AN INTRODUCTION TO HYPERBOLIC GEOMETRY

ROY YARANGA

ABSTRACT. This paper presents a basic introduction to hyper-
bolic geometry and proves the formula for the area of a triangle
in the hyperbolic plane. The approach tries to avoid unnecessary
generalizations and focuses only on the essential concepts.

1. INTRODUCTION

Hyperbolic geometry is an alternative to Euclidean geometry that
arises by replacing the parallel postulate. In this geometry, given a
point outside a line, there exist infinitely many lines through the point
that do not intersect the given line. This leads to a coherent system
with properties fundamentally different from those of Euclidean geom-
etry.

The main goal of this paper is to prove the formula for the area of a
triangle in the hyperbolic plane. If a triangle has interior angles a;, 3,
and 7, then its area is

Area=7m— (a+ [ +7).

This paper aims to present the proof in the simplest possible terms,
avoiding unnecessary generalizations and focusing on the fundamental
concepts needed to understand the result.

To establish this formula, we proceed as follows.

In Section 2, we review Euclid’s parallel postulate and present the
alternative hypothesis that leads to hyperbolic geometry.

In Section 3, we introduce the fundamental axioms of hyperbolic
geometry and study some of their basic consequences, including the
existence of parallel lines and characteristic angular properties.

In Section 4, we describe the classical models of the hyperbolic plane,
which allow us to represent its points and lines within the Euclidean
plane.

In Section 5, we define the necessary metric notions, such as distance
and area, and finally derive the formula for the area of a triangle.
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2. THE FIFTH POSTULATE

Around 300 BC, Euclid wrote one of the most influential works in
mathematics. The Elements is a 13-volume treatise in which Euclid
compiled a vast number of the major mathematical discoveries known
up to that time, especially in geometry and number theory. In these
books, he proposed a new approach in which every mathematical result
can be derived through logical reasoning from sets of propositions that
are asserted without any proof, called axioms or postulates. In his first
book, Euclid proposed five postulates for geometry.

(1) Let it have been postulated to draw a straight line from any
point to any point.

(2) And to produce a finite straight line continuously in a straight
line.

(3) And to draw a circle with any center and radius.

(4) And that all right angles are equal to one another.

(5) And that if a straight line falling across two other straight lines
makes internal angles on the same side of itself whose sum is
less than two right angles, then the two other straight lines,
being produced to infinity, meet on that side of the original
straight-line that the sum of the internal angles is less than two
right angles and do not meet on the other side.

We can see that the fifth postulate is too long compared to the others.
We will occasionally refer to this as the Parallel Postulate because it is
equivalent to the following proposition:

Given a line and a point not on the line, there is at most
one line through the point that is parallel to the given
line.

This way of stating the fifth postulate is also known as Playfair’s
axiom because mathematician John Playfair referenced it in his book
Elements of Geometry. The first four postulates were accepted with-
out objection, however, the fifth was controversial. The way the fifth
postulate was originally stated was too long compared to the others.
Axioms are supposed to be as simple and elementary as possible, right?
This prompted mathematicians to question whether the fifth postulate
was really necessary, that is, whether it was actually a theorem that
could be proved from the first four.

2.1. Attempts to prove the fifth Postulate:

For approximately two millennia, many mathematicians attempted
to prove Euclid’s fifth postulate. Ome of the first to point this out
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was Proclus (500 AD) in his Commentary on the first book of Euclid’s
Elements. His reasoning was based on the fact that if a transversal
cuts two lines forming congruent alternate interior angles, then the
lines will not meet when extended in the corresponding direction and
must therefore be considered parallel. This assertion is based, how-
ever, on an unjustified assumption: that parallel lines are equidistant.
This property cannot be deduced without the parallel postulate, and in
fact, it does not hold in non-Euclidean geometries such as hyperbolic
geometry.

John Wallis (1616-1703), one of England’s leading mathematicians
of the 17th century, approached the problem of the fifth postulate from
a different perspective. Instead of directly attacking the postulate, he
proposed as an axiom a geometric property that he considered more
intuitive: the possibility of constructing similar triangles of any size
while maintaining constant the ratio of their sides to their angles. In
particular, he argued that for any given triangle, it is possible to con-
struct an arbitrarily large one with the same angles, which is today
called the principle of angular similarity.

