An Introduction to Hyperbolic Geometry

Roy Eduardo Yaranga Almeida r.yaranga.almeida@gmail.com

Euler Circle

July 8, 2025

Euclid's Five Postulates

Definition

An **axiom** is a fundamental mathematical statement accepted without proof.

Euclid's Five Postulates

Definition

An **axiom** is a fundamental mathematical statement accepted without proof.

Around the year 300 BC Euclid wrote *The Elements*, where he proposes five axioms or postulates for geometry.

Euclid's Five Postulates

Definition

An **axiom** is a fundamental mathematical statement accepted without proof.

Around the year 300 BC Euclid wrote *The Elements*, where he proposes five axioms or postulates for geometry.

- A straight line can be drawn from any point to any other point.
- A finite straight line can be extended indefinitely.
- A circle can be drawn with any center and any radius.
- All right angles are equal to each other.
- If a straight line that cuts two other lines forms interior angles on the same side whose sum is less than two right angles, then the two lines intersect on that side.

The Controversial Nature of the Fifth Postulate

Unlike the others, the fifth postulate refers to the global behavior of lines at infinity, not to a direct construction. It was considered too complex and unconvincing to be taken as a fundamental axiom. Thus, several mathematicians attempted to prove it as a theorem from the other postulates.

 Proclus (5th century): Proposed a proof based on angle equality, implicitly assuming the result.

- Proclus (5th century): Proposed a proof based on angle equality, implicitly assuming the result.
- **John Wallis** (17th century): Used the concept of similar triangles, valid only in Euclidean space.

- **Proclus** (5th century): Proposed a proof based on angle equality, implicitly assuming the result.
- **John Wallis** (17th century): Used the concept of similar triangles, valid only in Euclidean space.
- Saccheri (18th century): Assuming the negation of the fifth postulate, he derived many valid results, but wrongly believed they led to contradictions.

- Proclus (5th century): Proposed a proof based on angle equality, implicitly assuming the result.
- **John Wallis** (17th century): Used the concept of similar triangles, valid only in Euclidean space.
- Saccheri (18th century): Assuming the negation of the fifth postulate, he derived many valid results, but wrongly believed they led to contradictions.
- None of these efforts succeeded; all implicitly used Euclidean assumptions.

- **Proclus** (5th century): Proposed a proof based on angle equality, implicitly assuming the result.
- **John Wallis** (17th century): Used the concept of similar triangles, valid only in Euclidean space.
- Saccheri (18th century): Assuming the negation of the fifth postulate, he derived many valid results, but wrongly believed they led to contradictions.
- None of these efforts succeeded; all implicitly used Euclidean assumptions.
- Eventually, it seemed that the fifth postulate was logically independent from the others.

Preserved Logical Structure

In the 19th century, Nikolai Lobachevsky (1829) and János Bolyai (1832) independently developed a non Euclidean geometry (later called hyperbolic geometry) in which the first four postulates hold and the fifth is replaced by the following axiom.

Preserved Logical Structure

In the 19th century, Nikolai Lobachevsky (1829) and János Bolyai (1832) independently developed a non Euclidean geometry (later called hyperbolic geometry) in which the first four postulates hold and the fifth is replaced by the following axiom.

Hyperbolic Axiom

Given a line I and a point P not on I, there exists at least two lines through P that do not intersect I.

• Through a point outside a given line, infinitely many non-intersecting lines can be drawn.

- Through a point outside a given line, infinitely many non-intersecting lines can be drawn.
- The sum of the angles of a triangle is always strictly less than π .

- Through a point outside a given line, infinitely many non-intersecting lines can be drawn.
- The sum of the angles of a triangle is always strictly less than π .
- There are no similar triangles except those that are congruent.

- Through a point outside a given line, infinitely many non-intersecting lines can be drawn.
- The sum of the angles of a triangle is always strictly less than π .
- There are no similar triangles except those that are congruent.
- Rectangles do not exist.

- Through a point outside a given line, infinitely many non-intersecting lines can be drawn.
- The sum of the angles of a triangle is always strictly less than π .
- There are no similar triangles except those that are congruent.
- Rectangles do not exist.

Models of Hyperbolic Geometry

Is Euclidean geometry consistent? We can prove that hyperbolic geometry is as consistent as Euclidean geometry if we find a **model**. A model represents hyperbolic points, lines, and distances using Euclidean objects.

