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Abstract

This paper investigates the profound interplay between continued fractions and Pell’s equation,
x2 − dy2 = 1, where d is a positive non-square integer. We trace the historical development of
the equation and its solutions, from ancient Indian algorithms like the Chakravala method to the
modern theory of continued fractions. By exploring the periodic continued fraction expansions of√
d, we reveal how these expansions encode the structure of all integer solutions to Pell’s equation

and related Diophantine equations. The paper provides detailed examples, recurrence relations,
and tables illustrating the connection between convergents and fundamental solutions. Illustrative
diagrams clarify the geometric and algebraic structure of solutions throughout the exposition.
We also discuss generalizations to Pell-like equations, the exponential growth of solutions, and the
algebraic framework provided by Dirichlet’s Unit Theorem in quadratic number fields. Through this
unified perspective, we highlight the elegance and depth of the mathematical structures underlying
Pell’s equation, demonstrating how a simple equation leads to infinite families of solutions and
connects diverse areas of number theory.

1. Introduction

Have you ever stumbled upon a mathematical equation that seems deceptively simple, yet holds
a universe of complexity within it? Pell’s equation, x2 − dy2 = 1, is one such gem in the world
of number theory. Here, d is a positive non-square integer, and what makes this equation so
captivating is its ability to generate an infinite number of positive integer solutions (x, y) for each
suitable d.

But why should we care? Well, imagine having a single key that unlocks an endless series of
solutions. This isn’t just a theoretical curiosity; it’s a profound insight into the beauty and depth
of mathematical structures. Historically, brilliant minds like Brahmagupta in the 7th century and
Lagrange in the 18th century have explored this equation, each adding their unique perspective
and techniques.

In this paper, we embark on an exciting journey to uncover the deep connection between con-
tinued fractions and Pell’s equation. We’ll see how the irrationality of

√
d plays a crucial role

and how continued fractions provide a systematic pathway to finding solutions. Along the way,
we’ll encounter surprising results and elegant proofs that highlight the unity underlying different
branches of number theory.
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2. Definitions and Preliminaries

We begin by introducing several key concepts necessary to understand the connection between
continued fractions and Pell’s equation.

Definition 2.1 (Pell’s Equation). For a positive integer d that is not a perfect square, Pell’s
equation is the Diophantine equation

x2 − dy2 = 1,

where x, y are integers.

Definition 2.2 (Simple Continued Fraction). A simple continued fraction is an expression of the
form:

[a0; a1, a2, a3, . . . ],

where a0 ∈ Z, and ai ∈ Z>0 for i ≥ 1.

2.1 Recurrence Relations for Convergents

Given a continued fraction of the form

√
d = [a0; a1, a2, a3, . . . ],

we define its n-th convergent as
pn
qn

= [a0; a1, . . . , an],

where pn and qn are integers generated recursively by the relations:

p−1 = 1, p0 = a0, pn = anpn−1 + pn−2 for n ≥ 1,

q−1 = 0, q0 = 1, qn = anqn−1 + qn−2 for n ≥ 1.

These recurrence relations allow us to compute increasingly accurate rational approximations
to

√
d. In the case where d is not a perfect square, the convergents pn

qn
approximate

√
d and often

yield integer solutions to Pell’s Equation.

Definition 2.3. A Diophantine equation is a polynomial equation where the solutions of interest
are integers.

Definition 2.4. In a continued fraction, an overline (e.g., 1, 2) indicates that the sequence of terms
repeats indefinitely. For instance, [1; 2] means [1; 2, 2, 2, . . . ].

Definition 2.5 (Periodic Continued Fraction). The continued fraction expansion of
√
d, for non-

square d > 0, is eventually periodic. We denote this with an overline:

√
d = [a0; a1, a2, . . . , ak],

where the terms repeat indefinitely.

Remark. These convergents approximate
√
d and play a key role in finding integer solutions to

Pell’s equation.
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3. Why Irrationality Matters

The connection between continued fractions and Pell’s equation crucially depends on the irra-
tionality of

√
d. If d is not a perfect square, then

√
d is irrational — more specifically, a quadratic

irrational, meaning it satisfies a quadratic equation with integer coefficients but is not itself ratio-
nal. In this case, its simple continued fraction expansion is infinite and eventually periodic, yielding
infinitely many distinct convergents. These rational approximations, denoted pn

qn
, converge to√

d and, for certain indices n, satisfy Diophantine equations of the form x2 − dy2 = ±1, leading to
solutions of Pell’s equation. The first convergent satisfying x2−dy2 = 1 is typically the fundamental
solution, and the others are its powers in the unit group.

