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Euclid’s Five Postulates

Definition

An axiom is a fundamental mathematical statement accepted without
proof.

Around the year 300 BC Euclid wrote The Elements, where he proposes
five axioms or postulates for geometry.

1 A straight line can be drawn from any point to any other point.

2 A finite straight line can be extended indefinitely.

3 A circle can be drawn with any center and any radius.

4 All right angles are equal to each other.

5 If a straight line that cuts two other lines forms interior angles on the
same side whose sum is less than two right angles, then the two lines
intersect on that side.
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The Controversial Nature of the Fifth Postulate

Unlike the others, the fifth postulate refers to the global behavior of lines
at infinity, not to a direct construction. It was considered too complex and
unconvincing to be taken as a fundamental axiom. Thus, several
mathematicians attempted to prove it as a theorem from the other
postulates.
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Failed Proofs and Emergence of Non-Euclidean Geometry

Proclus (5th century): Proposed a proof based on angle equality,
implicitly assuming the result.

John Wallis (17th century): Used the concept of similar triangles,
valid only in Euclidean space.

Saccheri (18th century): Assuming the negation of the fifth
postulate, he derived many valid results, but wrongly believed they
led to contradictions.

None of these efforts succeeded; all implicitly used Euclidean
assumptions.

Eventually, it seemed that the fifth postulate was logically
independent from the others.
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Preserved Logical Structure

In the 19th century, Nikolai Lobachevsky (1829) and János Bolyai (1832)
independently developed a non Euclidean geometry (later called hyperbolic
geometry) in which the first four postulates hold and the fifth is replaced
by the following axiom.

Hyperbolic Axiom

Given a line l and a point P not on l , there exists at least two lines
through P that do not intersect l .

Roy Eduardo Yaranga Almeida An Introduction to Hyperbolic Geometry July 8, 2025 5 / 19



Preserved Logical Structure

In the 19th century, Nikolai Lobachevsky (1829) and János Bolyai (1832)
independently developed a non Euclidean geometry (later called hyperbolic
geometry) in which the first four postulates hold and the fifth is replaced
by the following axiom.

Hyperbolic Axiom

Given a line l and a point P not on l , there exists at least two lines
through P that do not intersect l .

Roy Eduardo Yaranga Almeida An Introduction to Hyperbolic Geometry July 8, 2025 5 / 19



Key Properties of the Hyperbolic Plane

Through a point outside a given line, infinitely many non-intersecting
lines can be drawn.

The sum of the angles of a triangle is always strictly less than π.

There are no similar triangles except those that are congruent.

Rectangles do not exist.
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Models of Hyperbolic Geometry

Is Euclidean geometry consistent? We can prove that hyperbolic geometry
is as consistent as Euclidean geometry if we find a model. A model
represents hyperbolic points, lines, and distances using Euclidean objects.
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Open and Closed Sets; Boundary

Definition

Let A ⊂ C. We say that:

A is open if for every z ∈ A, there exists ε > 0 such that

D(z , ε) = {w ∈ C | |w − z | < ε} ⊂ A.

A is closed if C \ A is open.

The boundary of A, denoted ∂A, is the set of all z ∈ C such that

∀ε > 0, D(z , ε) ∩ A ̸= ∅ and D(z , ε) ∩ (C \ A) ̸= ∅.

Example

H = {z ∈ C | Im(z) > 0} is open, and ∂H = R.
The closed disc {z ∈ C | |z | ≤ 1} is closed, and its boundary is
{z ∈ C | |z | = 1}.
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Metric and Isometries

Definition

Let M be a set. A function d : M ×M → R is called a metric if for all
p, q, r ∈ M:

d(p, q) ≥ 0, and d(p, q) = 0 if and only if p = q,

d(p, q) = d(q, p),

d(p, r) ≤ d(p, q) + d(q, r) (triangle inequality).

Definition

An isometry is a map f : M → M such that for all p, q ∈ M,

d(f (p), f (q)) = d(p, q).
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Properties of Isometries

Definition

A map is conformal if it preserves angles and orientation between
differentiable curves at each point.

Let f : M → M be an isometry on a space equipped with a metric and an
area measure defined from it.

f preserves distances: d(f (p), f (q)) = d(p, q).

f is conformal: it preserves angles and orientation.

f preserves geodesics.

f preserves area (when the area is defined from the metric).
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Möbius Transformations

Definition

A Möbius transformation is a function f : Ĉ → Ĉ of the form

f (z) =
az + b

cz + d
, where a, b, c , d ∈ C and ad − bc ̸= 0.

Proposition

Möbius transformations are conformal on their domain of definition.

Example

z 7→ z + b: translation,

z 7→ kz , with k > 0: dilation,

z 7→ 1

z
: inversion in the unit circle,

z 7→ z : identity.
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Upper Half-Plane Model

Definition

The upper half-plane model of the hyperbolic plane is the set

H = {z ∈ C : Im(z) > 0}.

Geodesics in H are:

Vertical lines, and
semicircles orthogonal (i.e., meeting at right angles in the Euclidean
sense) to the real axis.

Points on the extended real line R ∪ {∞} are called ideal points;
they represent points at infinity.
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Poincaré Disk Model

Definition

The Poincaré disk model of the hyperbolic plane is the open unit disk

D = {z ∈ C : |z | < 1}.

Geodesics in D are:

diameters of the disk
arcs of circles orthogonal (i.e., intersecting the boundary circle at right
angles in the Euclidean sense) to the boundary circle.

The boundary ∂D is called the ideal boundary, and represents points
at infinity.
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Area of a Hyperbolic Triangle

Theorem

For a triangle with angles α, β, γ:

Area = π − (α+ β + γ)
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Area in the Upper Half-Plane Model

Proposition

The area of a region R ⊂ H is given by

Area(R) =

∫∫
R

dx dy

y2
.

This is the formula used to compute hyperbolic area in the upper
half-plane.

It gives finite area even for regions that are unbounded in the
Euclidean sense.

The formula does not change under transformations that preserve the
upper half-plane.
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Lemma: Triangle with Ideal Vertex

Lemma

Let T ⊂ H be a hyperbolic triangle with one ideal vertex. If the interior
angles at the other two vertices are α and β, then

Area(T ) = π − (α+ β).

Roy Eduardo Yaranga Almeida An Introduction to Hyperbolic Geometry July 8, 2025 16 / 19



Sketch of Proof of the Area Formula

Let T ⊂ H be a hyperbolic triangle with interior angles α, β, γ. We prove
that

Area(T ) = π − (α+ β + γ).

Assume that one of the vertices lies at infinity. Using a Möbius
transformation that preserves H, we may place this vertex at ∞, and the
other two on the real axis.
Then T is bounded by two vertical geodesics and a semicircle centered on
the real axis.
Using the area formula:

Area(T ) =

∫∫
T

dx dy

y2
,

the region splits into a full half-disk of area π, minus two wedges
corresponding to the angles α and β. Therefore,

Area(T ) = π − (α+ β).
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Area of a General Hyperbolic Triangle

Let T ⊂ H be a hyperbolic triangle with interior angles α, β, γ.

Using a Möbius transformation that maps one of the vertices to ∞, we
reduce to the case of a triangle with an ideal vertex.
Since Möbius transformations preserve both hyperbolic area and angles,
we may apply the previous result:

Area(T ) = π − (α+ β).

But in the original triangle all three angles are present, so we obtain

Area(T ) = π − (α+ β + γ).
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Thanks

Thanks!
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