This principle implies, however, the postulate of parallels. Indeed,
the existence of similar triangles cannot be guaranteed in the absence of
the postulate of parallels. We will see that in non-Euclidean geometries,
such as hyperbolic geometry, triangles do not simultaneously preserve
angles and side ratios; the notion of similarity does not behave in a
Euclidean manner. Therefore, by using the principle of similarity as
an axiom, Wallis was engaging in circular reasoning.

The Italian mathematician Giovanni Girolamo Saccheri (1667-1733)
published the book called Fuclid Freed of Every Flaw. His idea of proof
was using contradiction.

Saccheri studied quadrilaterals whose base angles were right angles
and whose sides adjacent to the base were congruent, which we will
call Saccheri quadrilaterals.

Saccheri proved that the summit angles were congruent using Eu-
clid’s first four axioms, from which he derived three possible cases:

e Summit angles are right angles.
e Summit angles are obtuse.
e Summit angles are acute.

His idea was to prove that the last two cases led to a contradiction.
Saccheri successfully proved that the second was contradictory, but he
never found a contradiction in the third. In fact, there seemed to be
some consistency in this hypothesis, although Saccheri simply dismissed
it because he believed that these ideas went against Euclidean intuition.
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Figure 1. Saccheri quadrilaterals.

Adrien-Marie Legendre (1752-1833) devoted a significant portion of
his mathematical work to clarifying the foundations of geometry. He re-
jected the logical independence of the parallel postulate and attempted
to prove that the sum of the interior angles of any triangle is equal to
two right angles, without assuming the parallel postulate. He believed
that this statement was more intuitively obvious and thus more suitable
as a foundation for geometry.

To support this claim, he constructed sequences of triangles sharing
a common base and with vertices increasingly distant from that base,
hoping to show that any angular deviation would vanish as the triangles
grew. He reasoned that, if the angle sum were not always constant, it
would lead to contradictions in the structure of geometry.

However, his argument inevitably relied on assumptions that are
logically equivalent to the parallel postulate. In particular, the claim
that all triangles have the same angle sum implies the Euclidean version
of parallelism. In hyperbolic geometry, for instance, triangles have an
angle sum strictly less than two right angles. Thus, Legendre’s proof
presupposes the very conclusion it aims to establish.

There have been many other historical attempts to prove the paral-
lel postulate, ranging from naive constructions to more sophisticated
arguments. A detailed account of these efforts can be found in [Bon55].

3. AXIOMS OF HYPERBOLIC GEOMETRY

Hyperbolic geometry is the deductive system obtained by preserving
Euclid’s first four postulates and replacing the fifth with a statement
incompatible with it. The notions of points, lines, segments, and an-
gles remain unchanged, as does the validity of the basic constructions.
This framework allows for the development of a coherent geometry in
which all provable propositions are maintained without resorting to the
parallel postulate.

The statement that replaces the fifth postulate is:
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At least two distinct lines that do not intersect a given
line pass through a point outside a given line.

This new formulation does not require the rejection of any other
principle accepted in the Elements. From now on, all consequences will
be derived solely from the unchanged postulates and this new version
of parallelism.

3.1. Basic properties of hyperbolic geometry:

Although it shares its syntactical foundations with Euclidean geom-
etry, hyperbolic geometry differs notably in its metric and structural
consequences. These differences do not contradict the preserved pos-
tulates, but necessarily follow from the new conception of parallelism.
We will present some notable properties.

Proposition 3.1. Rectangles don’t exist.

Proof. (sketch) This statement is equivalent to the parallel postulate.
[ |

Corollary 3.2. The sum of the interior angles of a triangle is strictly
less than two rigth angles.

Corollary 3.3. The sum of the interior angles of any convex quadri-
lateral is strictly less than 360°.

Proposition 3.4. Fvery similar triangles are congruent in hyperbolic
geometry.

Proof. (sketch)

Assume there exist two similar but noncongruent triangles. Without
loss of generality, suppose one triangle is larger than the other.

Construct points on the larger triangle to match two sides of the
smaller one. By SAS, the smaller triangle is congruent to the subtri-
angle formed in the larger triangle, so their corresponding angles are
equal.

Since the original triangles are similar, the remaining sides must
be parallel. This leads to the construction of a convex quadrilateral
with angle sum equal to 360°, which would contradict the previous
corollary. [ |

3.2. Parallel Lines in Hyperbolic Geometry:
In hyperbolic geometry, the concept of parallelism is different from

that of Euclidean geometry.
There are two types of parallels in hyperbolic geometry:
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Figure 2. Limitings Parallel lines.

