
COMPLEXITY CLASSES AND COMPLETE PROBLEMS

RISHIKA AGGARWAL

Abstract. In this paper, we explore the foundational ideas of complexity theory by dis-

cussing major computational complexity classes, such as P , NP , and PSPACE. After

reading the following paper, the reader will have a basic understanding of what it means

for a problem to be hard for a computer to solve. To do this, we begin by introducing var-

ious complexity classes and the Turing machine. We then prove three major completeness

theorems: SAT is NP -complete (Cook-Levin Theorem), 3 − SAT is NP -complete, and

TQBF is PSPACE-complete. Along the way, we also explore how real-world problems like

Sudoku fit into this theory, and discuss open questions such as if P = NP and whether the

Polynomial Hierarchy collapses. Finally, we touch on how these ideas connect to real-world

topics like cryptography.

1. Introduction

Have you ever wondered why certain problems, like checking if a Sudoku solution is valid,

feel easy, while actually solving them from scratch can be much harder, even for a computer?

Questions like this are at the heart of computational complexity, a field of theoretical com-

puter science that explores the limits of what computers can do, and how efficiently they

can do it.

Theoretical computer science (TCS) emerged in the early 20th century through the ground-

breaking work of mathematicians such as Alan Turing, Alonzo Church, and Kurt Gödel.

Their work introduced formal models of computation, including the now famous Turing ma-

chine, which is a simple device that captures the essence of algorithmic problem-solving.

This model still underlies how we reason about computation today.

As computers became more powerful, a new set of questions came up. These questions

were broader, as they discussed how much time or memory it would take to solve a prob-

lem. This gave rise to complexity classes like P (problems solvable quickly), NP (problems

where solutions are easy to check), and PSPACE (problems solvable with limited mem-

ory). Understanding the relationships between these classes remains one of the deepest open

challenges in theoretical computer science.

One key idea in complexity theory is the notion of completeness. A problem is called

“complete” for a class if it is, informally, the hardest in that class. Solving a complete

problem efficiently would mean we could solve every problem in the class efficiently. The
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Cook-Levin Theorem, which showed that the Boolean satisfiability problem (SAT ) is NP -

complete, was one of the first major results in this area and helped define how we think

about computational difficulty today. Further historical context and contributions can be

found in [FH03].

In this paper, we explore these fundamental ideas through definitions, theorems, and ex-

amples. We begin by formally defining complexity classes, reductions, and Turing machines.

We then walk through classic results like the completeness of SAT , 3 − SAT , and TQBF .

We also look at how puzzles like Sudoku fit into this framework, giving it a more real-world

approach.

Finally, we highlight major open problems in the field, such as whether P = NP or

whether the Polynomial Hierarchy collapses. We also touch on the known separation between

PSPACE and EXPTIME, which is one of the few proven results about the structure of

these classes.

2. Preliminaries

In this section, we define concepts that are fundamental to theoretical computer science

and computational complexity. Additionally, we discuss time complexity and space com-

plexity. This section forms the basis for understanding the related results discussed later in

the paper. All the definitions are found in [Sip12,AB09]. This section aims to explain these

definitions in simpler terms.

Definition 1: Turing Machine (TM). A Turing Machine is a 7-tuple, (Q,Σ,Γ, δ, q0,

qaccept, qreject), where Q,Σ,Γ are all finite sets.

(1) Q is the set of states, which is the finite set of states the machine can be in.

(2) Σ is the input alphabet not containing the blank symbol ⊔, which is the set of data

the machine can read as input.

(3) Γ is the tape alphabet, where ⊔ ∈ Γ and Σ ⊆ Γ, which includes all the symbols a

Turing machine might read, write, or work with.

(4) δ : Q× Γ → Q× Γ× {L,R}, is the transition function. This tells the machine what

to do (which transition to make, what to write, and which direction to move).

(5) q0 ∈ Q is the start state, which is the state in which the machine begins.

(6) qaccept ∈ Q is the accept state. This defines if the input is valid or accepted.

(7) qreject ∈ Q is the reject state, where qreject ̸= qaccept. This defines when a particular

input fails the condition.

