Ryan Panzer

Euler Circle

July 8, 2025

Suppose there exists a function $\Gamma(z)$ which extends the factorials onto \mathbb{R} . For any positive integer n, we have

$$\Gamma(n) = (n-1)!$$

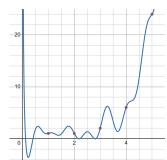
Suppose there exists a function $\Gamma(z)$ which extends the factorials onto \mathbb{R} . For any positive integer n, we have

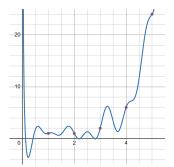
$$\Gamma(n) = (n-1)!$$

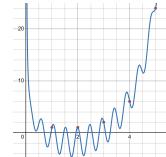
This is typically expressed using recursion

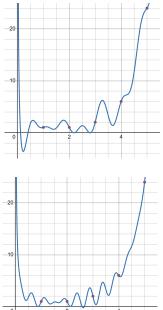
Properties of $\Gamma(z)$

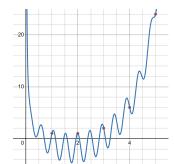
- 1. $\Gamma(1) = 1$.
- 2. $\Gamma(z+1) = z\Gamma(z)$.

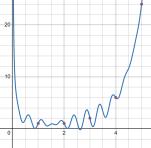


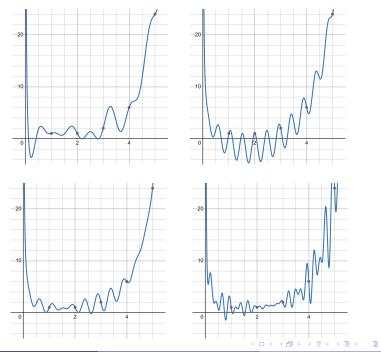












Suppose there exists a function $\Gamma(z)$ which extends the factorials onto \mathbb{R} . For any positive integer n, we have

$$\Gamma(n) = (n-1)!$$

This is typically expressed using recursion

Properties of $\Gamma(z)$

- 1. $\Gamma(1) = 1$.
- 2. $\Gamma(z+1) = z\Gamma(z)$.

Suppose there exists a function $\Gamma(z)$ which extends the factorials onto \mathbb{R} . For any positive integer n, we have

$$\Gamma(n) = (n-1)!$$

This is typically expressed using recursion

Properties of $\Gamma(z)$

- 1. $\Gamma(1) = 1$.
- 2. $\Gamma(z+1) = z\Gamma(z)$.
- 3. $\frac{d^2}{d^2z}\ln(\Gamma(z))>0$

Theorem (Bohr-Mollerup Theorem)

There exists a unique function $\Gamma(z)$ which satisfies the following properties:

1.
$$\Gamma(z+1) = z\Gamma(z)$$

2.
$$\Gamma(1) = 1$$

3.
$$\frac{d^2}{d^2z}\ln(\Gamma(z))>0$$

Proof.

Let $S(x_1, x_2)$ be the slope of the secant line of $\ln \Gamma(x)$ between x_1 and x_2 .

Proof.

Let $S(x_1, x_2)$ be the slope of the secant line of $\ln \Gamma(x)$ between x_1 and x_2 .

$$S(x_1, x_2) = \frac{\ln \Gamma(x_2) - \ln \Gamma(x_1)}{x_2 - x_1} = \frac{\ln \left(\Gamma(x_2) / \Gamma(x_1)\right)}{x_2 - x_1}.$$
 (0.1)

Proof.

Let $S(x_1, x_2)$ be the slope of the secant line of $\ln \Gamma(x)$ between x_1 and x_2 .

$$S(x_1, x_2) = \frac{\ln \Gamma(x_2) - \ln \Gamma(x_1)}{x_2 - x_1} = \frac{\ln \left(\Gamma(x_2) / \Gamma(x_1)\right)}{x_2 - x_1}.$$
 (0.1)

 $S(x_1, x_2)$ is monotonically increasing by the Log Convexity of $\Gamma(x)$, so for $x \in (0, 1]$ and $n \in \mathbb{Z}^+$ we have

$$S(n-1,n) \le S(n,n+x) \le S(n,n+1).$$
 (0.2)

$$S(n-1,n) \leq S(n,n+x) \leq S(n,n+1).$$

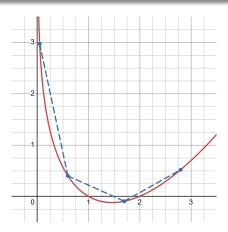


Figure: Plot of $\ln \Gamma(x)$

Proof.