Figure 3. Ultra-pallel lines.

e Limiting parallels, which approach the given line as closely
as possible without crossing it.

— A limiting parallel shares a common perpendicular asymp-
totically with the given line.

— Two limiting parallels to the same line through the same
point form the boundary between intersecting lines and
ultra-parallels.

— Limiting parallels do not meet the given line, but they
“approach” it in a precise sense that will become clearer in
the models.

e Ultra-parallels, which also do not cross the given line, but
remain more widely separated from it.

— Any two ultra-parallel lines have a unique common per-
pendicular.

— Ultra-parallels are "truly disjoint,” in the sense that they
do not get arbitrarily close to each other.

These two kinds of parallels will be easier to visualize once we intro-
duce specific models of hyperbolic geometry. In those models, it will
become clear how these lines behave and how they relate to each other.

For now, it is enough to keep in mind that parallelism in hyperbolic
geometry is not unique, and this is one of its most distinctive features.

4. MODELS OF HYPERBOLIC GEOMETRY

To prove the consistency of hyperbolic geometry, we must represent
it in terms of Euclidean geometry. This means constructing a model
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Figure 4. Hyperbolic lines in Disk Model.

where points and lines of the hyperbolic plane correspond to certain
Euclidean objects, but where incidence and distance are redefined. If
the hyperbolic axioms are satisfied within this model, then any con-
tradiction in hyperbolic geometry would imply a contradiction in Eu-
clidean geometry. This approach does not prove absolute consistency,
but it shows that hyperbolic geometry is at least as consistent as the
Euclidean system. The models of hyperbolic geometry were developed
precisely for this purpose: to provide a concrete interpretation of the
hyperbolic world inside the familiar FKuclidean space.

4.1. Poincaré Disk Model:

The Poincaré disk model represents the hyperbolic plane as the set
D= {(v,y) € R* | 2° +3* < 1}.

Definition 4.1. The hyperbolic lines in the Poincaré disk model are
the diameters of the unit circle and the arcs of circles contained in the
disk whose centers lie outside the disk and that intersect the boundary
of the disk orthogonally.

Definition 4.2. A circle intersects the boundary of the disk orthogo-
nally if, at each intersection point, the tangent to the circle is perpen-
dicular to the tangent to the boundary.

In this model, the ideal points correspond to the points of the bound-
ary circle. The angles between curves inside the disk are equal to the
corresponding hyperbolic angles.

4.2. Poincaré Upper Half-Plane Model:
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Figure 5. The fifth postulate does not hold.

The Poincaré upper half-plane model represents the hyperbolic plane
as the set

H = {(z,y) € R* | y > 0}.

Definition 4.3. The hyperbolic lines in this model are the semicircles
centered on the real axis that intersect the real axis orthogonally and
the vertical lines.

The boundary of the model is the real axis together with the point at
infinity; this boundary represents the ideal points. The angles between
curves in the upper half-plane are equal to the corresponding hyperbolic
angles.

4.3. Klein Model:

The Klein model represents the hyperbolic plane as the interior of
the disk D

Definition 4.4. The hyperbolic lines in the Klein model are the Eu-
clidean line segments that join two points in the disk and, when ex-
tended, intersect the boundary of the disk at two distinct points.

In this model, the ideal points correspond to the points of the bound-
ary circle. The angles measured in the Klein model do not coincide with
the hyperbolic angles. However, incidence relations are represented ex-
actly as in Euclidean geometry.

5. AN INTRODUCTION TO HYPERBOLIC AREA

Modern hyperbolic geometry is studied through models that help
us understand how points, lines, and figures behave in a plane that
does not follow the rules of Euclidean geometry. Unlike the classical
approach, this perspective also involves transformations that preserve
certain features of the space, and introduces tools that allow us to
compare and measure figures with precision.
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Figure 6. Parallel lines in Klein model.
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Figure 7. Easy visualization of limiting parallels.

In this section, we step away from the geometric style used so far. We
will no longer consider multiple models or construct visual arguments.
Instead, we focus on a single model of the hyperbolic plane, the upper
half-plane model, because it gives us a clear setting for what comes
next. Our goal is to introduce a way of assigning a value to regions in
this model and use it to find a general formula for the area of figures
such as triangles.

