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Abstract
The paper is a study of optimization algorithms for convex and non-
convex optimization in the context of machine learning with a detailed
proof of Stochastic Gradient Descent (SGD), the Polyak-Lojasiewicz (PL)
condition, and an analysis of methods to escape saddle-points efficiently.
It contrasts different improvements of the Stochastic Gradient Descent
method and discusses improvements expected in the field.

1 Introduction

Convex and Non-convex optimization are crucial in machine learning because
they allow for the modeling of complex relationships within data, especially in
deep learning and other non-linear models. While finding the global minimum
of a non-convex function is generally NP-hard, many practical optimization
algorithms, like stochastic gradient descent, often find solutions that are close
to optimal or perform well in practice. Research in non-convex optimization
has led to the development of powerful algorithms like adaptive learning rates,
second-order methods, and specialized techniques for deep learning. In essence,
non-convex optimization provides the flexibility to model complex data and
constraints, enabling the development of powerful machine learning models,
even though the optimization process can be more challenging.

1.1 The Loss/ Cost Function

In machine learning, the loss or cost function L(x) refers to the error or discrep-
ancy between a machine learning or deep learning model’s predicted output and
the actual or target value. Loss quantifies how far off the model’s predictions
are from the true results, and a lower loss value generally indicates better model
performance. At a high level, we can categorize Loss functions as Regression and
Classification Loss functions depending on the model they come from. Below
are some common types of Loss Functions in Machine Learning.

Minimizing the loss function is the key to improving the accuracy of the model.

min f(z), (f:R" = R)



Table 1: Common types of loss functions and their use cases

Loss Function Description

Mean Squared Error (MSE)  Calculates the average squared difference between predicted and actual values. Used in regression.
Cross-Entropy Loss Measures the difference between predicted and actual probability distributions. Used in classification.
Binary Cross-Entropy A special case of cross-entropy for binary classification tasks.

Categorical Cross-Entropy Applied to multi-class classification where each sample belongs to one of many classes.

Hinge Loss Commonly used with Support Vector Machines (SVMs).

Huber Loss Combines MSE and MAE to be robust to outliers.

When we define a loss function, our goal is to minimize the loss.

Lower loss indicates better model performance. Ideally, we want the model to
reach the global minimum, the lowest possible loss. However, most loss func-
tions used in deep learning—such as focal loss or binary cross-entropy loss—are
non-convex. This means the optimization process might get stuck in a local
minimum, a point that appears optimal in a small region but isn’t the best
overall.

1.2 Properties of the Loss Function to consider

These are some properties of the loss function that significantly impact how we
handle the loss function and the convergence and stability of the algorithm we
choose to minimize the function.

1.3 Convexity

Definition. A function f :R™ — R is called convez if for every pair of vectors
x,y € R™ and every A € [0, 1], we have

fOx+ (1= Ny) <Af(x)+ 1 =Nf(y).
Strictly convex, if Vo, y,z # y,VA € (0,1)
fQz+ (1= Ny) <Af(x)+ (1= A)f(y).

Geometrically, this means that the line segment connecting (x, f(z)) to (y, f(y))
sits above or on the graph of f, and not below it.

Definition. A function f : R™ — R is called concave if for every pair of vectors
x,y € R™ and every A € [0, 1], we have

FOx+ (1 =Ny) 2 Af(x)+ 1= N)f(y)
Strictly concave, if Va,y,x # y, VA € (0,1)
fQz+ (1 =Ny) > Af(z)+ (1 =N f(y).

Geometrically, this means that the line segment connecting (x, f(z)) to (y, f(y))
goes below the graph of f, and not above it.

Note:



e f is concave if and only if — f is convex. Similarly, f is strictly concave if
and only if — f is strictly convex.

e A function can be both conver and concave at the same time. A straight
line, for example, is both conver and concave.

Convex Non-Convex

Saddld point

Local min

Global min

Minimizer

Figure 1: Convex function. Figure 2: Non-Convex function.

1.3.1 Convexity and Local and Global Minima

Definition 1 A vector x is a local minimum of f if f(x) < f(y) for all y in a
neighborhood of x.
Definition 2 A vector x is a global minimum of f if f(x) < f(y) for all y.

If f is convex, any local minimum is also a global one. This special property of
convex functions helps to design powerful optimisation algorithms.

