sth column, then the number of spanning trees of G is equal to
(−1)r+s det(Brs) for any choice of r and s.

In this paper we will only show the proof of the case when r = s = n. However, a proof
for the general case can be found here [reference]. The proof will be of the same flavor as
our previous proof for the LGV-Lemma. We will show that the acyclic graphs are counted
in the determinant of Bnn, but then show that the cyclic graphs that are counted will some
how cancel each other out and leave us with only the acyclic ones.

Proof. We first note that for any spanning tree of G, there is only one way to orient all the
edges in such a way that they point at the vertex n 6. We can also see that the trees must
have n− 1 edges and the outdegree of every nonroot vertex is 1. Essentially what this graph

6This is easy to see just by thinking about the vertices in layers of connections. Combining with the fact
that the spanning tree is acyclic gives us this result.
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is is a function from the set {1, . . . , n − 1} to {1, . . . , n}. The function maps the vertex
i ∈ {1, . . . , n− 1} to the vertex j ∈ {1, . . . , n} that it is oriented towards.

Example. The rooted spanning tree in Figure 13 has f(1) = f(5) = 4.

Figure 13. The spanning tree of Figure 11 rooted at n = 10.

In general, we call any spanning tree in which every nonroot vertex has outdegree 1 a
functional digraph. Let the set of all functional digraphs in G be denoted by F . We can now
note that all vertices in a functional digraph either lead to n or are contained in a cycle that
doesn’t contain n. The acyclic functional digraphs are spanning trees of G.

Now we consider the set of signed functional digraphs S. This is the set of all F ∈ F but
we now give every cycle in F a sign (positive of negative). Note that a functional digraph
with k cycles will have 2k copies in S.

Example. The graph depicted in Figure 14 is a typical example of a signed functional digraph.
We can note that the functional digraph in this figure actually has 4 signed copies including
this one.

Figure 14. A typical example of a signed functional digraph.
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Figure 15. The B matrix for the graph in Figure 11.

Now we define the sign of a graph S ∈ S to be the product of the signs of its cycles. If S
is acyclic, then it is a spanning tree and its sign is positive. If S is cyclic (contains at least
one cycle) then we define its conjugate S as the graph with the same functional digraph but
with the sign of its first cycle reversed. We define the first cycle of S as the cycle which
contains the small vertex.

Example. The first cycle of the graph depicted in Figure 14 is the cycle containing the vertices
2, 9, and 6 .

We can notice that sign(S) = −sign(S) and that S = S. This should look similar as it is
the same strategy we used in the proof of the LGV-Lemma except we used the signs of path
systems. In fact, because of this condition we know that there is a one-to-one correspon-
dence between the negative signed functional digraphs and positive signed cyclic functional
digraphs.

Now we want to somehow relate B (the submatrix gained from deleting the 10th row
and 10th column of D − A) to this idea. Suppose in G that there is a directed edge from
i ̸= n to j ̸= n. Then the directed edge is represented twice in the matrix B. Once on
the diagonal positively at bii and once negatively at bij. A directed edge from i to n is
represented positively only once. Therefore, we can see that every signed function digraph
S ∈ S is associated with n− 1 1s or −1s in the matrix B.

Example. The bolded 1s in the matrix in Figure 15 represent the signed functional digraph
depicted in Figure 14.

So essentially we are trying to count combinations of n − 1 1s and −1s in the matrix B.
This motivates us to bring back our Leibniz expansion:

detB =
∑
σ∈S9

sign(σ) b1σ(1)b2σ(2) · · · b9σ(9).

In fact, what we can observe is that non-zero terms in this summation will be in one-to-
one correspondence with the set S. This is because every S ∈ S can be represented in
the determinant by its combination of 1s and −1s, and every combination of 1s and −1s in
determinant represents a signed functional digraph 7.

7Trying examples with the matrix B in Figure 15 will help you see why this is true.
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1 1

2 2

3 3

4 4

σ

Figure 16. A cyclic permutation.

Now we can see that if a signed functional digraph S has m negative edges, then its
contribution to det(B) will be XS = (−1)msign(πS) where πs is the permutation associated
with S. All that is left to show is that XS = sign(S). Then we will have that

det(B) = # of spanning trees.

To do this we will introduce the notion of a cyclic permutation.

Definition 3.7. A permutation σ from {1, . . . , n} → {1, . . . , n} is called cyclic if there exists
a1 < a2 < · · · < ai ∈ {1, . . . , n} such that

σ(aj) = aj+1(mod i),

and the rest are fixed under the permutation.

The reason why the permutation is called cyclic is clear since the permutation cycles the
ais.

Example. The permutation in Figure 16 is cyclic since f(1) = 3, f(3) = 4, f(4) = 1, and 2
remains fixed.