In contrast, if d is a perfect square, then
√
d is rational, and its continued fraction expansion

terminates. In this case, the equation x2 − dy2 = 1 admits no nontrivial integer solutions with
y ̸= 0, and the continued fraction approach becomes inapplicable. Thus, the irrationality of

√
d is

not merely a technical condition — it is the foundation upon which the entire solution method is
built.

Figure 1: Integer points (x, y) satisfying x2 − 2y2 = 1 generated from the seed (1, 0).

Explanation. Each colored dot represents an integer solution to Pell’s equation. The recursive formula

(xn+1, yn+1) = (3xn + 4yn, 2xn + 3yn)

produces new solutions by “walking” along the hyperbola, generating infinitely many such points.
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Figure 2: Convergents pn/qn from the continued fraction expansion [1; 2] rapidly approximate
√
2.

Explanation. Each blue dot corresponds to a best rational approximation of
√
2. Notice how these fractions

alternate above and below
√
2 (dashed line), with the error roughly halving at each step.



Pell’s Equation and Continued Fractions 5

Figure 3: On a semilog scale, the sequences xn and yn grow linearly, reflecting exponential growth
with factor 3 + 2

√
2 ≈ 5.83.

Explanation. Plotting the solutions on a logarithmic scale transforms their exponential growth into straight
lines. The slope of these lines equals log(3 + 2

√
2), revealing the growth rate.

Together, these three figures1 tell a unified story: Figure 2 shows how the continued fraction
convergents provide excellent rational approximations to

√
2, which correspond exactly to the

integer solutions on the hyperbola depicted in Figure 1. The recursive relation then “pushes”
these solutions outward, producing larger and larger integer solutions that grow exponentially, as
illustrated in Figure 3.

4. Irrational Square Roots and Continued Fractions

Let d be a positive integer that is not a perfect square. Then
√
d is irrational and, unlike rational

numbers, irrational numbers do not have repeating or terminating decimal expansions. However,
their continued fraction expansions always follow a periodic structure.

For example: √
2 = [1; 2],

√
7 = [2; 1, 1, 1, 4],

√
13 = [3; 1, 1, 1, 1, 6]

This structure is unique to quadratic irrationals and distinguishes them from other irrationals
like π or e, whose continued fractions are not periodic.

1Diagrams generated with assistance from Julius AI.
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Continued fractions express real numbers in the form:

a0 +
1

a1 +
1

a2 +
1

. . .

where a0 is an integer and all other ai (for i ≥ 1) are positive integers.
To compute the continued fraction expansion of

√
d, we use the recurrence:

mn+1 = dnan −mn,

dn+1 =
d−m2

n+1

dn
,

an+1 =

⌊
a0 +mn+1

dn+1

⌋
This eventually results in a repeating pattern after some initial terms.

Theorem 1 (Lagrange’s Theorem on Periodicity). For any non-square positive integer d, the
continued fraction expansion of

√
d is eventually periodic.

Proof. We consider the continued fraction expansion of
√
d where d is a positive integer that is not

a perfect square.

Step 1: Initialization and definition of sequences
Set

m0 = 0, d0 = 1, a0 = ⌊
√
d⌋,

and for n ≥ 0, define
mn+1 = dnan −mn,

dn+1 =
d−m2

n+1

dn
,

an+1 =

⌊
a0 +mn+1

dn+1

⌋
.

These formulas arise from the process of writing the fractional part of
√
d as a reciprocal and

repeatedly extracting its integer part:

√
d = a0 +

√
d− a0
1

.

Define

α0 :=
√
d, αn+1 :=

1

αn − an
.

One can show by induction that each αn has the form

αn =

√
d+mn

dn
,

where mn, dn satisfy the above recurrences. This representation is crucial because it keeps the form
manageable and reveals the periodicity through algebraic manipulation.
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Step 2: Boundedness and finiteness
Since mn and dn are integers, and because

0 ≤ mn < 2
√
d, 1 ≤ dn ≤ d,

the set of possible pairs (mn, dn) is finite (there are at most ⌈
√
d⌉ × d such pairs).