Convexity can simplify the optimization landscape. Convex functions are par-
ticularly important because they have a unique global minimum. This means
that if we want to optimize a convex function, we can be sure that we will always
find the best solution by searching for the minimum value of the function. This
makes optimization easier and more reliable. For gradient descent, convexity
ensures that any local minimum is also a global minimum, making optimization
easier. If a function is not convex, gradient descent might get stuck in local
minima instead of finding the global minimum.

1.3.2 More About Strict and Strong Convexity

The function f is called strictly convex if and only if for all real 0 < ¢t < 1 and
all x1,x2 € X such that z; # xo:

ftzr+ (1 =t)z2) <tf(z1) + (1 —1t)f(22)

A strictly convex function f is a function such that the straight line between
any pair of points on the curve f is above the curve f except for the intersection



points between the straight line and the curve. An example of a function which
is convex but not strictly convex is

fla,y) =2 +y.

This function is not strictly convex because any two points sharing an x coordi-
nate will have a straight line between them, while any two points not sharing an
x coordinate will have a greater value of the function than the points between
them.

The concept of strong convexity extends and parametrizes the notion of strict
convexity. Intuitively, a strongly convex function is a function that grows as
fast as a quadratic function. A strongly convex function is also strictly con-
vex, but not vice versa. If a one-dimensional function f is twice continuously
differentiable and the domain is the real line, then we can characterize it as
follows:

e f is convex if and only if f”(x) > 0 for all x.

e f is strictly convex if f”(x) > 0 for all = (note: this is sufficient, but not
necessary).

e f is strongly convex if and only if f”(x) > m > 0 for all .

For example, let f be strictly convex, and suppose there is a sequence of points
(zn) such that f”(z,) = L. Even though f”(z,) > 0, the function is not
strongly convex because f”(z) can become arbitrarily small.

More generally, a differentiable function f is called strongly convex with param-
eter m > 0 if the following inequality holds for all points z,y in its domain:

(VF(@) = Vi) (x—y) = mle—yll3,

or, more generally,

(Vf(z) = V), z—y) > mllz -yl

where (-, -) is any inner product, and || - || is the corresponding norm.
An equivalent condition is the following:

1) > F@) + V@) (g =) + 5y — =[5

This definition approaches the definition for strict convexity as m — 0, and
is identical to the definition of a convex function when m = 0. Despite this,
functions exist that are strictly convex but are not strongly convex for any
m > 0.

If the function f is twice continuously differentiable, then it is strongly convex
with parameter m if and only if

V2f(z) = mI



for all 2 in the domain, where I is the identity matrix and V2f is the Hessian
matrix, and = means that V2 f(x) —mlI is positive semi-definite. This is equiv-
alent to requiring that the minimum eigenvalue of V2 f(x) be at least m for all
x.

If the domain is just the real line, then V2 f(z) is simply the second derivative
1" (x), so the condition becomes f”(z) > m. If m = 0, then this means the Hes-
sian is positive semidefinite, which implies the function is convex (and perhaps
strictly convex), but not strongly convex.

Assuming still that the function is twice continuously differentiable, one can
show that the lower bound of V2 f(x) implies that it is strongly convex. Using
Taylor’s theorem, there exists

ze{tz+(1—-ty:te(0,1]}

such that
Flo) = F@) + V) (g = ) + 5y~ 2) VS )y ).

Then
(y—2) "V f(2)(y—z) >m(y— )" (y — )

by the assumption about the eigenvalues, and hence we recover the second strong
convexity inequality above.

A function f is strongly convex with parameter m if and only if the function
myo2
v f(@) = Dlal
is convex.

A twice continuously differentiable function f on a compact domain X that
satisfies f”(z) > 0 for all z € X is strongly convex. The proof follows from the
extreme value theorem, which states that a continuous function on a compact
set has a maximum and minimum.

Strongly convex functions are generally easier to work with than convex or
strictly convex functions, since they are a smaller class. Like strictly convex
functions, strongly convex functions have unique minima on compact sets. It is
one of the factors that influences the choice of algorithm used to minimize the
fucntion.

1.4 L-smoothness

A function is L-smooth if its gradient is Lipschitz continuous with a constant L.
This means the gradient doesn’t change too quickly, preventing the algorithm
from taking overly large steps that might overshoot the minimum. Specifically,
it implies that:



IVf(z) = Vi)l < Lz —yll.