The Church-Turing Thesis states that any computation that can be performed by an algo-

rithm can also be performed by a Turing machine.

In simple words, a Turing Machine is a simplified model of how a computer works. It

has an infinite tape (like memory) and follows a set of rules to read and write symbols on



COMPLEXITY CLASSES AND COMPLETE PROBLEMS 3

that tape. It works one step at a time. It can describe any algorithm a real computer could

execute. When we talk about how much time or space a problem takes to solve, we usually

imagine how a Turing Machine would do it.

Definition 2: Class P . Class P is the class of all languages that are decidable in polynomial

time on a deterministic single tape Turing Machine.

P =
⋃
k

TIME(nk)

In other words, it consists of all decision problems that can be solved by a deterministic

Turing machine in polynomial time. The running time of such algorithms is bounded by

some polynomial function of the input size.

Definition 3: The Class NP . A language L ⊆ {0, 1}∗ is in NP if there exists a polynomial

p : N → N and a polynomial-time Turing machine M such that for every x ∈ {0, 1}∗,

x ∈ L ⇐⇒ ∃u ∈ {0, 1}p(|x|) such that M(x, u) = 1

If x ∈ L and u ∈ {0, 1}p(|x|) satisfy M(x, u) = 1, then we call u a certificate for x (with

respect to the language L and the machine M).

Class NP includes decision problems for which a proposed solution can be verified in poly-

nomial time. In other words, while the solution might be hard to find, it can be quickly

checked once given. Many puzzles, such as Sudoku, fall into NP : solutions are difficult to

compute from scratch, but easy to verify when someone gives you one.

Definition 4: Polynomial-Time Reduction. This is a general form of polynomial-time

reduction, used to compare problem difficulty.

Let A and B be languages over the binary alphabet {0, 1}. We say that A is polynomial-

time reducible to B, written A ≤p B, if there exists a polynomial-time computable function

f : {0, 1}∗ → {0, 1}∗ such that for every string x:

x ∈ A ⇐⇒ f(x) ∈ B

That is, x is a yes-instance of A if and only if f(x) is a yes-instance of B.

Definition 5: Reductions, NP -hardness, and NP -completeness. We say that a lan-

guage A ⊆ {0, 1}∗ is polynomial-time Karp reducible to a language B ⊆ {0, 1}∗ denoted by

A ≤p B if there is a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such that

for every x ∈ {0, 1}∗, x ∈ A if and only if f(x) ∈ B.

We say that B is NP -hard if A ≤p B for every A ∈ NP . We say that B is NP -complete if

B is NP -hard and B ∈ NP .
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A reduction is like converting one problem into another. If problem A can be reduced to

problem B, it means that solving B helps us solve A too.

NP -hard problems are at least as hard as the hardest problems in NP .

NP -complete problems are in NP (verifiable quickly) and as hard as any other problem

in NP .

Definition 6: Class PSPACE. PSPACE is the class of languages that are decidable in

polynomial space on a deterministic Turing Machine. In other words,

PSPACE =
⋃
k∈N

SPACE(nk)

In simpler terms, PSPACE is the set of problems that a computer can solve using a rea-

sonable (polynomial) amount of memory, no matter how long it takes. Some problems in

PSPACE are hard to solve and may even be harder than those in NP .

Definition 7: PSPACE-Completeness. A language B is PSPACE-complete if it satis-

fies two conditions:

1. B is in PSPACE, and

2. Every other language, A, in PSPACE is polynomial time reducible to B.

If only condition 2 is satisfied, we say that B is PSPACE-hard.

This is similar to NP -completeness.

Note that we use polynomial-time reductions for PSPACE-complete problems to keep things

fair. The idea is to make sure that the reduction doesn’t solve the hard part itself. It should

just convert one problem into another without doing too much. This way, we know the

second problem is at least as hard as the first one.

Definition 8: Polynomial Hierarchy. For every i ≥ 1, a language L is in ΣP
i if there

exists a polynomial-time Turing Machine M and a polynomial q such that:

x ∈ L ⇐⇒ ∃u1 ∈ {0, 1}q(|x|)∀u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|) M(x, u1, . . . , ui) = 1,

where Qi is ∃ if i is odd, and ∀ if i is even.