Remark 3.8. We should note here that the sign of a cyclic permutation where k is the number
of elements in the cycle is (−1)k−1.

This is incredibly important since if C1, C2, . . . , Ck are the negative cycles that are in S,
then πS = π1 ◦ π2 ◦ · · · ◦ πk where πi is the natural cyclic permutation associated with Ci.
Thus, we are able to apply Lemma 2.8 to say that

sign(πS) = sign(π1 ◦ π2 ◦ · · · ◦ πk). = sign(π1) · · · sign(πk).

Now say we have that mi is the number of edges in the cycle Ci and m is the total number
of negative edges. Then we have that m1 + · · ·+mk = m. Thus, we get

XS = (−1)m sign(πS) = (−1)m sign(π1 · · · πk)

= (−1)m1+···+mk sign(π1) · · · sign(πk)

= (−1)m1+···+mk (−1)m1−1 · · · (−1)mk−1

= (−1)k = sign(S).

This proves Theorem 3.6 for the case r = s = n. ■
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Figure 17. The complete graph K5.

4. An Application of the Matrix-Tree Theorem

We will first talk about the definition of a complete graph.

Definition 4.1. We say that a loopless graph G = (V,E) is complete if for every u, v ∈ V
there exists exactly one edge between u and v. It is denoted Kn where n = |V |.

Example. The graph depicted in Figure 17 is the complete graph K5.

Remark 4.2. It is important to note here that complete graph Kn has
(
n
2

)
edges in total, and

every vertex has degree n− 1.

So, given a complete graph Kn can we find the number of spanning trees? Yes! We make
the following claim:

Claim 4.3. The complete graph Kn has nn−2 spanning trees.

Proof. We will first construct our adjacency matrix A. This will just be n×n matrix with 0s
along the diagonal and 1s everywhere else. This is clear because by definition every pair of
distinct vertices in a complete graph has exactly 1 edge between them. The diagonal matrix
D will just be the n× n matrix with n− 1s along the diagonal and 0s everywhere else. This
is because every vertex has degree n− 1. Therefore D − A is the matrix with n− 1s along
the diagonal and −1s everywhere else.

Now we can recall that the Matrix-Tree theorem actually requires us to create a submatrix
from deleting a row and a column. We will just call B the matrix in which we delete the
last row and last column of D − A. Since r = s = n, the determinant of B is the number
of spanning trees of Kn. Now notice that we can actually write B is a clever way. Observe
that

B = nI − J,

where I is the n− 1× n− 1 identity matrix and J is the n− 1× n− 1 matrix filled with 1s.
What is so special about this form? It allows us to easily see the eigenvalues! We can see
that because J has all ones, all the columns are the same. Thus, it has rank 1. Therefore,
we can apply Rank-Nullity.

Theorem 4.4 (Rank-Nullity). For any matrix M we have that the

rank(M) + null(M) = # of columns in M.
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This theorem is really better understood when you think of matrices as linear transforma-
tions. The rank of a matrix is the dimension of its image, and the nullity is the dimension
of its kernel. A proof can be found here: [reference]. By applying Rank-Nullity to J , we
are able to see that the dimension of the kernel of J is n− 2. Since 0 is an eigenvalue of J
with geometric multiplicity (gemu) n−2, we get that n is an eigenvalue of B with geometric
multiplicity n − 2. This is because Bv = nv ⇔ Jv = 0 for v ∈ Rn−1. Additionally, we see
that if multiply the vector u = [1, 1 . . . , 1], where u has n− 1 1s, with B we will get u back.
Therefore, 1 is also an eigenvalue with geometric multiplicity at least 1. However, we must
have that

gemu(n) + gemu(1) ≤ n− 1.

Since gemu(n)= n − 2, we must have that gemu(1)=1. This lets us know that n and 1 are
the only eigenvalues of B. Why are the eigenvalues imporant? There is actually a theorem
lemma relating the determinant of a matrix B with its eigenvalues.

Lemma 4.5. Given a matrix M with eigenvalues λ1, . . . , λi we have

det(M) =
i∏

j=1

λ
almu(λj)
j ,

where almu is the algebraic multiplicity.

This is pretty easy to prove by simply looking at the characteristic polynomial of M and
using Vieta’s Formulas. A full proof is found here: [reference]. But how is the almu related
to the gemu? It is through the following lemma:

Lemma 4.6. Given a matrix M with eigenvalue λ we have

gemu(λ) ≤ almu(λ).

Combining this statement with the fact the sum of the algebraic multiplicities over all
eigenvalues of B is n− 1, we have almu(n)= n− 2 and almu(1)=1. Thus, applying Lemma
?? we get det(B) = nn−2. Therefore, Kn has nn−2 spanning trees. ■
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