L-smoothness ensures a bounded gradient and helps in selecting an appropriate
step size for gradient descent, ensuring that the algorithm can take appropriate
steps and converge towards the solution.

2 Gradient Descent Methods

To solve our minimization problem, we look at gradient descent methods. These
are iterative algorithms. The general form of the iterations is usually as follows.

Try1 = Tk + o dy,
Where

k € Z, : index of time (iteration number)
z € R™: Current point
dy € R™ : Direction to move along at iteration k
ZTr11 € R™: Next point
ar € Ry @ Step size at iteration k

The goal of these algorithms is to make the sequence {f(zy)} decrease as much
as possible. So we start with the questions:
e How to choose dj?

e How to choose ay?

Cost
A

Learning step

Minimum

A J
=

Random w
initial value

Figure 3: Gradient Descent.



2.1 Choosing the Descent Direction

Choosing the direction of descent in an optimization algorithm is an important
first step. The following two Lemmas help us think about the Descent direction.

Lemma 1: Consider yourself sitting at a point € R™ and looking (locally) at
the value of the function f in all directions around you. The direction with the
maximum rate of decrease is along —V f(x).

When we speak of direction, the magnitude of the vector does not matter; e.g.,

Vix) Vf(z)
V@), SVI@) =0 I @]

For a given point x € R", a direction d € R" is called a descent direction, If
there exists & > 0 (o € R) such that

all are in the same direction.

flx+ad) < f(z), Yae(0,a).

There is a small enough (but nonzero) amount that you can move in direction
d and be guaranteed to decrease the function value.

Proof of Lemma 1.
Consider a point z, a direction d, and the univariate function

o= (w-+ap )

The rate of change of f at x in direction d is given by ¢'(0), which by the chain
rule equals

g (V@)

By the Cauchy—Schwarz inequality (see, e.g., Theorem 2.3 of [CZ13] for a proof),
we have:

1

which, after simplifying, gives
—IVF(@) < ||d||< f(@),d) < |[V[(@)].

So the rate of change in any direction cannot be larger than ||V f(z)||, or smaller
than —||V f(x)||. However, if we take d = V f(x), the right inequality is achieved:

1 1
IV £ @)l IV f (@)l

Similarly, if we take d = —V f(z), then the left inequality is achieved.

(Vf(x), V[f(x)) = V@1 = V@)l



Lemma 2: Consider a point € R™. Any direction d satisfying
(d,Vf(z)) <0
is a descent direction. (In particular, —V f(z) is a descent direction.)

Proof of Lemma 2.
By Taylor’s theorem, we have

f(x+ ad) = f(z) + aVf(x)Td+ ola).

Since

there exists & > 0 such that

@ < |Vf(x)"d|, Vae(0,a).
This, together with our assumption that V f(x)?d < 0, implies that Vo € (0, &),
we must have:

flz+ad) — f(x) <0.

Hence, d is a descent direction.

2.2 Choosing the Step Size

Another important thing to do is to choose step size. Gradient descent is based
on the observation that if the multi-variable function f(x) is defined and differ-
entiable in a neighborhood of a point a, then f(x) decreases fastest if one goes
from a in the direction of the negative gradient of f at a, —V f(a). It follows
that, if

a1 =a, —nVf(a,)

for a small enough step size or learning rate n € R, then f(a,) > f(ay+1). In
other words, the term 7V f(a) is subtracted from a because we want to move
against the gradient, toward the local minimum. With this observation in mind,
one starts with a guess xq for a local minimum of f, and considers the sequence
Xg,X1, X2, ... such that

Xn+1 = Xp — nnvf(xn)v n > 0.
We have a monotonic sequence
f(x0) 2 f(x1) =2 f(x2) = -+,

so the sequence (x,) converges to the desired local minimum. Note that the
value of the step size 1 is allowed to change at every iteration.



It is possible to guarantee the convergence to a local minimum under certain
assumptions on the function f (for example, f convex and Vf Lipschitz) and
particular choices of 1. Those include the sequence

’(X’n - Xn—l)T[Vf(xn) - Vf(xn—l)H
IV f(xn) =V f(xn-1)l]?

as in the Barzilai—-Borwein method, or a sequence 7, satisfying the Wolfe condi-
tions (which can be found by using line search). When the function f is convez,
all local minima are also global minima, so in this case, gradient descent can
converge to the global solution.