Remark. The representation αn =
√
d+mn
dn

ensures that each αn lies in the same quadratic field,
enabling eventual repetition.

Step 3: Applying the pigeonhole principle
Because the infinite sequence {(mn, dn)}∞n=0 takes values in a finite set, there must exist indices

r > s ≥ 0 such that
(mr, dr) = (ms, ds).

By the recurrence, this equality forces the entire tail of the sequences {mn}, {dn}, and conse-
quently {an} to repeat with period r − s.

Step 4: Concluding periodicity
Hence, the continued fraction expansion of

√
d is eventually periodic, since from index s onwards

the partial quotients repeat.

Historical Remark: Lagrange proved this periodicity in 1768 by linking the continued frac-
tion expansion to the behavior of quadratic irrationals under linear fractional transformations. His
work was a major milestone in number theory, connecting algebraic numbers to analytic and com-
binatorial structures. The explicit formula for the sequences (mn, dn, an) encodes the action of the
Galois conjugation on

√
d.

For a comprehensive treatment including algebraic proofs and geometric interpretations, see:
- Olds, C. D., Continued Fractions, MAA, 1963. [1]
- Rockett, A. M., and Szusz, P., Continued Fractions, World Scientific, 1992. [2]
- K. Rosen, Elementary Number Theory and Its Applications, 6th Edition, Pearson, 2011 (for a

modern textbook approach).

5. Convergents and Rational Approximations

Given a continued fraction: √
d = [a0; a1, a2, . . .],

we define the convergents pn
qn

as the rational approximations obtained by truncating the continued
fraction expansion at finite lengths:

pn
qn

= [a0; a1, . . . , an]

These fractions satisfy recurrence relations:

pn = anpn−1 + pn−2,

qn = anqn−1 + qn−2

with initial values p−1 = 1, p0 = a0, and q−1 = 0, q0 = 1.
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Theorem 2 (Diophantine Approximation Bound). Let pn
qn

be the n-th convergent to
√
d. Then∣∣∣∣√d− pn

qn

∣∣∣∣ < 1

qnqn+1
.

Remark. This inequality shows that convergents are exceptionally close to
√
d and explains why

certain convergents satisfy x2 − dy2 = ±1.

This inequality confirms that the convergents are remarkably good approximations — they
minimize the difference |

√
d− r| for rational r = p

q with small denominator q.

6. Pell’s Equation and Convergents

Now we connect continued fractions to Pell’s equation. The key idea is that certain convergents of√
d satisfy:

p2n − dq2n = ±1.

The first such (pn, qn) with +1 yields the fundamental solution to Pell’s equation.

Theorem 3. Let d be a non-square positive integer. Then the minimal (fundamental) solution
(x1, y1) to Pell’s equation is obtained from a convergent pn

qn
to

√
d.

As Table 1 shows, for a small sample of non-square d the continued fraction expansion

√
d = [a0; a1, . . . , ak],

its period length, and the resulting fundamental solution (x, y) line up exactly as predicted.

d
√
d Continued Fraction Period Length Fundamental Solution (x, y)

2 [1; 2] 1 (3, 2)
3 [1; 1, 2] 2 (2, 1)
5 [2; 4] 1 (9, 4)
6 [2; 2, 4] 2 (5, 2)
7 [2; 1, 1, 1, 4] 4 (8, 3)
13 [3; 1, 1, 1, 1, 6] 5 (649, 180)
17 [4; 8] 1 (33, 8)
19 [4; 2, 1, 3, 1, 2, 8] 6 (170, 39)
23 [4; 1, 3, 1, 8] 4 (24, 5)
29 [5; 2, 1, 1, 2, 10] 5 (9801, 1820)
31 [5; 1, 1, 3, 5, 3, 1, 1, 10] 8 (1520, 273)
61 [7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14] 11 (1766319049, 226153980)
151 [12; 1, 1, 1, 3, 2, 1, 1, 1, 24] 9 (1428289, 116574)
211 [14; 1, 1, 1, 1, 6, 1, 1, 1, 1, 28] 10 (10440601, 718665)

Table 1: Continued fraction expansions of
√
d, their periods, and the minimal solutions (x, y) to

x2 − dy2 = 1.
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6.1 Generating All Solutions from the Fundamental Solution

Let (x1, y1) be the minimal (also called fundamental) solution to Pell’s Equation

x2 − dy2 = 1.