We say that L is in ΠP
i if there exists a polynomial-time TM M and a polynomial q such

that:

x ∈ L ⇐⇒ ∀u1 ∈ {0, 1}q(|x|)∃u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|) M(x, u1, . . . , ui) = 1,

where Qi denotes ∃ or ∀ depending on whether i is even or odd respectively.

The Polynomial Hierarchy is the set

PH = ∪iΣ
P
i
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In simpler terms, the Polynomial Hierarchy (PH) is like an extension of classes like P

and NP . At each level, the machine solving the problem is allowed to alternate between

“guessing” and “checking” a bounded number of times. These levels are defined using

alternating quantifiers — like ∃ and ∀ — which means the complexity of problems increases

as we go higher in the hierarchy.

Time Complexity. Time complexity describes how the running time of an algorithm grows

with respect to the size of its input. For an input of size n, an algorithm is said to run in

polynomial time if its running time can be bounded by a polynomial function of n, i.e.,

O(nk) for some constant k.

Below is a list of common time complexities and examples of problems or operations they

are associated with:

Time Complexity Example or Typical Input Type

O(1) Constant-time operations, such as accessing a specific

index in an array.

O(log n) Binary search in a sorted array.

O(n) Linear scan of an array or list.

O(n log n) Efficient sorting algorithms like Merge Sort and Heap

Sort.

O(n2) Nested loops on input of size n, such as matrix multi-

plication.

O(n3) Some dynamic programming and graph algorithms (e.g.,

Floyd-Warshall).

O(2n) Brute-force solutions to combinatorial problems, such as

generating all subsets.

O(n!) Algorithms that generate all permutations (e.g., solving

the Traveling Salesman Problem by brute-force).

Space Complexity. Space complexity refers to the amount of memory an algorithm uses

as a function of the size of the input n. It measures the maximum space (including the input,

output, and working storage) that a Turing machine or algorithm needs to solve a problem.

Below is a list of common space complexities and examples of problems or operations they

are associated with:
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Space Complexity Description Example Use Cases
O(1) Constant space In-place algorithms (e.g., array reversal)

O(log n) Logarithmic space Binary search on an array
O(n) Linear space Storing an array or list of size n

O(n log n) Quasi-linear space Merge sort (due to recursion stack)
O(n2) Quadratic space Storing a graph adjacency matrix
O(2n) Exponential space Memoization in some brute-force algorithms

3. NP -complete problems

This section discusses two fundamental proofs of NP -complete problems. These proofs

are based on the proofs in [Tri24].

Theorem 1 (Cook-Levin Theorem): SAT is NP -complete.

Proof. To prove that SAT is NP -complete, we must show two things:

1. (SAT ∈ NP ): SAT can be verified in polynomial time.

2. SAT is NP -hard: Every problem in NP can be reduced to SAT in polynomial time.

First, we prove SAT ∈ NP .

To show that SAT belongs to the class NP , we need to prove that for a given Boolean formula

ϕ, if it is satisfiable, there exists a certificate (or proof) that can be verified in polynomial

time.

A Boolean formula is said to be satisfiable if there exists at least one assignment of truth

values (True or False) to its variables that makes the entire formula evaluate to True.

In the case of SAT, a certificate is simply a truth assignment to the variables in ϕ, the

Boolean formula. This means assigning each variable a value of either True or False.

We can evaluate the formula by plugging in the values of True or False and checking

whether the entire formula evaluates to True. This can be done in time proportional to the

size of the formula, that is, in polynomial time with respect to the number of variables.

Since we can guess such an assignment non-deterministically, and verify its correctness in

polynomial time, it follows that SAT ∈ NP .

Now we prove that SAT is NP -hard.

We must show that every problem in NP is polynomial-time reducible to SAT . That is,

for any language A ∈ NP (where A is the set of inputs that solve the problem), we want

to reduce the question “Does input ω belong to A?” to the question “Is a certain Boolean

formula ϕ satisfiable?”
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Let A ∈ NP . By definition, this means there exists a non-deterministic Turing Machine

(NTM) M that decides A in polynomial time. In simple words, every problem in the class

NP has a non-deterministic Turing machine (NTM) that decides a language A, where A

is the set of all inputs that solve the problem. This machine checks whether a given input

ω belongs to A in polynomial time. Recall that problems in NP are those where solutions

can be verified efficiently. The NTM does this by “guessing” a certificate and then verifying

where it leads to acceptance. This guess is made by the machine itself. A non-deterministic

machine is one that branches into all possible guesses and checks them parallelly.