M =

3 The Gradient Descent Algorithm

Gradient descent is a method for unconstrained mathematical optimization. It
is a first-order iterative algorithm for minimizing a differentiable multivariate
function.

The idea is to take repeated steps in the opposite direction of the gradient
(or approximate gradient) of the function at the current point, because this is
the direction of steepest descent. Conversely, stepping in the direction of the
gradient will lead to a trajectory that maximizes that function; the procedure
is then known as gradient ascent. It is particularly useful in machine learning
for minimizing the cost or loss function.

Gradient descent is generally attributed to Augustin-Louis Cauchy, who first
suggested it in 1847.

Gradient descent is based on the observation that if the multi-variable function
f(x) is defined and differentiable in a neighborhood of a point a, then f(x)
decreases fastest if one goes from a in the direction of the negative gradient of
f at a, =V f(a). It follows that, if

Ap41 = an — ﬂVf(an)

for a small enough step size or learning rate n € Ry, then f(a,) > f(an+1). In
other words, the term 7V f(a) is subtracted from a because we want to move
against the gradient, toward the local minimum. With this observation in mind,
one starts with a guess xg for a local minimum of f, and considers the sequence
Xq, X1, X2, . .. such that

Xn+1 = Xn — nnvf(xn)7 n > 0.
We have a monotonic sequence

f(x0) > f(x1) > f(x2) > ---,

so the sequence (x,) converges to the desired local minimum. Note that the
value of the step size 1 is allowed to change at every iteration.



It is possible to guarantee the convergence to a local minimum under certain
assumptions on the function f (for example, f convex and Vf Lipschitz) and
particular choices of 1. Those include the sequence

o = 100 = %0 1) TV Gen) = VG|
! IV f(xn) = V f(xn—1)]]2

as in the Barzilai—-Borwein method, or a sequence 7, satisfying the Wolfe condi-
tions (which can be found by using line search). When the function f is convez,
all local minima are also global minima, so in this case gradient descent can
converge to the global solution.

In many ML problems, the objective function is not convex, which means there
are multiple local minima. Traditional gradient descent algorithms may get
stuck in one of the local minima, resulting in suboptimal models. SGD, on
the other hand, is less likely to get stuck because it updates the parameters
using only a few data points at a time, making it more likely to find the global
minimum.

4 The Stochastic Gradient Descent Algorithm

Stochastic Gradient Descent (SGD) is an effective and popular optimization
algorithm for machine learning. Its key strength is its ability to process large
datasets and reach convergence quickly. It also has high computational efficiency
due to the fact that the gradient can be estimated with a random sample of data
points instead of requiring the full dataset.

Unlike traditional Gradient Descent, SGD relies on a single example or samples
at each iteration, introducing randomness into the learning process. This makes
your model learn faster as it converges quicker than other optimization methods
such as Mini-Batch or Batch Gradient Descent. When applied to models with
thousands of features, SGD performs extremely well because of its significant
computational speed and accuracy.

4.1 Other conditions for successful Gradient Descent
Unbiased Gradient

In batch gradient descent, the gradient is calculated over the entire dataset,
making it an unbiased estimate of the true gradient. However, for large datasets,
this can be computationally expensive. Stochastic gradient descent (SGD) uses
a mini-batch of data points to estimate the gradient, introducing some bias.
The bias in SGD updates can lead to faster convergence on large datasets, but
it also introduces variance.

10



Bounded Variance

In the context of SGD, a bounded variance refers to the fact that the variance
of the stochastic gradient estimate should not be too large. If the variance is
too high, the updates can be erratic, making it difficult for the algorithm to
converge to the minimum. A good estimate of the variance helps in selecting a
suitable step size for SGD and can lead to faster convergence.

Need for Stochastic Gradient Descent (SGD) in
Machine Learning

There was a need for SGD (Stochastic Gradient Descent) in Machine Learning
(ML) because of the following reasons:

1. Large Datasets: In ML, it is common to have very large datasets with
millions or even billions of data points. Using traditional gradient descent
algorithms on such large datasets is computationally expensive and im-
practical. In such cases, SGD works well because it uses randomly selected
data points to update the model parameters, making the process faster
and more efficient.