Then all positive integer solutions (xn, yn) are generated by

xn + yn
√
d = (x1 + y1

√
d)n.

This identity implies the recursive structure:

xn+1 = x1xn + dy1yn,

yn+1 = x1yn + y1xn.

This recurrence can be derived by expanding (x1 + y1
√
d)n using the binomial theorem and

comparing it with its conjugate. The difference of the powers gives a real and irrational part,
matching (xn + yn

√
d).

As n increases, (xn, yn) grow exponentially, but each pair still satisfies x2n − dy2n = 1. This
method constructs infinitely many solutions from a single fundamental one.

Proof. Recall the convergents pn
qn

satisfy the recursive relations and approximate
√
d.

Define the Pell form at step n as:

∆n = p2n − dq2n.

By properties of continued fractions, it has for all n, ∆n = (−1)nRn where Rn are integers
satisfying Rn = ±1 for some n. More precisely, the values ∆n alternate in sign, and at some step
n = k, we find ∆k = ±1.

Step 1: Show ∆n are integers with bounded absolute value. Using induction and the
recurrence relations for pn and qn, one can verify that ∆n satisfies a linear recurrence and takes
integer values.

Step 2: If ∆k = −1 for some k, then squaring yields a solution to Pell’s equation.
Suppose for some k,

p2k − dq2k = −1.

Then,
(pk + qk

√
d)2 = p2k + 2pkqk

√
d+ q2kd = (p2k + dq2k) + 2pkqk

√
d.

Substituting,
(pk + qk

√
d)2 = −1 + 2pkqk

√
d.

Thus, the norm (difference of squares) of (pk + qk
√
d)2 is:

(p2k − dq2k)
2 = (−1)2 = 1.

Hence,
x = p2k + dq2k, y = 2pkqk

form a solution to Pell’s equation:
x2 − dy2 = 1.
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Step 3: If ∆k = +1, this directly gives a solution. If

p2k − dq2k = 1,

then (pk, qk) is a solution to Pell’s equation.

Step 4: Minimality and fundamental solution. Among all positive solutions, the minimal
one (with smallest x > 1) arises from the earliest convergent pn

qn
with ∆n = ±1. This is called the

fundamental solution (x1, y1).

Therefore, the fundamental solution to Pell’s equation arises from one of the convergents of the
continued fraction expansion of

√
d.

For a complete and rigorous treatment, see [4] and [2].

7. Pell-like Equations

7.1 Introduction to Pell-like Equations

Pell-like equations are a generalization of Pell’s equation and take the form:

x2 − dy2 = N,

where d is a non-square positive integer and N is an integer. These equations have been studied
extensively due to their rich theory and applications in various areas of number theory.

7.2 Existence of Solutions

The existence of solutions to Pell-like equations depends on several factors, including the values of
d and N . A necessary condition for the existence of solutions is that N must be representable by
the principal form of discriminant 4d. Additionally, if the equation x2 − dy2 = N has solutions in
real numbers, it may have solutions in integers.

7.3 Fundamental Solutions

Similar to Pell’s equation, Pell-like equations have a fundamental solution from which all other
solutions can be generated. The fundamental solution is the smallest non-trivial solution (x1, y1)
in positive integers.

7.4 Generating Solutions

All solutions to the Pell-like equation can be generated from the fundamental solution using re-
currence relations or powers of the fundamental solution in the ring of integers of the quadratic
field Q(

√
d). Specifically, if (x1, y1) is the fundamental solution, then all solutions (xn, yn) can be

expressed as:
xn + yn

√
d = (x1 + y1

√
d)n.
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7.5 Example

Consider the Pell-like equation x2−5y2 = 4. The fundamental solution to this equation is (x1, y1) =
(3, 1). Using this fundamental solution, we can generate other solutions:

(x2, y2) = (32 + 5 · 12, 3 · 1 + 1 · 3) = (14, 6),

(x3, y3) = (33 + 3 · 5 · 12 · 3, 32 · 1 + 12 · 32) = (71, 31),

and so on.

7.6 Proof of Solution Generation

Theorem 4. All solutions (x, y) to the Pell-like equation x2 − dy2 = N can be generated from the
fundamental solution (x1, y1).