While it might seem natural in other contexts to begin with concepts
like distance, curve length, or angle measurement, here we choose to
focus directly on area. This is because hyperbolic area has simple
and elegant properties that can be established without relying on more
technical ideas. Moreover, it is sufficient for the results we aim to
present, and allows us to proceed in a direct and effective way. This
section is meant to prepare the ground for what follows, and can also
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serve as an invitation to those interested in exploring more modern
aspects of hyperbolic geometry later on.

For a modern and rigorous treatment of hyperbolic geometry, in-
cluding models, distance, and area, the reader is referred to [And05],
[Bea83|, and [Rat00)].

5.1. Upper Half Plane.

We can also represent the hyperbolic plane using the upper half of
the complex plane. For this purpose, consider the set

H={z¢e C|Im(z) > 0}.

In this model, the hyperbolic lines are either vertical FEuclidean lines,
which contain the point at infinity, or semicircles orthogonal to the real
axis. The boundary of H is the extended real line R U {oo}, and it
represents the ideal points of the model.

5.2. Mobius transformations:

Mobius transformations appear naturally in hyperbolic geometry and
play a central role in many situations. In this work, we will use them
as a tool for working within the upper half-plane model.

Definition 5.1. A Mobius transformation is any function of the form

f(z) = % where a,b,c,d € R and ad — bc > 0. This function is

defined on R U {oo}, with the convention
a if
floo)=14¢ ife70 and f(—d/c) = o0 if ¢ # 0.

oo ife=0

We say that f preserves the model if it maps the upper half-plane H
onto itself.

Example. Some Mobius transformations that preserve H are:

e 2 — 2z + b, horizontal translation with b € R,
e 2 — kz, dilation with k > 0,
e z — —1/z, inversion.

Proposition 5.2. Fvery Mobius transformation that preserves the up-
per half-plane maps hyperbolic lines to hyperbolic lines.

Proposition 5.3. Every Mobius transformation that preserves the up-
per half-plane preserves angles at points of intersection.

Proposition 5.4. Every Mobius transformation that preserves the up-
per half-plane preserves hyperbolic area.
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5.3. Area formula in the upper half-plane model.

To measure area in the upper half-plane model, we use an expression
that assigns a positive real value to certain regions in the plane. This
assignment is compatible with the transformations that preserve the
model: regions that can be transformed into one another by Mobius
transformations have the same area.

The formula we will use is the following: if R is a suitable region
in the upper half-plane H, its hyperbolic area is given by Area(R) =
JJ ;7 dvdy where x = Re(z) and y = Im(z). This defines a notion
of area different from the usual one, and it is adapted to hyperbolic
geometry.

We will not explain the origin of this formula. For our purposes, it is
enough to know that this expression is compatible with the structure
of the model and behaves well under the transformations that preserve
H. In particular, every Md&bius transformation that maps H onto itself
leaves this area invariant.

This formula will be used later to compute the area of hyperbolic
triangles and to support key results in the next sections.

Proposition 5.5. Let f be a Mobius transformation that maps H onto
itself. Then, for every suitable region R C H, Area(f(R)) = Area(R),
where the area is computed using the formula Area(R) = ffR z% dz dy.

5.4. Area of hyperbolic triangles in H.

In this model, a hyperbolic triangle is a region bounded by three
different lines that intersect in pairs at distinct points in the upper
half-plane or on its boundary. If the triangle is entirely contained in
H, it is called a finite triangle; if one or more of its vertices lie on the
boundary, it is called an ideal triangle.

Theorem 5.6. Let T be a hyperbolic triangle in H with interior angles
a, B and vy, measured in radians. Then the hyperbolic area of T is

Area(T) =7 — (a+ B+ 7).
Proof.

Lemma 5.7. Let T be a hyperbolic triangle in H with interior angles
a, B and v, measured in radians. Then the hyperbolic area of T is
Area(T) = m — (o + [ + ) when one vertex is an ideal verte.

Proof. Let A, B, and C be the vertices of a hyperbolic triangle, and
suppose that C'is an ideal vertex.
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If C' = oo, then A and B cannot lie on the same vertical line; other-
wise, all three points would be collinear along a hyperbolic line, which
contradicts the assumption that they form a triangle. Therefore, A
and B must lie on a semicircle of radius » > 0 centered at some real
number c.

Consider the Mobius transformation

z—c

fle) =5
which maps the center ¢ of the semicircle to 0 and rescales the radius
to 1. The image triangle now has two vertices lying on the semicircle
of radius 1 centered at the origin, and the third vertex remains at oo.