2. Non-Convex Optimization Problems: In many ML problems, the
objective function is not convex, which means there are multiple local
minima. Traditional gradient descent algorithms may get stuck in one
of the local minima, resulting in suboptimal models. SGD, on the other
hand, is less likely to get stuck because it updates the parameters using
only a few data points at a time, making it more likely to find the global
minimum.

3. Online Learning: In some ML applications, new data is constantly being
generated and added to the dataset. In such cases, it is necessary to update
the model parameters in real-time, as new data becomes available. SGD is
well-suited for such tasks because it updates the model parameters using
small batches of data and can be applied to data as it arrives.

Overall, SGD is a more efficient and practical alternative to traditional gradient
descent algorithms in many ML applications, particularly for large datasets,
non-convex optimization problems, and online learning.

4.2 The Math Behind SGD

SGD works by iteratively updating the model parameters in the direction of
the negative gradient of the loss function. The gradient of the loss function is
a vector that points in the direction of the steepest ascent of the loss function.
By moving in the direction of the negative gradient, SGD is able to find the
minimum of the loss function.

11



SGD works by iteratively updating the model parameters in the direction of
the negative gradient of the loss function. The gradient of the loss function is
a vector that points in the direction of the steepest ascent of the loss function.
By moving in the direction of the negative gradient, SGD is able to find the
minimum of the loss function.

The loss function is a measure of how well the model fits the data. The goal of
SGD is to find the set of model parameters that minimizes the loss function.

The gradient of the loss function can be calculated using the following for-
mula:

oL

dient = —
gradien 20

where L is the loss function and 6 is the vector of model parameters.

The gradient can be used to update the model parameters using the following
formula:
0 = 0 — n - gradient

where 7 is the learning rate, which is a hyperparameter that controls how much
the model parameters are updated in each iteration.

4.3 Convex Case: Convergence to minimum

Here’s a mathematical proof of convergence for Stochastic Gradient Descent
(SGD) under some standard assumptions.

This first proof focuses on the expected convergence of SGD when minimizing
a smooth and convex function.

We want to minimize:

with update rule:
Trp1 = ok — MV f(21)

Assumptions
e Convexity: f(y) > f(x) + Vf(z)T(y — x) for all 2,y
e Lsmoothness: [[Vf(z) — V()| < Lllz — y]
e Unbiased gradient: E[V f(zy)] = V f(z1)
o Bounded variance: E[|V f(zx) — V£ (zx)||?] < 02

12



Proof
g1 — 21 = [l — mV f (zx) — 2™
= llok —a*||* = 20V f () T (2n — %) + 0|V f (n) ||
Taking expectation:
Efllzgr1 — 2*[1] < Elllzg — a*[|°] = 2mE[f (zx) — f(2*)] + 7 C
Summing over k and using Jensen’s inequality:

k|2 C
Blf(er)] - S < DL 1

If the function is strongly convex, SGD can achieve O(1/T) convergence with
decaying step sizes. If the function is non-convex, different convergence results
apply (e.g., convergence to a stationary point in expectation).

4.4 Non-Convex Case: Convergence to Stationary Point

Here we drop convexity and have the following assumptions -

Assumptions

e [-smoothness

Unbiased gradient
2

Bounded variance: o

Lower bounded function: f(z) > f*

Proof

Using smoothness:

2
Fleie) < Fa) — 0V F @)™V (o) + 2|9 f ) P
Taking expectation and bounding variance:
Ln 2 Ln® ,
Blf ()] < B Ga] - (1= 5 ) BV Al + -0

Summing over k:

2

L\~ o o fx0) = | Lo
7 2 IV < Hr s 5
Choosing n = O(1/V/T) gives:

E[|[V £ (z1)]]) = O1/VT)

So SGD finds approximate stationary points in expectation for non-convex
smooth functions.

13



5 Escaping Saddle Points

To effectively escape saddle points during optimization, especially in machine
learning, techniques like adding noise (stochastic gradient perturbation) or ad-
justing the learning rate schedule are crucial. These methods help the optimiza-
tion process move away from flat regions (saddle points) where gradient descent
can get stuck.

1. Stochastic Gradient Perturbation

Concept: Introduce small random noise to the gradient during optimization,
especially when the gradient’s magnitude is small (indicating proximity to a
saddle point).

How it helps: This noise introduces a random component that can push the
optimization process out of the flat region of the saddle point, allowing it to
explore other directions and potentially find a better solution.
Implementation: Common approaches involve adding a small random vector
to the gradient or using a noise distribution with a specific variance.