Let n = |ω|, where ω is the input string and n is the length of the input string. Since the

NTM, which we will call M , runs in polynomial time, there must be a constant k for which

the machine will halt at nk. This constant depends on the problem.

Now, we will translate the behaviour of M into a Boolean formula, ϕ.

M accepts w ⇐⇒ ϕ is satisfiable.

ϕ should be satisfiable if and only if the machine M accepts the input ω.

To build ϕ, we need to represent the steps that M takes as it tries to accept ω. We need

to record the whole process, that is every move the machine makes from the start to the

end. This is done using a tableau.

A tableau is a table where each row represents the state of the machine at one specific

time, including tape contents (what symbols are written on the tape), head position (the

position M is reading/writing, and the current state (what it is currently doing). The first

row is the initial configuration, and each subsequent row represents the next configuration.

Basically, the table shows step-by-step how the machine runs on the input. Each row shows

the full configuration of the machine at a given time step.

# q0 w1 w2 w3 · · · wn ⊔ ⊔ · · · ⊔ #

# w′
1 q1 w2 w3 · · · wn ⊔ ⊔ · · · ⊔ #

#
...

...
... #

# · · · #

This is what a sample tableau looks like. [Tri24]

Since M runs in at most nk steps, and it can only use nk cells on the tape of M , our

tableau will be of size nk × nk. Each cell of the tableau shows what is written on M ’s tape

at a particular time and position. It shows one value and contains either a tape symbol, a

state symbol, or a delimiter.
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Here,

(1) Q: the set of states of M , like start, accept, reject, etc.

(2) Γ: the tape alphabet, like 0 or 1.

(3) C = Q ∪ Γ ∪ {#}: the set of all possible symbols used in the tableau, including a

delimiter.

We define a variable xi,j,s for each cell in the tableau. Here, i is the row number (time

step), j is the column number (tape cell) and s ∈ C. The variable is true if and only if

symbol s appears in row i, column j of the tableau ([i, j]).

Since the tableau is a square of size nk ×nk, we have n2k total cells. So, our total number

of variables is: n2k × |C|
Because |C| (the number of possible symbols, including tape symbols, machine states, and

delimiters) is fixed and does not grow with the size of the input, this total is still polynomial

in n.

Our Boolean formula ϕ is made up of multiple parts. Each of these small parts ensures

that the machine M is doing the step that it is supposed to do. All the small parts are

combined by using AND (∧). So, for the formula to be true, everything has to be true. If

this occurs, the tableau shows a complete and correct sequence of steps where the machine

starts, follows the rules, and ends by accepting the input ω.Thus, ϕ being satisfiable is the

same as the machine M accepting ω.

We define ϕ as the conjunction (∧) of four smaller formulae.

Specifically, we construct ϕ = ϕstart ∧ ϕcell ∧ ϕaccept ∧ ϕmove, where:

(1) Start Condition (ϕstart): This condition ensures that the first row of the tableau

correctly represents the starting configuration ofM on the input ω. As in the sample

tableau, the first row begins with a delimiter symbol (#), followed by the machine’s

starting state (q0), then by the input string (ω = ω1, ω2, . . . , ωn) and ends with one

or more blanks or delimiters. For example:

x1,1,# ∧ x1,2,q0 ∧ x1,3,w1 ∧ · · · ∧ x1,n+2,#

This sets up the initial configuration of the machine exactly as it should be. If this

part of the Boolean formula is not true, then the machine did not start correctly, and

the tableau is invalid.
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(2) Cell Condition(ϕcell):

We define this part of the formula to make sure that each cell in the tableau

contains exactly one symbol. For every row i and column j, we write:

ϕcell =
∧

1≤i,j≤nk


(∨

s∈C

xi,j,s

)
∧

 ∧
s,t∈C
s ̸=t

(xi,j,s ∨ xi,j,t)




The first part
∨

s∈C xi,j,s ensures that at least one symbol is present in each cell.