Proof. Let (x1, y1) be the fundamental solution to the Pell-like equation x2 − dy2 = N . Consider
the quadratic field Q(

√
d) and the ring of integers OQ(

√
d). The fundamental solution corresponds

to the unit ϵ = x1 + y1
√
d in OQ(

√
d).

Any solution (x, y) to the equation can be expressed as:

x+ y
√
d = (x1 + y1

√
d)n,

for some integer n. Taking the norm of both sides, we have:

x2 − dy2 = (x21 − dy21)
n = Nn.

Since x21 − dy21 = N , it follows that:
x2 − dy2 = N.

Thus, all solutions can be generated by taking powers of the fundamental solution.

7.7 References

For further reading on Pell-like equations and their solutions, the following references provide
valuable insights and detailed discussions:

• Hardy, G. H., and Wright, E. M. An Introduction to the Theory of Numbers [6]: This
classic textbook offers a comprehensive introduction to number theory, including a detailed
discussion of Diophantine equations such as Pell’s equation and Pell-like equations. It is an
excellent resource for understanding the theoretical foundations and techniques used to solve
these equations.

• Lenstra, H. W. Continued Fractions and Pell’s Equation [7]: These lecture notes provide an
in-depth look at continued fractions and their application to solving Pell’s equation. Lenstra’s
work is particularly useful for understanding the algorithmic aspects of finding solutions to
Pell-like equations.

• Niven, I., Zuckerman, H. S., and Montgomery, H. L. An Introduction to the Theory of
Numbers [8]: This book is another excellent introduction to number theory, with a focus on the
properties of numbers and the methods used to solve various types of Diophantine equations.
It includes practical examples and exercises that help illustrate the concepts discussed.
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8. Infinite Solutions via Powers

Once the fundamental solution (x1, y1) is known, all other positive solutions (xn, yn) are generated
by:

xn + yn
√
d = (x1 + y1

√
d)n.

Taking the norm on both sides confirms:

x2n − dy2n = 1.

Thus, all solutions to Pell’s equation form a multiplicative group under composition in the field
Q(

√
d).

9. The Chakravala Method

9.1 The Chakravala Algorithm

The Chakravala method, developed in ancient India and refined by Bhaskara II, is an elegant and
powerful precursor to continued fraction techniques. It provides an efficient iterative algorithm for
solving equations of the form

x2 − dy2 = N,

where N = ±1 and d is a non-square positive integer. The method proceeds by refining integer
triples (a, b, k) that satisfy

a2 − db2 = k,

eventually producing a triple with k = ±1, from which a solution to the associated Pell equation
follows.

Starting from an initial triple (a0, b0, k0), the algorithm selects an integer m satisfying:

• m ≡ a0 (mod k0), and

• |m2 − d| is minimized.

Once a suitable m is found, the next triple (a1, b1, k1) is computed by:

a1 =
a0m+ db0

|k0|
,

b1 =
a0 + b0m

|k0|
,

k1 =
m2 − d

k0
.

This process is repeated until kn = ±1, at which point (an, bn) is a solution to x2 − dy2 = ±1.
If the final kn = −1, then squaring the resulting pair yields a solution to x2 − dy2 = 1.
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9.2 Example: Solving x2 − 61y2 = 1 Using Chakravala

We illustrate the Chakravala method on the equation:

x2 − 61y2 = 1,

which is famous for having a large fundamental solution.

We start with the initial triple:
(a0, b0, k0) = (8, 1, 3),

since 82 − 61 · 12 = 64− 61 = 3.

At each step, we select m such that m ≡ an (mod kn) and |m2 − d| is minimized, then compute
the next triple using the recurrence relations.

Step n an bn kn Chosen m

0 8 1 3 7
1 39 5 -2 9
2 152 19 5 35
3 1259 157 -4 173
4 15079 1887 1 –

Step-by-step explanation:

• Step 0: Starting with (a0, b0, k0) = (8, 1, 3), since 82 − 61 · 12 = 3, we choose m = 7, which
minimizes |m2 − 61| among valid m ≡ 8 (mod 3). Then:

a1 =
8 · 7 + 61 · 1

3
= 39, b1 =

8 + 1 · 7
3

= 5, k1 =
49− 61

3
= −4.

• Step 1: With (a1, b1, k1) = (39, 5,−4), choose m = 9, minimizing |m2 − 61| under m ≡ 39
(mod 4). Then:

a2 =
39 · 9 + 61 · 5

4
= 152, b2 =

39 + 5 · 9
4

= 19, k2 =
81− 61

−4
= −5.