Let $S(x_1, x_2)$ be the slope of the secant line of $\ln \Gamma(x)$ between x_1 and x_2 .

$$S(x_1, x_2) = \frac{\ln \Gamma(x_2) - \ln \Gamma(x_1)}{x_2 - x_1} = \frac{\ln \left(\Gamma(x_2) / \Gamma(x_1)\right)}{x_2 - x_1}.$$
 (0.1)

 $S(x_1, x_2)$ is monotonically increasing by the Log Convexity of $\Gamma(x)$, so for $x \in (0, 1]$ and $n \in \mathbb{Z}^+$ we have

$$S(n-1,n) \le S(n,n+x) \le S(n,n+1).$$
 (0.2)

Substituting (0.1) into (0.2) and exponentiating, we get

$$(n-1)^{x}(n-1)! \le \Gamma(n+x) \le (n)^{x}(n-1)!. \tag{0.3}$$

Proof.

Let $S(x_1, x_2)$ be the slope of the secant line of $\ln \Gamma(x)$ between x_1 and x_2 .

$$S(x_1, x_2) = \frac{\ln \Gamma(x_2) - \ln \Gamma(x_1)}{x_2 - x_1} = \frac{\ln \left(\Gamma(x_2) / \Gamma(x_1)\right)}{x_2 - x_1}.$$
 (0.1)

 $S(x_1, x_2)$ is monotonically increasing by the Log Convexity of $\Gamma(x)$, so for $x \in (0, 1]$ and $n \in \mathbb{Z}^+$ we have

$$S(n-1,n) \le S(n,n+x) \le S(n,n+1).$$
 (0.2)

Substituting (0.1) into (0.2) and exponentiating, we get

$$(n-1)^{x}(n-1)! \le \Gamma(n+x) \le (n)^{x}(n-1)!. \tag{0.3}$$

To complete the proof, rearrange (0.3) for an inequality of $\Gamma(x)$ and take the limit as $n \to \infty$ to sandwich $\Gamma(x)$. The computation is omitted.

Definition

$$\Gamma(z+1) \equiv \lim_{n\to\infty} n^z \prod_{k=1}^n \left(1+\frac{z}{k}\right)^{-1}.$$

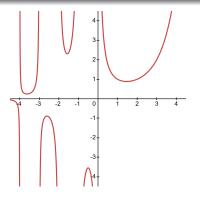


Figure: Plot of $\Gamma(z)$

Definition (Euler's Definition)

$$\Gamma(z) \equiv \frac{1}{z} \prod_{n=1}^{\infty} \frac{\left(1 + \frac{1}{n}\right)^z}{1 + \frac{z}{n}}.$$

Definition (Euler's Definition)

$$\Gamma(z) \equiv \frac{1}{z} \prod_{n=1}^{\infty} \frac{(1+\frac{1}{n})^z}{1+\frac{z}{n}}.$$

Definition (Integral Definition)

$$\Gamma(z) \equiv \int_0^\infty t^{z-1} e^{-t} dt$$

Definition (Euler's Definition)

$$\Gamma(z) \equiv \frac{1}{z} \prod_{n=1}^{\infty} \frac{(1+\frac{1}{n})^z}{1+\frac{z}{n}}.$$

Definition (Integral Definition)

$$\Gamma(z) \equiv \int_0^\infty t^{z-1} e^{-t} dt$$

Definition (Weierstrass' Definition)

$$\Gamma(z) \equiv \frac{e^{-\gamma z}}{z} \prod_{n=1}^{\infty} \frac{e^{z/n}}{1 + \frac{z}{n}}.$$

Where γ is the *Euler-Mascheroni constant*.

Discrete Binomial Coefficients

Recall that Binomial Coefficients are traditionally defined as

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$
 (0.4)

Discrete Binomial Coefficients

Recall that Binomial Coefficients are traditionally defined as

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}. (0.4)$$

We can extend (0.4) using the Gamma function:

Definition (Continuous Binomial Coefficients)

$$\binom{y}{x} = \frac{\Gamma(y+1)}{\Gamma(x+1)\Gamma(y-x+1)}.$$

A Fun Plot

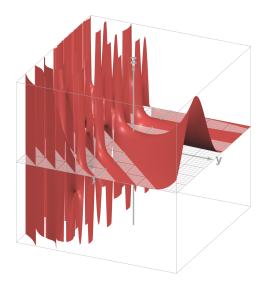
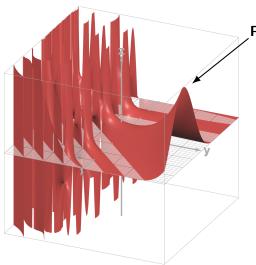