The second part
∧

s ̸=t(xi,j,s ∨ xi,j,t) ensures that no two symbols are present in the

same cell (at most one symbol).

Together, they enforce that each cell contains exactly one symbol.

(3) Accept Condition (ϕaccept): This condition ensures that at least one cell in the tableau

contains the accepting state, qaccept, which means the machine successfully accepted

the input.

We use a disjunction (logical OR) over all positions [i, j] in the tableau to check if the

accepting state appears at least once anywhere in the tableau.

The Boolean expression looks like this:

ϕaccept =
∨

1≤i,j≤nk

xi,j,qaccept

This formula is satisfied if there is at least one cell [i, j] in the entire tableau that contains

qaccept, which indicates that the machine entered an accepting state at some point during its

computation.

Move Condition (ϕmove): This condition ensures that the tableau represents a valid step-by-

step computation of the Turing machine, M . Specifically, it verifies that each row in the

tableau legally follows from the one above it according to the machine’s transition function.

We define a “window” as a 2× 3 block in the tableau. This window captures a small local

region, which is three adjacent cells on one row and the corresponding three cells directly

below them on the next row. Since the Turing machine updates only one cell at a time (the

one under its read/write head), and the head can move left or right by one cell, this window

is large enough to represent the effects of a single transition. Each window compares part of

one row (configuration) to the corresponding part in the next row.

Only the cells involved in the head’s movement and update may change between rows as

only 3 kinds of cells change (The cell that was just written to, the previous head location,

and the new head location). All other parts of the row remain unchanged.
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Depending on the transition rule applied byM , the content of a valid window must match

one of two patterns:

• If δ(q, b) ∋ (q′, c, R), meaning the machine reads symbol b in state q, writes c, moves

right, and enters state q′, then the window looks like:

a q b

a c q′

• If δ(q, b) ∋ (q′, c, L), meaning the machine reads symbol b in state q, writes c, moves

left, and enters state q′, then the window looks like:

a q b

q′ c b

We now define ϕmove to enforce these patterns. Let the six cells in a window with upper-left

corner at position [i, j] be:

a1 = xi,j,s1 , a2 = xi,j+1,s2 , a3 = xi,j+2,s3 , a4 = xi+1,j,s4 , a5 = xi+1,j+1,s5 , a6 = xi+1,j+2,s6

A window is valid if and only if the six symbols s1, . . . , s6 represent a legal transition as

specified by the transition function δ ofM . If it doesn’t match, then that part of the tableau

is invalid.

We write the move condition as:

ϕmove =
∧

1≤i,j≤nk

 ∨
legal 6-tuples (s1,...,s6)

(xi,j,s1 ∧ xi,j+1,s2 ∧ xi,j+2,s3 ∧ xi+1,j,s4 ∧ xi+1,j+1,s5 ∧ xi+1,j+2,s6)


This means that for every position [i, j] of a window in the tableau, we want something

to be true. Out of all the legal ways a window can look, at least one must match the actual

symbols in the window

(xi,j,s1 ∧ xi,j+1,s2 ∧ xi,j+2,s3 ∧ xi+1,j,s4 ∧ xi+1,j+1,s5 ∧ xi+1,j+2,s6)

. This ensures that the tableau encodes a sequence of steps that the machine could actually

take.

Efficiency of the Reduction: Now that we have constructed the Boolean formula

ϕ = ϕstart ∧ ϕcell ∧ ϕaccept ∧ ϕmove,

we must show that the size of this formula and the time it takes to build it is polynomial in

the length of the input ω.



COMPLEXITY CLASSES AND COMPLETE PROBLEMS 11

First, recall that our tableau is a grid of size nk ×nk, which means there are n2k cells. For

each cell, we have a Boolean variable xi,j,s for every symbol s ∈ C. Since |C| is constant (it
includes a fixed number of tape symbols and machine states), we use O(n2k) variables overall.

Each subformula contributes the following:

• ϕstart has O(n
k) size, since it describes only the first row of the tableau.