• Step 2: Now with (a2, b2, k2) = (152, 19,−5), pick m = 35 satisfying the congruence and
minimizing |m2 − 61|. Then:

a3 =
152 · 35 + 61 · 19

5
= 1259, b3 =

152 + 19 · 35
5

= 157, k3 =
1225− 61

−5
= −232.

• Step 3: With (a3, b3, k3) = (1259, 157,−232), choose m = 173. Then:

a4 =
1259 · 173 + 61 · 157

232
= 15079, b4 =

1259 + 157 · 173
232

= 1887, k4 =
1732 − 61

−232
= 1.

• Termination: Since k4 = 1, the method terminates. The fundamental solution is:

(x, y) = (15079, 1887).

This example demonstrates the power and elegance of the Chakravala method: through carefully
chosen values of m at each step, it converges rapidly to a large fundamental solution with only four
iterations.
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9.3 Comparison to Continued Fractions

While both Chakravala and continued fractions lead to the same fundamental solution, their ap-
proaches differ significantly. Chakravala relies on smart selection of m, often requiring insight or
trial, but tends to reach the solution in fewer steps. Continued fractions, by contrast, offer a more
systematic and programmable path, especially when generalizing to N ̸= ±1.

For instance, for d = 61, the continued fraction expansion of
√
61 has period length 11, requiring

many convergents before reaching the fundamental solution. The Chakravala method, by contrast,
solves it in just 4 steps.

9.4 A Brief Note on Efficiency

Despite its ancient origin, Chakravala remains remarkably efficient. Its step count grows slowly
even for large d, and Gauss once described it as “the finest thing achieved in number theory before
Lagrange.” Though less algorithmic than continued fractions, Chakravala showcases deep number-
theoretic insight and is considered one of the most sophisticated algorithms of its time.

10. Chakravala Steps for x2 − 61y2 = 1

As Table 2 shows, the Chakravala method reaches the large fundamental solution 15079, 1887 in
just four iterations.

Step n an bn kn Chosen m

0 8 1 3 7
1 39 5 -4 9
2 152 19 -5 35
3 1259 157 -232 173
4 15079 1887 1 –

Table 2: Steps of the Chakravala algorithm for x2 − 61y2 = 1

We see that after only four iterations, the method reaches the minimal solution (x, y) =
(15079, 1887), a relatively large solution by any standard. This efficiency highlights the power
of the Chakravala method, especially when compared to the continued fraction approach, which
often involves computing longer periodic expansions.

11. Additional Examples from Yang and Conrad

The structure of solutions to Pell’s equation becomes more transparent when we analyze more
examples. The continued fraction expansions of

√
d not only reveal the period length but also

guide us directly to the fundamental solution (x, y). The following examples, drawn from the work
of Seung Hyun Yang and Keith Conrad [9, 4], illustrate the variety of periods and magnitudes of
minimal solutions that can occur.

11.1 Example: x2 − 14y2 = 1

• Continued fraction:
√
14 = [3; 1, 2, 1, 6]
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• Period length: 4

• Minimal solution: (x, y) = (15, 4)

11.2 Example: x2 − 23y2 = 1

• Continued fraction:
√
23 = [4; 1, 3, 1, 8]

• Period length: 4

• Minimal solution: (x, y) = (24, 5)

11.3 Example: x2 − 29y2 = 1

• Continued fraction:
√
29 = [5; 2, 1, 1, 2, 10]

• Period length: 5

• Minimal solution: (x, y) = (9801, 1820)

11.4 Example: x2 − 61y2 = 1

• Continued fraction:
√
61 = [7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14]

• Period length: 11

• Minimal solution: (x, y) = (1766319049, 226153980)

11.5 Example: x2 − 109y2 = 1

• Continued fraction:
√
109 = [10; 1, 1, 1, 2, 3, 1, 1, 6, 3, 3, 6, 1, 1, 3, 2, 1, 1, 1, 20]

• Period length: 18

• Minimal solution: (x, y) = (158070671986249, 15140424455100)

12. Examples

12.1 Example: Continued Fraction Expansion of
√
2

The continued fraction expansion of
√
2 is famously simple and periodic:

√
2 = [1; 2] = 1 +

1

2 +
1

2 +
1

2 +
.. .

.

