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What is Complexity Theory?

Complexity Theory is the branch of theoretical computer science that
studies:

@ How difficult computational problems are.
@ How resources like time and memory affect problem-solving.

© Why some problems are easy to check but hard to solve.

Why does complexity theory matter?
@ Complexity theory studies what problems can be solved efficiently.
@ It organizes problems into classes like P, NP, PSPACE, etc.

Example: Checking a Sudoku solution can be done in seconds, but solving
it may take a large amount of time. This is the kind of questions
complexity theory answers.
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Turing Machine (Definition)

A Turing Machine is a 7-tuple, (Q,X,T, 6, qo, Gaccepts Greject), Where
Q, X, T are all finite sets.

@ Q is the finite set of states the machine can be in.

@ X is the input alphabet not containing the blank symbol L.
© I is the tape alphabet, where LI € and X CT.

@ ¢ is the transition function.

@ qo € Q is the start state of the machine.

@ Gaccept € Q is the accept state.

@ Greject € Q is the reject state, where Greject 7 Gaccept-
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The Church-Turing Thesis states that any computation that can be
performed by an algorithm can also be performed by a Turing machine.

Informally, a Turing machine is a simplified model of how a computer
works. It has an infinite tape (like memory) and follows a set of rules to
read and write symbols on that tape. It works one step at a time. It can
describe any algorithm a real computer could execute. When we talk
about how much time or space a problem takes to solve, we usually
imagine how a Turing Machine would do it.
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What is NP?

A problem is in NP if a solution can be verified in polynomial time.
Formal definition: A language L C {0,1}* is in NP if:

x € L < 3Fue {0,1}PX) such that M(x,u) =1

for some polynomial-time machine M.

Intuition:
@ It's like checking a Sudoku or crossword puzzle.
@ Someone hands you a filled grid (a “certificate”).

@ You check if it's correct in polynomial time.
Examples: SAT and 3 — SAT
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NP-Completeness and Reductions

NP-Complete: For a problem A to be NP-complete, it should be in NP
(A € NP) and it should be NP-hard.

NP-Hard: A problem is NP-hard if it is as hard as the hardest problems in
NP. This means that it is NP-hard if every problem in NP can be reduced
to it in polynomial time.

Reduction: Converting one problem into another. If A is polynomial time
reducible to B (A <, B), solving B solves A.
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What is PSPACE?

PSPACE: Problems that lie under PSPACE are solvable using a
polynomial amount of memory.

PSPACE = |_J SPACE(n*)
keN

Even if it takes a long time, if memory usage stays polynomial, the
problem is in PSPACE.
A problem is PSPACE-complete when
@ The problem is in PSPACE
@ The problem is PSPACE-hard.
Examples: TQBF, Formula Game
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Latin Square Completion Problem

A Latin square of order nis an n x n grid filled with numbers from the set
{1,2,...,n}, such that each number appears exactly once in each row and
each column.

The Latin Square Completion (LSC) problem asks whether a partially filled
Latin square can be completed into a full Latin square that still satisfies
the row and column uniqueness conditions.

Figure: A Latin Square
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Verification in NP:
Given a proposed completion of a Latin square, we can verify in
polynomial time (O(n)?) that:

@ Each row contains all numbers from 1 to n exactly once,

@ Each column contains all numbers from 1 to n exactly once,

@ The completed entries agree with the original (non-blank) cells.
Therefore, Latin Square Completion € NP.
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Sudoku is NP-Complete

2 x n? grid, where

We consider the generalized Sudoku problem on an n
each cell must contain a digit from {1,2,...,n%}.
Given a candidate filled grid (a certificate or a proposed solution), we can
verify in polynomial time whether all constraints are satisfied. This

verification can be done in the following times:
o Checking all n? rows takes O(n*) time.
@ Checking all n? columns takes O(n*) time.
@ Checking all n? blocks takes O(n*) time.

Thus, the verification of a solution can be performed in polynomial time
with respect to the input size.
Therefore, Sudoku € NP.
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Now, using a Latin Square Completion problem, we construct a Sudoku
instance as follows:

o Let the partially filled Latin square be denoted by a function:
L:A{1,....,n} x{1,...,n} = {1,...,n}U{O3}

Here, L(/,j) is the value in row i, column j of the Latin Square.
If the cell is already filled, then L(i,j) € {1,...,n}
If the cell is blank, then L(i,j) =0
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@ Then we construct a Sudoku grid S by embedding a Latin square
inside it. Each entry L(i,/) is placed into a specific sub-region of S,
ensuring that row and column uniqueness from the Latin square are

preserved. This helps us create a grid that also satisfies subgrids
uniqueness.
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@ For each known entry L(i,j) = a, we fix the corresponding cell in the
Sudoku grid S:

S[i—=1)-n+1,(j—1)-n+1]=a

This entry is treated as a fixed clue in the Sudoku puzzle.

For example, we embed a 3x3 Latin square into a 9x9 Sudoku grid.
If the Latin square has value 2 at position (2,3), then,
(i-1)-n+1=(2-1)-3+1=4
G-1)-n+1=(383-1)-34+1=7

So, 5(4,7) = 2, which means that the number 2 will be in the cell
(4,7) of the Sudoku grid.

@ The remaining entries of the Sudoku are left blank. This still enforces
the Latin Square completion properties.
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Latin Square Embedded in Sudoku

1 2 3
3 1 2
1 3 2 3 1
3|1
2131
Latin Square (3x3) Sudoku Grid (9x9)
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Thus, any valid completion of the Sudoku corresponds to a valid Latin
square completion. And conversely, a completed Latin square gives a valid
Sudoku solution under this embedding.

This construction is computable in polynomial time, as we are only
mapping positions and values between two grids of size O(n?).

Since Sudoku € NP and Sudoku is NP-hard, it is NP-complete.
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Is Sudoku PSPACE-complete?

Recall that for a problem to PSPACE-complete, it should in PSPACE and
it should be PSPACE-hard.
The following is a known complexity class hierarchy:

P C NP C PSPACE C PH.

Since Sudoku is in NP, and NP C PSPACE, it follows that Sudoku
€ PSPACE.

Rishika Aggarwal (Euler Circle) Computational Complexity July 11, 2025



Many PSPACE-complete problems involve:
@ Two-player games with alternating moves,
@ Long sequences of decisions with recursive or branching structure,
@ Quantifier alternation, such as in TQBF.

Sudoku, by contrast, does not exhibit these traits:

o It is a single-player puzzle with no alternation or interaction.

@ Once a candidate solution is proposed, it can be verified efficiently.

@ It does not simulate universal or existential quantifier alternation.

This strongly suggests that Sudoku is not PSPACE-hard. However, we
cannot formally prove that Sudoku is not PSPACE-complete unless we
resolve the open question NP %= PSPACE.
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Open Problems in Complexity Theory

@ P vs NP: Can we always find solutions as quickly as we can check
them?

@ NP vs PSPACE: Is solving problems with limited memory harder
than just verifying answers?

o PH Collapse: Will adding more layers of complexity eventually stop
giving us harder problems?
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Thank you for your attention!
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