Complexity Classes and Complete Problems

Rishika Aggarwal (Euler Circle)

Rishika Aggarwal

Euler Circle

July 11, 2025

Computational Complexity

July 11, 2025

Overview

@ Introduction
© Preliminaries
© Latin Square
@ Sudoku

© Open Problems

Rishika Aggarwal (Euler Circle) Computational Complexity

What is Complexity Theory?

Complexity Theory is the branch of theoretical computer science that
studies:

@ How difficult computational problems are.
@ How resources like time and memory affect problem-solving.

© Why some problems are easy to check but hard to solve.

Why does complexity theory matter?
@ Complexity theory studies what problems can be solved efficiently.
@ It organizes problems into classes like P, NP, PSPACE, etc.

Example: Checking a Sudoku solution can be done in seconds, but solving
it may take a large amount of time. This is the kind of questions
complexity theory answers.

Rishika Aggarwal (Euler Circle) Computational Complexity July 11, 2025 3/20

Turing Machine (Definition)

A Turing Machine is a 7-tuple, (Q,X,T, 6, qo, Gaccepts Greject), Where
Q, X, T are all finite sets.

@ Q is the finite set of states the machine can be in.

@ X is the input alphabet not containing the blank symbol L.
© I is the tape alphabet, where LI € and X CT.

@ ¢ is the transition function.

@ qo € Q is the start state of the machine.

@ Gaccept € Q is the accept state.

@ Greject € Q is the reject state, where Greject 7 Gaccept-

Rishika Aggarwal (Euler Circle) Computational Complexity July 11, 2025 4/20

The Church-Turing Thesis states that any computation that can be
performed by an algorithm can also be performed by a Turing machine.

Informally, a Turing machine is a simplified model of how a computer
works. It has an infinite tape (like memory) and follows a set of rules to
read and write symbols on that tape. It works one step at a time. It can
describe any algorithm a real computer could execute. When we talk
about how much time or space a problem takes to solve, we usually
imagine how a Turing Machine would do it.

Rishika Aggarwal (Euler Circle) Computational Complexity July 11, 2025

5/20

What is NP?

A problem is in NP if a solution can be verified in polynomial time.
Formal definition: A language L C {0,1}* is in NP if:

x € L < 3Fue {0,1}PX) such that M(x,u) =1

for some polynomial-time machine M.

Intuition:
@ It's like checking a Sudoku or crossword puzzle.
@ Someone hands you a filled grid (a “certificate”).

@ You check if it's correct in polynomial time.
Examples: SAT and 3 — SAT

Rishika Aggarwal (Euler Circle) Computational Complexity July 11, 2025

NP-Completeness and Reductions

NP-Complete: For a problem A to be NP-complete, it should be in NP
(A € NP) and it should be NP-hard.

NP-Hard: A problem is NP-hard if it is as hard as the hardest problems in
NP. This means that it is NP-hard if every problem in NP can be reduced
to it in polynomial time.

Reduction: Converting one problem into another. If A is polynomial time
reducible to B (A <, B), solving B solves A.

Rishika Aggarwal (Euler Circle) Computational Complexity July 11, 2025

What is PSPACE?

PSPACE: Problems that lie under PSPACE are solvable using a
polynomial amount of memory.

PSPACE = |_J SPACE(n*)
keN

Even if it takes a long time, if memory usage stays polynomial, the
problem is in PSPACE.
A problem is PSPACE-complete when
@ The problem is in PSPACE
@ The problem is PSPACE-hard.
Examples: TQBF, Formula Game

Rishika Aggarwal (Euler Circle) Computational Complexity July 11, 2025

Latin Square Completion Problem

A Latin square of order nis an n x n grid filled with numbers from the set
{1,2,...,n}, such that each number appears exactly once in each row and
each column.

The Latin Square Completion (LSC) problem asks whether a partially filled
Latin square can be completed into a full Latin square that still satisfies
the row and column uniqueness conditions.

Figure: A Latin Square

Rishika Aggarwal (Euler Circle) Computational Complexity July 11, 2025

Verification in NP:
Given a proposed completion of a Latin square, we can verify in
polynomial time (O(n)?) that:

@ Each row contains all numbers from 1 to n exactly once,

@ Each column contains all numbers from 1 to n exactly once,

@ The completed entries agree with the original (non-blank) cells.
Therefore, Latin Square Completion € NP.