2. Learning Rate Annealing / Scheduling

Concept: Gradually reduce the learning rate (step size) during training.
How it helps: A higher initial learning rate allows for faster initial progress.
As training progresses, a smaller learning rate enables more precise exploration
of the loss landscape, potentially escaping saddle points that might trap a larger
step size.

Common methods:

e Step Decay: Reduce the learning rate by a factor (e.g., halving) every
few epochs.

e Cosine Annealing: Adjust the learning rate according to a cosine func-
tion over time.

3. Adaptive Learning Rates

Concept: Adaptive methods like Adam, Adagrad, and RMSProp automati-
cally adjust the learning rate for each parameter based on past gradients.
How it helps: Adaptive methods can be more effective at escaping saddle
points because they dynamically adjust the learning rate based on the local
curvature of the loss function.

Empirical evidence: Adaptive methods have been shown to escape saddle
points faster and converge faster to second-order stationary points compared
to vanilla SGD, according to research published in the Proceedings of Machine
Learning Research.
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4. Other Strategies

Second-order information: Some methods leverage second-order informa-
tion (Hessian matrix) to identify saddle points and find directions of negative
curvature to escape.

Perturbed Gradient Descent: This approach combines gradient descent
with random perturbations, ensuring that the algorithm avoids saddle points
with high probability, as discussed in an arXiv article.

Escaping saddle points requires careful consideration of the optimization pro-
cess. Adding noise to the gradient, employing learning rate schedules, or using
adaptive methods can significantly improve the chances of finding better so-
lutions in non-convex optimization problems by avoiding or escaping saddle
points.

5.1 SGD with PL Condition: Linear Convergence
Let’s now assume that f satisfies the PL condition, which says:
PL Condition
1 *
SIVI@I? = p(f(z) = )
This is weaker than strong convexity, yet it still gives linear convergence.

Proof

Using smoothness and variance bounds:

Bl (ek41)] < Bl (@] (L~ SRS + 257

Apply PL condition:

E[f(zpr1)] = f* < (1 = np)E[f (zx) — f7] + 7’2%
Recursively: 2
Bl ()] — £ < (1= m) (F(ao) = 1)+

5.2 Momentum

SGD has trouble navigating ravines, i.e. areas where the surface curves much
more steeply in one dimension than in another ref4, which are common around
local optima. In these scenarios, SGD oscillates across the slopes of the ravine
while only making hesitant progress along the bottom towards the local opti-
mum, as in Image 2.
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Stochastic Gradient Stochastic Gradient

Descent without Descent with
Momentum Momentum
Image 2: SGD without Image 3: SGD with
momentum momentum

Momentum is a method that helps accelerate SGD in the relevant direction and
dampens oscillations, as can be seen in Image 3. It does this by adding a fraction
~ of the update vector of the past time step to the current update vector:

vp = yvs—1 +nVeJ(0)
0=0-— V¢

Note: Some implementations exchange the signs in the equations. The momen-
tum term -y is usually set to 0.9 or a similar value.

6 Variations of SGD with adaptive step sizes

6.1 Setup to evaluate generic adaptive methods

We now provide a framework of adaptive methods that gives us insights into the
differences between different adaptive methods and is useful for understanding
the flaws in a few popular adaptive methods. Algorithm 7?7 provides a generic
adaptive framework that encapsulates many popular adaptive methods. Note
the algorithm is still abstract because the “averaging” functions ¢; and ¢, have
not been specified.

Generic Adaptive Method Setup

Input: z; € F, step size {a; > 0}, sequence of functions {¢s, ¥},
FORt=1to T

gt = Vfi(x)

my = ¢t(917 v agt) and ‘/t = 7%(917 e 7gt)

Tpp1 = o — Oétmt/\/vt

riv1 = Uz 7 (T141)
ENDFOR

16



Here ¢, : 7' — R? and 1y : F' — S¢. For ease of exposition, we refer to

ay as step size and atVt_l/ % as learning rate of the algorithm and furthermore,
restrict ourselves to diagonal variants of adaptive methods encapsulated by the
Algorithm where V; = diag(v;).