Figure: Plot of $\binom{y}{x}$ on $[-4, 4] \times [-4, 4]$

A Fun Plot



Pascal's Triangle

Figure: Plot of $\binom{y}{x}$ on $[-4, 4] \times [-4, 4]$

Theorem (Discrete Binomial Theorem)

For non-negative integers n and k,

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

Theorem (Discrete Binomial Theorem)

For non-negative integers n and k,

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

The continuous Binomial Coefficients satisfy a similar theorem.

Theorem (Generalized Binomial Theorem)

For $y \in \mathbb{R}$ and $x \in (-1,1)$,

$$(1+x)^y = \sum_{n=0}^{\infty} {y \choose n} x^n.$$

Proof.

Start by writing the Maclaurin series of $(1+x)^y$. For |x|<1,

$$(1+x)^{y} = \sum_{n=0}^{\infty} \frac{y(y-1)\cdots(y-n+1)}{n!} x^{n}.$$
 (0.5)

From $\Gamma(z+1)=z\Gamma(z)$, we have $y(y-1)\cdots(y-n+1)=\frac{\Gamma(y+1)}{\Gamma(1+y-n)}$. Therefore (0.5) can be written as

$$(1+x)^y = \sum_{n=0}^{\infty} {y \choose n} x^n.$$

10/10/12/12/ 2 3/40

Theorem (Generalized Binomial Theorem)

For $y \in \mathbb{R}$ and $x \in (-1,1)$,

$$(1+x)^y = \sum_{n=0}^{\infty} {y \choose n} x^n.$$

Theorem (Generalized Binomial Theorem)

For $y \in \mathbb{R}$ and $x \in (-1,1)$,

$$(1+x)^y = \sum_{n=0}^{\infty} {y \choose n} x^n.$$

Remark

For |x| > 1,

$$(1+x)^{y} = x(1+x^{-1})^{y} = \sum_{n=0}^{\infty} {y \choose n} x^{y-n}.$$

Theorem (Generalized Binomial Theorem)

For $y \in \mathbb{R}$ and $x \in (-1,1)$,

$$(1+x)^y = \sum_{n=0}^{\infty} {y \choose n} x^n.$$

Remark

For |x| > 1,

$$(1+x)^{y} = x(1+x^{-1})^{y} = \sum_{n=0}^{\infty} {y \choose n} x^{y-n}.$$

Remark

The Generalized Binomial Theorem also holds for x = 1 if y > -1 and for x = -1 if y > 0.

400400450450

Binomial Identities

The following fundamental properties of discrete binomial coefficients also hold in the continuous case:

Symmetry

Binomial Identities

The following fundamental properties of discrete binomial coefficients also hold in the continuous case:

Symmetry

$$\begin{pmatrix} y \\ x \end{pmatrix} = \begin{pmatrix} y \\ y - x \end{pmatrix}. \tag{0.6}$$

Absorption

$$\binom{y}{x} = \frac{y}{x} \binom{y-1}{x-1}.$$
 (0.7)

Binomial Identities

The following fundamental properties of discrete binomial coefficients also hold in the continuous case:

Symmetry

$$\begin{pmatrix} y \\ x \end{pmatrix} = \begin{pmatrix} y \\ y - x \end{pmatrix}. \tag{0.6}$$

Absorption

Recursion(Pascal's Rule)

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

More Binomial Identities

Generalized Hockey-Stick Identity

$$\sum_{i=0}^{n} \binom{i}{x} = \binom{n+1}{x+1} - \binom{0}{x+1} \tag{0.9}$$

More Binomial Identities

Generalized Hockey-Stick Identity

$$\sum_{i=0}^{n} \binom{i}{x} = \binom{n+1}{x+1} - \binom{0}{x+1} \tag{0.9}$$

Generalized Row Summation Identity

$$\sum_{k=0}^{\infty} {y \choose k} = 2^y, \qquad y > -1. \tag{0.10}$$

Ryan Panzer

Product Representation

Theorem (Product Representation)

Product Representation

Theorem (Product Representation)

Proof.