If instead C' is a real number ¢ € R, we apply the Mobius transfor-
mation

1
f2) = —.
which maps C' to oo, and sends A and B to two other points in H
that do not lie on the same vertical line (since Mobius transformations
preserve non-collinearity of distinct points on hyperbolic lines). Then,
we proceed as in the previous case by applying a further transformation

of the form

z—c
Z

r/
to send the image of A and B onto a semicircle of radius 1 centered at
the origin.

Thus, after composing these transformations, we may assume with-
out loss of generality that our triangle has one vertex at oo, and the
other two vertices lying on the semicircle of radius 1 centered at 0, since
we are only considering Mobius transformations that preserve the up-
per half-plane, which in particular preserve both hyperbolic area and
angles.

For convenience, we continue referring to the images of A and B
after applying these transformations as A and B.

We now continue using the diagram above. The area of our original
triangle is equal to the area of the region A depicted in the figure. Note
that the vertex at oo corresponds to a right angle in the Euclidean sense
between the vertical lines and the semicircle, which reflects the fact that
the angle at that ideal vertex is zero in the hyperbolic geometry. The
other two internal angles of the triangle are o and (3, and they also
appear at the corresponding points where the triangle meets the real
axis. These repetitions arise from the fact that Mobius transformations
preserve angles, so the transformed triangle retains the same angle
values at the corresponding points.
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Figure 8. There is at least one ideal vertex.

We now compute the area of the triangle using the standard area
element in the upper half-plane model:

1
Areag(A) :/ ?d:ﬁ dy.
A

To evaluate this, we integrate vertically from the semicircle up to
infinity, and then horizontally from x = a to = b. This gives:

b [e'9) 1
Areag(A) = / (/ " dy) dx
a V1—zx2
b 1 Yy=0o0
-

|
- / S
o V1—2?

Consider the geometric setup after applying the Mobius transforma-
tions. The triangle has one vertex at infinity, and the other two vertices
on the semicircle of radius 1 centered at 0. The side AB corresponds
to the semicircular arc from A to B, and the side BC' corresponds to
the vertical line at x = cos f that extends to infinity.

In the upper half-plane model, the hyperbolic angle at B is measured
as the Euclidean angle between the tangents to these two curves at
B. Since the semicircle has center at the origin, the tangent to the
semicircle at B is perpendicular to the radius connecting the origin to
B.

The point B has coordinates (cos 3, sin ), so the angle between the
radius OB and the positive real axis is 3. Because the tangent is
perpendicular to the radius, the angle between the tangent at B and
the vertical line x = cos (8 is exactly f.

dz
y=v1—z2
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Therefore, the hyperbolic angle at B is equal to 5. Similarly, the
hyperbolic angle at A is equal to «, since A = (— cos «, sin a).
Thus, the integral becomes:

1 cos 3
/a Vl_xz /cosa\/]-_x2
This is a standard integral that yields:
arcsin(cos ) — arcsin(— cos o) = arcsin(cos [3) + arcsin(cos ).

Since arcsin(cos ) = § — 6 for 6 € (0, §), we obtain:

Areag(A) = (— - B) (— — a> =71 — (a+f).

This completes the proof in the case when one vertex of the triangle
lies on the boundary of H.
|

We now prove the general formula for the area of a hyperbolic triangle
with no ideal vertices. Let A, B, and C' be the vertices of the triangle,
with angles «, (3, and v respectively.

By applying a Mdébius transformation, we may assume that A and
C lie on the same vertical line, with C' directly above A, and that B
lies to the right of this line.

Consider the two auxiliary triangles:

e The triangle ABoo, which has angles a at A and 4 § at B,
where ¢ is the angle between BC' and the vertical line from B
to oo.

e The triangle BCoo, which has angles 7 — v at C' and ¢ at B.

Since both ABoo and BC'oo have one ideal vertex at oo, their areas
are given by the standard formula:

Area(ABoo) = m—a—(f+0), Area(BCo0) =7n—(n—7)—3 = v—4.

The triangle ABC'is exactly the difference between ABoo and BCoo:

Area(ABC') = Area(ABoo) — Area(BCoo).

Substituting the expressions, we obtain:

Area(ABC)=(n—a—-f—=0)—(y—=d)=m—a—[F—1. |
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Figure 9. There is no ideal vertex.
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