We first observe that standard stochastic gradient algorithm falls in this frame-
work by using:

ée(g1,---59t) =g9¢ and Y(g1,...,9¢) =1, (SGD)

and oy = a/+/t for all t € [T]. While the decreasing step size is required for
convergence, such an aggressive decay of the learning rate typically translates
into poor empirical performance. The key idea of adaptive methods is to choose
averaging functions appropriately so as to entail good convergence.

For instance, the first adaptive method ADAGRAD (Duchi et al., 2011), which
propelled the research on adaptive methods, uses the following averaging func-
tions:

diag(3>;_; 92)

. . (ADAGRAD)

be(g1,---,9t) =9¢ and Yi(g1,...,9¢) =

and step size oy = a/+/t for all t € [T]. In contrast to a learning rate of
a/+/t in SGD, such a setting effectively implies a modest learning rate decay of
a/ Z:?:l gf’ ; for j € [d]. When the gradients are sparse, this can potentially

lead to huge gains in terms of convergence (see Duchi et al. (2011)). These
gains have also been observed in practice for even non-sparse settings.

Adaptive methods based on Exponential Moving
Averages

Exponential moving average variants of ADAGRAD are popular in the deep learn-
ing community. RMSPROP, ADAM, NADAM, and ADADELTA are some promi-
nent algorithms that fall in this category. The key difference is to use an ex-
ponential moving average as function 1; instead of the simple average function
used in ADAGRAD. ADAM, a particularly popular variant, uses the following
averaging functions:

t t
¢u(g1,- -, 00) = (1=B1) > _ B g and  ¢y(gr,..., ) = (1—p)diag <Z 5§_i97:2> ;
i=1 i=1
(ADAM)
for some f1, B2 € [0,1). This update can alternatively be stated by the following

simple recursion:

mei = Bimi—1i+ (1= B1)geis v = Bove—1,i + (1 — B2)gi (1)
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and mg,; = 0 and vo; = 0 for all ¢ € [d], and ¢ € [T]. A value of 51 = 0.9

and By = 0.999 is typically recommended in practice. We note the additional
projection operation in Algorithm ?? in comparison to ADAM. When F = R¢,
the projection operation is an identity operation and this corresponds to the
algorithm in (Kingma & Ba, 2015).
For theoretical analysis, one requires ay = 1/v/t for ¢ € [T], although a more
aggressive choice of constant step size seems to work well in practice. RMSPROP,
which appeared in an earlier unpublished work (Tieleman & Hinton, 2012), is
essentially a variant of ADAM with 8; = 0. In practice, especially in deep
learning applications, the momentum term arising due to non-zero (3; appears to
significantly boost the performance. We will mainly focus on ADAM algorithm
due to this generality but our arguments also apply to RMSPROP and other
algorithms such as ADADELTA, NADAM.

7 ADAptive Moment estimation (ADAM)

Adaptive Moment Estimation (Adam) refl4 is another method that computes
adaptive learning rates for each parameter. In addition to storing an exponen-
tially decaying average of past squared gradients v; like Adadelta and RMSprop,
Adam also keeps an exponentially decaying average of past gradients my, similar
to momentum. Whereas momentum can be seen as a ball running down a slope,
Adam behaves like a heavy ball with friction, which thus prefers flat minima
in the error surface refl5. We compute the decaying averages of past and past
squared gradients m; and v; respectively as follows:

my = Bimy—1 + (1 — B1)ge
vy = Povy—1 + (1 — 32)93

my and v; are estimates of the first moment (the mean) and the second moment
(the uncentered variance) of the gradients, respectively, hence the name of the
method. As m; and v; are initialized as vectors of 0’s, the authors of Adam
observe that they are biased towards zero, especially during the initial time
steps, and especially when the decay rates are small (i.e. 81 and 5 are close to
1).

They counteract these biases by computing bias-corrected first and
second moment estimates:

o me
my =
-4t
N Ut
U = ——
1— s

They then use these to update the parameters just as we have seen in Adadelta
and RMSprop, which yields the Adam update rule:
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n
Vo + €
The authors propose default values of 0.9 for 81, 0.999 for 32, and 1072 for e.

They show empirically that Adam works well in practice and compares favorably
to other adaptive learning-method algorithms.

Opy1 =0 — M.