Open and Closed Sets; Boundary

Definition

Let $A \subset \mathbb{C}$. We say that:

• A is **open** if for every $z \in A$, there exists $\varepsilon > 0$ such that

$$D(z,\varepsilon) = \{ w \in \mathbb{C} \mid |w-z| < \varepsilon \} \subset A.$$

- *A* is **closed** if $\mathbb{C} \setminus A$ is open.
- The **boundary** of A, denoted ∂A , is the set of all $z \in \mathbb{C}$ such that

$$\forall \varepsilon > 0, \quad D(z,\varepsilon) \cap A \neq \emptyset \quad \text{and} \quad D(z,\varepsilon) \cap (\mathbb{C} \setminus A) \neq \emptyset.$$

Open and Closed Sets; Boundary

Definition

Let $A \subset \mathbb{C}$. We say that:

• A is **open** if for every $z \in A$, there exists $\varepsilon > 0$ such that

$$D(z,\varepsilon) = \{ w \in \mathbb{C} \mid |w-z| < \varepsilon \} \subset A.$$

- *A* is **closed** if $\mathbb{C} \setminus A$ is open.
- The **boundary** of A, denoted ∂A , is the set of all $z \in \mathbb{C}$ such that

$$\forall \varepsilon > 0, \quad D(z,\varepsilon) \cap A \neq \emptyset \quad \text{and} \quad D(z,\varepsilon) \cap (\mathbb{C} \setminus A) \neq \emptyset.$$

Example

- $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ is open, and $\partial \mathbb{H} = \mathbb{R}$.
- The closed disc $\{z \in \mathbb{C} \mid |z| \le 1\}$ is closed, and its boundary is $\{z \in \mathbb{C} \mid |z| = 1\}$.

Metric and Isometries

Definition

Let M be a set. A function $d: M \times M \to \mathbb{R}$ is called a **metric** if for all $p, q, r \in M$:

- $d(p,q) \ge 0$, and d(p,q) = 0 if and only if p = q,
- d(p,q) = d(q,p),
- $d(p,r) \le d(p,q) + d(q,r)$ (triangle inequality).

Metric and Isometries

Definition

Let M be a set. A function $d: M \times M \to \mathbb{R}$ is called a **metric** if for all $p, q, r \in M$:

- $d(p,q) \ge 0$, and d(p,q) = 0 if and only if p = q,
- d(p,q) = d(q,p),
- $d(p,r) \le d(p,q) + d(q,r)$ (triangle inequality).

Definition

An **isometry** is a map $f: M \to M$ such that for all $p, q \in M$,

$$d(f(p), f(q)) = d(p, q).$$

Properties of Isometries

Definition

A map is **conformal** if it preserves angles and orientation between differentiable curves at each point.

Properties of Isometries

Definition

A map is **conformal** if it preserves angles and orientation between differentiable curves at each point.

Let $f: M \to M$ be an isometry on a space equipped with a metric and an area measure defined from it.

- f preserves distances: d(f(p), f(q)) = d(p, q).
- f is conformal: it preserves angles and orientation.
- f preserves geodesics.
- f preserves area (when the area is defined from the metric).

Möbius Transformations

Definition

A **Möbius transformation** is a function $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ of the form

$$f(z) = \frac{az+b}{cz+d}$$
, where $a,b,c,d \in \mathbb{C}$ and $ad-bc \neq 0$.

Möbius Transformations

Definition

A **Möbius transformation** is a function $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ of the form

$$f(z) = \frac{az+b}{cz+d}$$
, where $a,b,c,d \in \mathbb{C}$ and $ad-bc \neq 0$.

Proposition

Möbius transformations are conformal on their domain of definition.

Example

- $z \mapsto z + b$: translation,
- $z \mapsto kz$, with k > 0: dilation,
- $z \mapsto \frac{1}{z}$: inversion in the unit circle,
- $z \mapsto z$: identity.

Upper Half-Plane Model

Definition

The upper half-plane model of the hyperbolic plane is the set

$$\mathbb{H} = \{z \in \mathbb{C} : \mathsf{Im}(z) > 0\}.$$

Upper Half-Plane Model

Definition

The **upper half-plane model** of the hyperbolic plane is the set

$$\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}.$$

- Geodesics in III are:
 - Vertical lines, and
 - semicircles orthogonal (i.e., meeting at right angles in the Euclidean sense) to the real axis.

Upper Half-Plane Model

Definition

The **upper half-plane model** of the hyperbolic plane is the set

$$\mathbb{H} = \{z \in \mathbb{C} : \mathsf{Im}(z) > 0\}.$$

- Geodesics in III are:
 - Vertical lines, and
 - semicircles orthogonal (i.e., meeting at right angles in the Euclidean sense) to the real axis.
- Points on the extended real line $\mathbb{R} \cup \{\infty\}$ are called **ideal points**; they represent points at infinity.

Poincaré Disk Model

Definition

The Poincaré disk model of the hyperbolic plane is the open unit disk

$$\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}.$$

Poincaré Disk Model

Definition

The **Poincaré disk model** of the hyperbolic plane is the open unit disk

$$\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}.$$

- Geodesics in D are:
 - diameters of the disk
 - arcs of circles orthogonal (i.e., intersecting the boundary circle at right angles in the Euclidean sense) to the boundary circle.

