Non-Convex Optimization and Algorithms for Machine Learning

Roshan Avik Srivastava roshanavik@gmail.com

Euler Circle

July 11, 2025

Table of Contents

- The Loss Function
- Non-Convex Optimization
- Gradient Descent
- Stochastic Gradient Descent
 - . Tradeoff with Gradient Descent (Pros and Cons)
 - . Importance of Learning Rate
 - . Learning Rate and Scheduling
 - . Saddle Points and Escaping Them
 - . Mini-Batch SGD
 - . L-Smoothness
 - . The Polyak Lojasiewicz (PL) Condition
 - . Theorem: PL Condition Guarantees Fast Convergence
 - . AdamW Optimizer
- Application in Vision Transformers
- What's ahead?

The Loss Function

Key:

Red Function: Original Function Blue Function: Estimated Function Green Function: Loss Function

Example Loss Function

True Function (Red): $f(x) = x^2$

Model Function (Blue): $\hat{f}(x) = wx + b$

Loss Function

$$L(w, b) = \sum_{i=1}^{n} (wx_i + b - x_i^2)^2$$

This can be rewritten in matrix form as:

$$L(w,b) = \left\| \mathbf{X} \begin{bmatrix} w \\ b \end{bmatrix} - \mathbf{y} \right\|_{2}^{2}$$

Where:

$$\mathbf{X} = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} x_1^2 \\ x_2^2 \\ \vdots \\ x_n^2 \end{bmatrix}$$

Convex vs Non Convex

Definition. A function $f: \mathbb{R}^n \to \mathbb{R}$ is called *convex* if for every pair of vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and every $\lambda \in [0, 1]$, we have

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}).$$

Strictly convex, if $\forall x, y, x \neq y, \forall \lambda \in (0, 1)$

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y).$$

For Convex functions, every local minimum is also a global minimum

Gradient Descent

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \eta_n \nabla f(\mathbf{x}_n), \quad n \ge 0.$$

Stochastic Gradient Descent - Solutions for Non-Convex

$$x_{k+1} = x_k - \eta
abla f_i(x_k)$$

GD vs SGD Tradeoff (Pros and Cons)

Pros

- 1. Much faster updates
- 2. Works well for large datasets
- 3. Includes an element of randomness, which can help escape bad minimas

Cons

- 1. Each step is "noisy"
- 2. May not always go downhill, but it often does

Importance of learning rate

VERY important in SGD

- If N is too big → Model jumps around randomly
- ullet If N is too small o Learning is very slow

Common practice is to start with a larger learning rate and decrease over time.

Learning Rate Schedule helps with stabilization.

Learning Rate and Scheduling

The learning rate controls how big our steps are:

- 1 If it's too big: we overshoot the minimum.
- ② If it's too small: we move too slowly and time complexity becomes too high.

Common Strategy: Learning Rate Scheduling

- 1 Start with a larger step size.
- As you progress and get closer to the "minimum," reduce the step size to avoid overshooting.

Saddle Points and Escaping Them

$$x_{k+1} = x_k - \eta
abla f(x_k) + \xi_k$$

With Random Noise:

- . Escape any Saddle point quickly
- . In Polynomial Time

Mini Batch SGD

$$x_{k+1} = x_k - \eta \cdot rac{1}{B} \sum_{j=1}^B
abla f_{i_j}(x_k)$$

Where B is the batch size. The algorithm uses a small subset (batch) of size B at each step.

L-Smoothness

$$\|
abla f(x) -
abla f(y)\| \leq L\|x - y\|$$

$$f(y) \leq f(x) +
abla f(x)^T (y-x) + rac{L}{2} \lVert y - x
Vert^2$$

The Polyak-Łojasiewicz (PL) Condition

$$rac{1}{2}\|
abla f(x)\|^2 \geq \mu(f(x)-f^*)$$

Theorem: PL Condition Guarantees Fast Convergence

Proof Sketch:

$$f(x_{k+1}) \leq f(x_k) - \eta \left(1 - rac{L\eta}{2}
ight) \|
abla f(x_k)\|^2$$

$$\|
abla f(x_k)\|^2 \geq 2\mu(f(x_k)-f^*)$$

$$f(x_{k+1}) \leq f(x_k) - \eta \left(1 - rac{L\eta}{2}
ight) \cdot 2\mu(f(x_k) - f^*)$$

$$f(x_{k+1}) - f^* \leq \left[1 - 2\eta\mu\left(1 - rac{L\eta}{2}
ight)
ight](f(x_k) - f^*)$$

$$(f(x_k) - f^*) \leq (ext{something small})^k \cdot (f(x_0) - f^*)$$

Many other methods - Adam W Optimizer

$$x_t = x_{t-1} - \eta \left(rac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon} + \lambda x_{t-1}
ight)$$

Adaptive Movement Estimation

Momentum: Adam remembers past gradients

Adaptive Learning Rates: Each parameter gets its own step size

Employs Weight Decay

Application in Vision Transformers

Vision Transformers (ViTs) use the transformer architecture to process image data.

They are:

- Large, with millions of parameters
- Data hungry, trained on huge datasets
- Non-convex

AdamW in ViTs:

- Faster convergence
- Improves generalization

What is up ahead?

Improved versions of Adam (e.g., AdaBelief, Lion)

Theoretical Advances:

- . Why SGD works so well on non-convex problems
- . Other Research on -
 - Efficient pre-training
 - Stability
 - Convergence guarantees
 - Scaling laws