7.1 The Non-Convergence of ADAM

With the problem setup in the previous section, we discuss fundamental flaw
in the current exponential moving average methods like ADAM. We show that
ADAM can fail to converge to an optimal solution even in simple one-dimensional
convex settings. These examples of non-convergence contradict the claim of
convergence in (Kingma & Ba, 2015), and the main issue lies in the following

quantity of interest:
vV Vi VvV
i = ( s t) : (2)

Qi1 Qi

This quantity essentially measures the change in the inverse of the learning rate
of the adaptive method with respect to time. One key observation is that for
SGD and ADAGRAD, T'; = 0 for all ¢ € [T]. This simply follows from update
rules of SGD and ADAGRAD in the previous section. In particular, update
rules for these algorithms lead to “non-increasing” learning rates. However, this
is not necessarily the case for exponential moving average variants like ADAM
and RMSPROP, i.e., I'; can potentially be indefinite for ¢t € [T]. We show
that this violation of positive definiteness can lead to undesirable convergence
behavior for ADAM and RMSPROP.

Consider the following simple sequence of linear functions for F = [-1,1]:

Cx, fort mod3=1
fe(@) :{

—x, otherwise,

where C' > 2. For this function sequence, it is easy to see that the point z = —1
provides the minimum regret. Suppose 8; = 0 and B2 = 1/(1 + C?). We show
that ADAM converges to a highly suboptimal solution of x = +1 for this setting.
Intuitively, the reasoning is as follows. The algorithm obtains the large gradient
C once every 3 steps, and while the other 2 steps it observes the gradient —1,
which moves the algorithm in the wrong direction. The large gradient C' is
unable to counteract this effect since it is scaled down by a factor of almost C'
for the given value of B3, and hence the algorithm converges to 1 rather than
—1. We formalize this intuition in the result below.

8 Future and changes expected

Looking ahead, the field of optimization in machine learning is rapidly evolving.
One direction involves improved versions of Adam, such as AdaBelief and Lion,
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which aim to combine adaptivity with better generalization and robustness. On
the theoretical front, researchers are exploring why stochastic gradient descent
(SGD) performs so well on highly non-convex problems like deep neural net-
works. Ongoing studies also focus on eflicient pre-training methods, improving
training stability, developing stronger convergence guarantees, and uncovering
scaling laws that govern model performance as size and data increase. These
advances promise to make optimization algorithms more efficient, reliable, and
theoretically grounded for the next generation of Al models.

9 Conclusion

In this paper, we’ve explored the mathematical foundations that drive how
we train modern machine learning models, especially when dealing with the
challenging landscapes of non-convex optimization. We began with the basic
concept of minimizing a loss function, then examined the differences between
convex and non-convex functions, and how those differences impact optimiza-
tion. We learned how gradient descent and its stochastic variants navigate these
landscapes, and how tools like L-smoothness and the Polyak—Lojasiewicz (PL)
condition help us prove convergence, even in non-convex settings. We also dis-
cussed practical solutions like adding random noise to escape saddle points,
and how optimizers like AdamW further enhance stability and generalization.
Finally, we looked at how these ideas power real-world models like Vision Trans-
formers.

As machine learning continues to tackle increasingly complex problems, a strong
mathematical understanding of optimization will remain essential, not just for
making models work, but for making them faster, more stable, and more trust-
worthy. The future holds exciting advances in theory and practice, and the tools
we’ve covered today form the bedrock of that progress.
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11 Appendix - Math for the Paper

Linear Algebra Background

Gradient — In the context of multivariable calculus, the gradient of a function,
denoted by Vf, is a vector field that points in the direction of the greatest rate
of increase of the function at any given point, and whose magnitude is that rate
of increase.

vy (2.20.20).
Ox’ Oy’ 0z
Hessian — A Hessian matrix is a square matrix of second-order partial deriva-
tives of a scalar-valued function. It essentially describes the local curvature of
the function, providing information about its concavity or convexity at a given
point.
For example, if a function has two variables (x and y), the Hessian matrix

2 2 2 02 a2
will include terms like %, ‘37{, and 3‘15; (and 801176];’ which is equal to a(igy

due to Schwarz’s theorem).

Jacobian — The Jacobian matrix represents the differential of f at every point
where f is differentiable. The Jacobian matrix, whose entries are functions of
x, is denoted in various ways; other common notations include Df, V f. Some
authors define the Jacobian as the transpose of the form given above V7 f.
Then the Jacobian matrix of function f, denoted J, is the m x n matrix
whose (1, j) entry is gj;;
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