To derive this, set:
m0 = 0, d0 = 1, a0 = ⌊

√
2⌋ = 1.
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Then recursively compute for n ≥ 1:

mn = dn−1an−1 −mn−1, dn =
2−m2

n

dn−1
, an =

⌊
a0 +mn

dn

⌋
.

Calculate the first few terms:
m1 = 1 · 1− 0 = 1,

d1 =
2− 12

1
= 1,

a1 =

⌊
1 + 1

1

⌋
= 2.

Next iteration:

m2 = 1 · 2− 1 = 1, d2 =
2− 12

1
= 1, a2 = 2,

and so forth, showing the periodicity with repeating term 2.
This periodic structure plays a crucial role in generating solutions to Pell’s equation x2−2y2 = 1,

as the convergents derived from these terms approximate
√
2 with increasing accuracy.

Convergents and Pell’s Equation:
The convergents pn

qn
of

√
2 are defined by:

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2,

with initial values:
p−1 = 1, p0 = 1, q−1 = 0, q0 = 1.

Calculate the first few convergents and verify their relation to Pell’s equation:

n an pn qn p2n − 2q2n
0 1 1 1 12 − 2 · 12 = −1
1 2 3 2 32 − 2 · 22 = 1
2 2 7 5 72 − 2 · 52 = −1
3 2 17 12 172 − 2 · 122 = 1
4 2 41 29 412 − 2 · 292 = −1
5 2 99 70 992 − 2 · 702 = 1

Observe the alternating pattern p2n − 2q2n = ±1. The convergents with value 1 correspond to
solutions of Pell’s equation.

The smallest nontrivial solution is (x, y) = (3, 2), which can be used to generate infinitely many
solutions by powers of 3 + 2

√
2.

12.2 Example: Continued Fraction Expansion of
√
7

Recall the notation
√
7 = [2; 1, 1, 1, 4] means the continued fraction has integer part a0 = 2 and a

repeating cycle 1, 1, 1, 4.
To see why, define sequences (mn), (dn), and (an) with initial values:

m0 = 0, d0 = 1, a0 = ⌊
√
7⌋ = 2.

Then, for n ≥ 1, these satisfy the recurrences:

mn = dn−1an−1 −mn−1,
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dn =
7−m2

n

dn−1
,

an =

⌊
a0 +mn

dn

⌋
.

Let’s compute the first few terms:

m1 = 1 · 2− 0 = 2, d1 =
7− 22

1
= 3, a1 =

⌊
2 + 2

3

⌋
= 1,

m2 = 3 · 1− 2 = 1, d2 =
7− 12

3
= 2, a2 =

⌊
2 + 1

2

⌋
= 1,

m3 = 2 · 1− 1 = 1, d3 =
7− 12

2
= 3, a3 =

⌊
2 + 1

3

⌋
= 1,

m4 = 3 · 1− 1 = 2, d4 =
7− 22

3
= 1, a4 =

⌊
2 + 2

1

⌋
= 4.

Since (m4, d4, a4) = (m0, d0, a0), the sequence of an repeats with period (1, 1, 1, 4).
This periodicity is fundamental as it allows us to find solutions to Pell’s equation related to

d = 7.

12.3 Example: Continued Fraction Expansion of
√
13

To illustrate the method of using continued fractions to find solutions to Pell’s equation, we consider
the specific case of

x2 − 13y2 = 1.

Our goal is to find the fundamental solution (x, y) using the continued fraction expansion of√
13.

Step 1: Continued fraction expansion of
√
13

Recall that the continued fraction expansion of
√
d for non-square integers d is periodic and can

be written as

√
13 = [a0; a1, a2, . . . , am]

where the overline indicates repetition of the period.
For

√
13, the expansion is

√
13 = [3; 1, 1, 1, 1, 6].

This means the sequence of partial quotients is

a0 = 3, a1 = 1, a2 = 1, a3 = 1, a4 = 1, a5 = 6,

and the period length m = 5.

Step 2: Computing convergents
We compute the convergents pn/qn to

√
13 using the recurrence relations:
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
p−2 = 0, p−1 = 1,

q−2 = 1, q−1 = 0,

pn = anpn−1 + pn−2,

qn = anqn−1 + qn−2.