Poincaré Disk Model

Definition

The **Poincaré disk model** of the hyperbolic plane is the open unit disk

$$\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}.$$

- Geodesics in D are:
 - diameters of the disk
 - arcs of circles orthogonal (i.e., intersecting the boundary circle at right angles in the Euclidean sense) to the boundary circle.
- The boundary $\partial \mathbb{D}$ is called the **ideal boundary**, and represents points at infinity.

Area of a Hyperbolic Triangle

Theorem

For a triangle with angles α, β, γ :

$$Area = \pi - (\alpha + \beta + \gamma)$$

Area in the Upper Half-Plane Model

Proposition

The area of a region $R \subset \mathbb{H}$ is given by

$$Area(R) = \iint_R \frac{dx \, dy}{y^2}.$$

Area in the Upper Half-Plane Model

Proposition

The area of a region $R \subset \mathbb{H}$ is given by

$$Area(R) = \iint_R \frac{dx \, dy}{y^2}.$$

- This is the formula used to compute hyperbolic area in the upper half-plane.
- It gives finite area even for regions that are unbounded in the Euclidean sense.
- The formula does not change under transformations that preserve the upper half-plane.

Lemma: Triangle with Ideal Vertex

Lemma

Let $T \subset \mathbb{H}$ be a hyperbolic triangle with one ideal vertex. If the interior angles at the other two vertices are α and β , then

Area(
$$T$$
) = π – (α + β).

Let $T \subset \mathbb{H}$ be a hyperbolic triangle with interior angles α, β, γ . We prove that

$$Area(T) = \pi - (\alpha + \beta + \gamma).$$

Let $T \subset \mathbb{H}$ be a hyperbolic triangle with interior angles α, β, γ . We prove that

$$Area(T) = \pi - (\alpha + \beta + \gamma).$$

Assume that one of the vertices lies at infinity. Using a Möbius transformation that preserves \mathbb{H} , we may place this vertex at ∞ , and the other two on the real axis.

Let $T \subset \mathbb{H}$ be a hyperbolic triangle with interior angles α, β, γ . We prove that

$$Area(T) = \pi - (\alpha + \beta + \gamma).$$

Assume that one of the vertices lies at infinity. Using a Möbius transformation that preserves \mathbb{H} , we may place this vertex at ∞ , and the other two on the real axis.

Then T is bounded by two vertical geodesics and a semicircle centered on the real axis.

Let $T \subset \mathbb{H}$ be a hyperbolic triangle with interior angles α, β, γ . We prove that

$$Area(T) = \pi - (\alpha + \beta + \gamma).$$

Assume that one of the vertices lies at infinity. Using a Möbius transformation that preserves \mathbb{H} , we may place this vertex at ∞ , and the other two on the real axis.

Then T is bounded by two vertical geodesics and a semicircle centered on the real axis.

Using the area formula:

$$Area(T) = \iint_{T} \frac{dx \, dy}{y^2},$$

the region splits into a full half-disk of area π , minus two wedges corresponding to the angles α and β . Therefore,

Let $T \subset \mathbb{H}$ be a hyperbolic triangle with interior angles α, β, γ . We prove that

$$Area(T) = \pi - (\alpha + \beta + \gamma).$$

Assume that one of the vertices lies at infinity. Using a Möbius transformation that preserves \mathbb{H} , we may place this vertex at ∞ , and the other two on the real axis.

Then T is bounded by two vertical geodesics and a semicircle centered on the real axis.

Using the area formula:

$$Area(T) = \iint_{T} \frac{dx \, dy}{y^2},$$

the region splits into a full half-disk of area π , minus two wedges corresponding to the angles α and β . Therefore,

$$Area(T) = \pi - (\alpha + \beta).$$

Let $T \subset \mathbb{H}$ be a hyperbolic triangle with interior angles α, β, γ .

Let $T \subset \mathbb{H}$ be a hyperbolic triangle with interior angles α, β, γ . Using a Möbius transformation that maps one of the vertices to ∞ , we reduce to the case of a triangle with an ideal vertex.

Let $T \subset \mathbb{H}$ be a hyperbolic triangle with interior angles α, β, γ . Using a Möbius transformation that maps one of the vertices to ∞ , we reduce to the case of a triangle with an ideal vertex.

Since Möbius transformations preserve both hyperbolic area and angles, we may apply the previous result:

$$Area(T) = \pi - (\alpha + \beta).$$

Let $T \subset \mathbb{H}$ be a hyperbolic triangle with interior angles α, β, γ .

Using a Möbius transformation that maps one of the vertices to ∞ , we reduce to the case of a triangle with an ideal vertex.

Since Möbius transformations preserve both hyperbolic area and angles, we may apply the previous result:

$$Area(T) = \pi - (\alpha + \beta).$$

But in the original triangle all three angles are present, so we obtain

$$Area(T) = \pi - (\alpha + \beta + \gamma).$$

Thanks

Thanks!