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The Loss Function

Key:
Red Function: Original Function
Blue Function: Estimated Function
Green Function: Loss Function
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Example Loss Function

True Function (Red): f (x) = x2

Model Function (Blue): f̂ (x) = wx + b
Loss Function

L(w , b) =
n∑

i=1

(
wxi + b − x2i

)2
This can be rewritten in matrix form as:

L(w , b) =

∥∥∥∥X [
w
b

]
− y

∥∥∥∥2
2

Where:

X =


x1 1
x2 1
...

...
xn 1

 , y =


x21
x22
...
x2n


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Convex vs Non Convex

For Convex functions, every local minimum is also a global minimum
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Gradient Descent
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Stochastic Gradient Descent - Solutions for Non-Convex
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GD vs SGD Tradeoff (Pros and Cons)

Pros Cons
1. Much faster updates 1. Each step is “noisy”
2. Works well for large datasets 2. May not always go downhill,
3. Includes an element of random-
ness, which can help escape bad
minimas

but it often does
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Importance of learning rate

VERY important in SGD

If N is too big → Model jumps around randomly

If N is too small → Learning is very slow

Common practice is to start with a larger learning rate and decrease over
time.

Learning Rate Schedule helps with stabilization.
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Learning Rate and Scheduling

The learning rate controls how big our steps are:

1 If it’s too big: we overshoot the minimum.

2 If it’s too small: we move too slowly and time complexity becomes
too high.

Common Strategy: Learning Rate Scheduling

1 Start with a larger step size.

2 As you progress and get closer to the “minimum,” reduce the step
size to avoid overshooting.
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Saddle Points and Escaping Them

With Random Noise:
. Escape any Saddle point quickly
. In Polynomial Time
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Mini Batch SGD

Where B is the batch size. The algorithm uses a small subset (batch) of
size B at each step.
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L-Smoothness
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The Polyak– Lojasiewicz (PL) Condition
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Theorem: PL Condition Guarantees Fast Convergence

Proof Sketch:
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Many other methods - Adam W Optimizer

Adaptive Movement Estimation
Momentum: Adam remembers past gradients
Adaptive Learning Rates: Each parameter gets its own step size
Employs Weight Decay
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Application in Vision Transformers

Vision Transformers (ViTs) use the transformer architecture to process
image data.

They are:

1 Large, with millions of parameters

2 Data hungry, trained on huge datasets

3 Non-convex

AdamW in ViTs:

1 Faster convergence

2 Improves generalization
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What is up ahead?

Improved versions of Adam (e.g., AdaBelief, Lion)

Theoretical Advances:

. Why SGD works so well on non-convex problems

. Other Research on -

1 Efficient pre-training

2 Stability

3 Convergence guarantees

4 Scaling laws
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