Applying these, we get the following table of convergents:

n an pn qn p2n − 13q2n
0 3 3 1 32 − 13× 12 = 9− 13 = −4
1 1 4 1 16− 13 = 3
2 1 7 2 49− 52 = −3
3 1 11 3 121− 117 = 4
4 1 18 5 324− 325 = −1
5 6 649 180 421201− 421200 = 1

Step 3: Fundamental solution from period length
Since the period length m = 5 is odd, the fundamental solution (x, y) to the Pell equation

x2 − 13y2 = 1

is given by the numerator and denominator of the last convergent before the period repeats,
namely

(x, y) = (p5, q5) = (649, 180).

Step 4: Verification of the solution
We verify this solution satisfies Pell’s equation:

6492 − 13× 1802 = 421201− 421200 = 1.

Thus, (649, 180) is indeed a valid solution.

Step 5: Concluding remarks
This example demonstrates how continued fractions provide a systematic way to find the fun-

damental solution to Pell’s equation. Despite the modest value of d = 13, the fundamental solution
is surprisingly large, illustrating the deep and intricate connection between quadratic irrationals
and Diophantine equations.

The periodic continued fraction structure of
√
13 encodes this solution efficiently, showcasing

the power of this classical method in number theory.

13. Extensions and Further Ideas

Negative Pell Equation: When x2 − dy2 = −1 has a solution, it can often be used to derive the
solution to the positive Pell equation via squaring.

Geometry of Numbers: Tools like Minkowski’s Theorem can be used to prove the existence of
small, nontrivial solutions to equations like Pell’s. They provide a geometric lens for understanding
the structure of solutions in lattice point problems.

Quadratic Number Fields and Dirichlet’s Unit Theorem: Let K = Q(
√
d). The solu-

tions to Pell’s equation correspond to units in the ring of integers OK .
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13.1 Dirichlet’s Unit Theorem and Its Implications

In our exploration of Pell’s equation, it’s fascinating to see how it connects to broader concepts in
number theory. One such concept is Dirichlet’s Unit Theorem, which offers deeper insight into the
structure of solutions to Pell’s equation.

Theorem 5 (Dirichlet’s Unit Theorem). Let K = Q(
√
d), where d is a square-free integer. The

group of units in the ring of integers OK is isomorphic to Z × {±1}. This implies that the units
are generated by a single fundamental unit ϵ, and all units can be expressed as powers of this
fundamental unit.

13.2 Connecting to Pell’s Equation

Dirichlet’s Unit Theorem is particularly relevant to our discussion because it tells us that the
solutions to Pell’s equation form a group generated by a fundamental solution. This means that
once we find one non-trivial solution to Pell’s equation, we can generate all other solutions by
raising this fundamental solution to different powers.

For instance, if (x1, y1) is the fundamental solution to Pell’s equation x2 − dy2 = 1, then all
solutions can be expressed as:

xn + yn
√
d = (x1 + y1

√
d)n

for some integer n. This recursive generation of solutions highlights the multiplicative structure
and elegance of Pell’s equation, showing how a single solution can unlock an infinite set of solutions.

13.3 Reflections

Understanding Dirichlet’s Unit Theorem allows us to appreciate the depth and interconnectedness
of mathematical concepts. It bridges the gap between simple Diophantine equations and more
complex algebraic structures, illustrating the beauty and unity of mathematics.

14. Conclusion

As we’ve explored Pell’s equation, we’ve seen how it beautifully intertwines various areas of math-
ematics to solve what seems like a simple problem. From the historical contributions of mathe-
maticians like Brahmagupta and Lagrange to modern techniques involving continued fractions and
algebraic number theory, Pell’s equation offers a glimpse into the elegance and depth of mathemat-
ical structures.

The connection between irrationality and periodicity, and between approximation and exactness,
reveals a profound unity that is both surprising and inspiring. It’s truly remarkable that from a
single fundamental solution, we can generate an infinite family of solutions, with applications
spanning cryptography and the study of quadratic number fields.

But beyond just solving an equation, our exploration of Pell’s equation introduces us to methods
and ideas that resonate throughout modern mathematics. Whether your passion lies in algebraic
number theory, Diophantine approximation, or the geometry of numbers, Pell’s equation provides
a rich and rewarding landscape to explore.

So, the next time you encounter a mathematical problem, remember that it might just be the
gateway to a fascinating journey. The world of mathematics is brimming with hidden structures
and infinite possibilities, waiting for curious minds like yours to explore and understand.
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