By the limit definition of $\Gamma(x)$, we have

$$\Gamma\left(1+\frac{y}{2}+x\right)=\lim_{n\to\infty}n^{\frac{y}{2}+x}\prod_{k=1}^n\left(1+\frac{\frac{y}{2}+x}{k}\right)^{-1}.$$

And

$$\Gamma\left(1+\frac{y}{2}-x\right)=\lim_{n\to\infty}n^{\frac{y}{2}-x}\prod_{k=1}^n\left(1+\frac{\frac{y}{2}-x}{k}\right)^{-1}.$$

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ かへで

Product Representation

Proof.

Multiplying the expressions and simplifying, we get

$$\Gamma\left(1+\frac{y}{2}-x\right)\Gamma\left(1+\frac{y}{2}+x\right) = \frac{\Gamma\left(1+\frac{y}{2}\right)^2}{\prod_{k=1}^{\infty}\left(1-\frac{x^2}{\left(k+\frac{y}{2}\right)}\right)}$$

Product Representation

Proof.

Multiplying the expressions and simplifying, we get

$$\Gamma\left(1+\frac{y}{2}-x\right)\Gamma\left(1+\frac{y}{2}+x\right) = \frac{\Gamma\left(1+\frac{y}{2}\right)^2}{\prod_{k=1}^{\infty}\left(1-\frac{x^2}{\left(k+\frac{y}{2}\right)}\right)}$$

After rearranging, we arrive at

Theorem (Integral Representation)

$$\binom{y}{\frac{y}{2}+x} = \frac{2^y}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^y(t) \cos(2xt) dt$$

Theorem (Integral Representation)

$$\begin{pmatrix} y \\ \frac{y}{2} + x \end{pmatrix} = \frac{2^y}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^y(t) \cos(2xt) dt$$

Proof.

Applying integration by parts twice to the RHS and rearranging, we get

$$\int_0^{\frac{\pi}{2}} \cos^y(t) \cos(2xt) dt = \frac{y+2}{y+1} \left(1 - \frac{x^2}{\left(1 + \frac{y}{2}\right)^2} \right) \int_0^{\frac{\pi}{2}} \cos^{y+2}(t) \cos(2xt) dt.$$

Proof.

$$\int_0^{\frac{\pi}{2}} \cos^y(t) \cos(2xt) dt = \frac{y+2}{y+1} \left(1 - \frac{x^2}{\left(1 + \frac{y}{2}\right)^2} \right) \int_0^{\frac{\pi}{2}} \cos^{y+2}(t) \cos(2xt) dt.$$

Applying the recursion n times,

$$\int_0^{\frac{\pi}{2}} \cos^y(t) \cos(2xt) dt$$

$$= \prod_{k=1}^n \frac{y+2k}{y+2k-1} \prod_{k=1}^n \left(1 - \frac{x^2}{\left(1 + \frac{y}{2}\right)^2}\right) \int_0^{\frac{\pi}{2}} \cos^{y+2n}(t) \cos(2xt) dt.$$

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ りへで

Proof.

Computing the limit as $n \to \infty$,

$$\int_{0}^{\frac{\pi}{2}} \cos^{y}(t) \cos(2xt) dt$$

$$= \frac{\pi}{2^{y+1}} \lim_{n \to \infty} \frac{\left[(2n)^{y} \prod_{k=1}^{2n} \left(\frac{y}{k} + 1 \right)^{-1} \right]}{\left[n^{y/2} \prod_{k=1}^{n} \left(\frac{y}{2k} + 1 \right)^{-1} \right]^{2}} \prod_{k=1}^{n} \left(1 - \frac{x^{2}}{\left(1 + \frac{y}{2} \right)^{2}} \right).$$

Proof.

Computing the limit as $n \to \infty$,

$$\int_{0}^{\frac{\pi}{2}} \cos^{y}(t) \cos(2xt) dt$$

$$= \frac{\pi}{2^{y+1}} \lim_{n \to \infty} \frac{\left[(2n)^{y} \prod_{k=1}^{2n} \left(\frac{y}{k} + 1 \right)^{-1} \right]}{\left[n^{y/2} \prod_{k=1}^{n} \left(\frac{y}{2k} + 1 \right)^{-1} \right]^{2}} \prod_{k=1}^{n} \left(1 - \frac{x^{2}}{\left(1 + \frac{y}{2} \right)^{2}} \right).$$

Remembering the limit definition of $\Gamma(z)$, we find

$$\int_{0}^{\frac{\pi}{2}} \cos^{y}(t) \cos(2xt) dt = \frac{\pi}{2^{y+1}} \binom{y}{\frac{y}{2}} \prod_{k=1}^{n} \left(1 - \frac{x^{2}}{\left(1 + \frac{y}{2}\right)^{2}}\right).$$

Using the product representation of binomial coefficients and rearranging yields the desired result.