Rishika Aggarwal (Euler Circle) Computational Complexity July 11, 2025 10 /20

Sudoku is NP-Complete

2 x n? grid, where

We consider the generalized Sudoku problem on an n
each cell must contain a digit from {1,2,...,n%}.
Given a candidate filled grid (a certificate or a proposed solution), we can
verify in polynomial time whether all constraints are satisfied. This

verification can be done in the following times:
o Checking all n? rows takes O(n*) time.
@ Checking all n? columns takes O(n*) time.
@ Checking all n? blocks takes O(n*) time.

Thus, the verification of a solution can be performed in polynomial time
with respect to the input size.
Therefore, Sudoku € NP.

Rishika Aggarwal (Euler Circle) Computational Complexity July 11, 2025

Now, using a Latin Square Completion problem, we construct a Sudoku
instance as follows:

o Let the partially filled Latin square be denoted by a function:
L:A{1,....,n} x{1,...,n} = {1,...,n}U{O3}

Here, L(/,j) is the value in row i, column j of the Latin Square.
If the cell is already filled, then L(i,j) € {1,...,n}
If the cell is blank, then L(i,j) =0

Rishika Aggarwal (Euler Circle) Computational Complexity July 11, 2025 12 /20

@ Then we construct a Sudoku grid S by embedding a Latin square
inside it. Each entry L(i,/) is placed into a specific sub-region of S,
ensuring that row and column uniqueness from the Latin square are

preserved. This helps us create a grid that also satisfies subgrids
uniqueness.

Rishika Aggarwal (Euler Circle) Computational Complexity July 11, 2025 13 /20

@ For each known entry L(i,j) = a, we fix the corresponding cell in the
Sudoku grid S:

S[i—=1)-n+1,(j—1)-n+1]=a

This entry is treated as a fixed clue in the Sudoku puzzle.

For example, we embed a 3x3 Latin square into a 9x9 Sudoku grid.
If the Latin square has value 2 at position (2,3), then,
(i-1)-n+1=(2-1)-3+1=4
G-1)-n+1=(383-1)-34+1=7

So, 5(4,7) = 2, which means that the number 2 will be in the cell
(4,7) of the Sudoku grid.

@ The remaining entries of the Sudoku are left blank. This still enforces
the Latin Square completion properties.

Rishika Aggarwal (Euler Circle) Computational Complexity July 11, 2025 14 /20

Latin Square Embedded in Sudoku

1 2 3
3 1 2
1 3 2 3 1
3|1
2131
Latin Square (3x3) Sudoku Grid (9x9)

Rishika Aggarwal (Euler Circle) Computational Complexity July 11, 2025

Thus, any valid completion of the Sudoku corresponds to a valid Latin
square completion. And conversely, a completed Latin square gives a valid
Sudoku solution under this embedding.

This construction is computable in polynomial time, as we are only
mapping positions and values between two grids of size O(n?).

Since Sudoku € NP and Sudoku is NP-hard, it is NP-complete.

Rishika Aggarwal (Euler Circle) Computational Complexity July 11, 2025 16 / 20

Is Sudoku PSPACE-complete?

Recall that for a problem to PSPACE-complete, it should in PSPACE and
it should be PSPACE-hard.
The following is a known complexity class hierarchy:

P C NP C PSPACE C PH.

Since Sudoku is in NP, and NP C PSPACE, it follows that Sudoku
€ PSPACE.

Rishika Aggarwal (Euler Circle) Computational Complexity July 11, 2025

Many PSPACE-complete problems involve:
@ Two-player games with alternating moves,
@ Long sequences of decisions with recursive or branching structure,
@ Quantifier alternation, such as in TQBF.

Sudoku, by contrast, does not exhibit these traits:

o It is a single-player puzzle with no alternation or interaction.

@ Once a candidate solution is proposed, it can be verified efficiently.

@ It does not simulate universal or existential quantifier alternation.

This strongly suggests that Sudoku is not PSPACE-hard. However, we
cannot formally prove that Sudoku is not PSPACE-complete unless we
resolve the open question NP %= PSPACE.

Rishika Aggarwal (Euler Circle) Computational Complexity July 11, 2025

18 /20

Open Problems in Complexity Theory

@ P vs NP: Can we always find solutions as quickly as we can check
them?

@ NP vs PSPACE: Is solving problems with limited memory harder
than just verifying answers?

o PH Collapse: Will adding more layers of complexity eventually stop
giving us harder problems?

Rishika Aggarwal (Euler Circle) Computational Complexity July 11, 2025

Thank you for your attention!

Rishika Aggarwal (Euler Circle) Computational Complexity July 11, 20/20

	Introduction
	Preliminaries
	Latin Square
	Sudoku
	Open Problems