Continuous Binomial Formulas

We now have three different formulas to represent the continuous binomial coefficients.

Gamma Representation

$$\binom{y}{\frac{y}{2}+x}=\frac{\Gamma(y+1)}{\Gamma(\frac{y}{2}+x+1)\Gamma(\frac{y}{2}-x+1)}.$$

Product Representation

$$\binom{y}{\frac{y}{2}+x} = \binom{y}{\frac{y}{2}} \prod_{k=1}^{\infty} \left(1 - \frac{x^2}{(k + \frac{y}{2})^2}\right).$$

Integral Representation

$$\binom{y}{\frac{y}{2}+x} = \frac{2^y}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^y(t) \cos(2xt) dt$$

The Continuous Binomial Theorem

Theorem (Continuous Binomial Theorem)

$$\int_{-\infty}^{\infty} {y \choose x} z^x dx = (1+z)^y, \qquad y \in \mathbb{R}^+, \ z \in \mathbb{C}, \ |z| = 1.$$

The Continuous Binomial Theorem

Theorem (Continuous Binomial Theorem)

$$\int_{-\infty}^{\infty} {y \choose x} z^x dx = (1+z)^y, \qquad y \in \mathbb{R}^+, \ z \in \mathbb{C}, \ |z| = 1.$$

Proof.

Let $z=e^{i\theta}$ for some $\theta\in\mathbb{R}.$ Using the product representation we get

$$\int_{-\infty}^{\infty} {y \choose {\frac{y}{2} + x}} e^{i\theta x} dx = \frac{2^{y}}{\pi} e^{\frac{i\theta y}{2}} \int_{-\infty}^{\infty} e^{i\theta x} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{y}(t) \cos(2xt) dt \ dx.$$

Swapping the integrals and computing leads to

$$\int_{-\infty}^{\infty} \binom{y}{\frac{y}{2}+x} e^{i\theta x} dx = \frac{2^y}{\pi} e^{\frac{i\theta y}{2}} \lim_{k \to \infty} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos^y(t)}{t-\frac{\theta}{2}} \sin(2k(t-\theta/2)) dt.$$

The Continuous Binomial Theorem

Proof.

$$\int_{-\infty}^{\infty} \binom{y}{\frac{y}{2}+x} e^{i\theta x} dx = \frac{2^y}{\pi} e^{\frac{i\theta y}{2}} \lim_{k \to \infty} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos^y(t)}{t-\frac{\theta}{2}} \sin(2k(t-\theta/2)) dt.$$

Evaluating the above integral yields

$$\int_{-\infty}^{\infty} {y \choose \frac{y}{2} + x} e^{i\theta x} dx = \left[2e^{i\frac{\theta}{2}} \cos\left(\frac{\theta}{2}\right) \right]^{y} \tag{0.11}$$

$$= \left(2\cos^2\left(\frac{\theta}{2}\right) + 2i\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)\right)^y \tag{0.12}$$

$$= \left(1 + \cos(\theta) + i\sin(\theta)\right)^{y} = (1 + e^{i\theta})^{y}. \quad (0.13)$$

As desired.

4 D > 4 A > 4 B > 4 B >

Summary

Definition

$$\Gamma(z+1) \equiv \lim_{n\to\infty} n^z \prod_{k=1}^n \left(1+\frac{z}{k}\right)^{-1}.$$

Definition (Continuous Binomial Coefficients)

$$\binom{y}{x} = \frac{\Gamma(y+1)}{\Gamma(x+1)\Gamma(y-x+1)}.$$

Theorem (Generalized Binomial Theorem)

For $y \in \mathbb{R}$ and $x \in (-1,1)$,

$$(1+x)^y = \sum_{n=0}^{\infty} \binom{y}{n} x^n.$$

Summary

Theorem (Product Representation)

Theorem (Integral Representation)

$$\begin{pmatrix} y \\ \frac{y}{2} + x \end{pmatrix} = \frac{2^y}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^y(t) \cos(2xt) dt$$

Theorem (Continuous Binomial Theorem)

$$\int_{-\infty}^{\infty} {y \choose x} z^x dx = (1+z)^y, \qquad y \in \mathbb{R}^+, \ z \in \mathbb{C}, \ |z| = 1.$$