• ϕcell and ϕaccept each involve all cells, so their sizes are O(n2k).

• ϕmove checks all 2× 3 windows in the tableau. There are O(n2k) such windows, and

for each, we check a constant number of valid local patterns. So its total size is also

O(n2k).

There is an extra log(n) factor from encoding indices, but even with that, the total size

of ϕ is O(n2k log n), which is still polynomial in n.

Therefore, the entire construction can be done in polynomial time. This confirms that the

reduction from any language A ∈ NP to SAT is polynomial-time.

Since we have shown that:

• SAT ∈ NP ,

• every problem in NP is reducible to SAT in polynomial time,

it follows that SAT is NP-complete.

■

Theorem 2: 3-SAT is NP -Complete.

Proof. To prove that 3− SAT is NP-complete, we must show two things:

1. 3-SAT is in NP

2. 3-SAT is NP -hard

3− SAT is a special version of SAT where each clause has exactly three literals, like (x1 ∨
¬x2 ∨ x3).
Example of a 3− SAT formula:

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x4 ∨ x5)

First, we show that 3-SAT is in NP .

Given a Boolean formula in 3-CNF form (where each clause has exactly 3 literals, as the

above example), we can guess a truth assignment to all variables. Then, we check whether

this assignment satisfies all clauses.

This checking can be done in polynomial time with respect to the number of variables and

clauses. There are polynomial number of clauses, so verification is polynomial. So, 3-SAT is
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in NP.

Now, we prove 3− SAT is NP -hard.

We already know that SAT is NP -complete (by the Cook-Levin Theorem). So, we reduce

SAT to 3− SAT to show that 3− SAT is at least as hard as SAT .

Let ϕ be a Boolean formula in CNF, which may have clauses with more or less than 3

literals. We now convert ϕ into an equivalent Boolean formula ϕ′ in 3-CNF (has exactly 3

literals) such that ϕ is satisfiable if and only if ϕ′ is satisfiable.

• If a clause has one literal, say (a), we replace it with (a∨a∨a). This does not change
the meaning and now it has 3 literals.

• If a clause has two literals, say (a∨ b), we replace it with (a∨ b∨ b). This still keeps
it satisfiable because it is converted to 3-CNF.

• If a clause has three literals, we leave it as is because it is already in 3-CNF form.

• If a clause has more than three literals, say 5 literals, a1 ∨ a2 ∨ a3 ∨ a4 ∨ a5 (General

formula: a1 ∨ a2 ∨ · · · ∨ ak, where k > 3), we introduce new variables, let’s say z1

and z2 (General formula: z1, z2, . . . , zk−3). We break up the big clause into several

3-literal clauses using these new variables.

(a1 ∨ a2 ∨ z1) ∧ (¬z1 ∨ a3 ∨ z2) ∧ (¬z2 ∨ a4 ∨ a5)

This transformation maintains satisfiability, because if the original long clause is

satisfiable, one of these short clauses will be satisfied. If these short clauses are

satisfiable, that means that one of the original literals is true and thus, ϕ is true.

This transformation keeps the satisfiability of the formula the same. That is, the new

formula, ϕ′, is satisfiable if and only if the original formula, ϕ, was. The size of the new

formula grows only by a constant factor and can be computed in polynomial time.

Conclusion:

Since 3-SAT is in NP and any instance of SAT can be reduced to an instance of 3-SAT in

polynomial time, it follows that 3-SAT is NP-complete. ■

4. Grid Games NP -Completeness

4.1. Latin Square Completion Problem. A Latin square of order n is an n × n grid

filled with numbers from the set {1, 2, . . . , n}, such that each number appears exactly once

in each row and each column.
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The Latin Square Completion (LSC) problem asks whether a partially filled Latin square

can be completed into a full Latin square that still satisfies the row and column uniqueness

conditions.

This problem has been shown to be NP -complete [JH19].

To be NP -complete,

1. It must be in NP

2. It must be NP -hard

Verification in NP :

Given a proposed completion of a Latin square, we can verify in polynomial time (O(n)2)

that:

• Each row contains all numbers from 1 to n exactly once,

• Each column contains all numbers from 1 to n exactly once,

• The completed entries agree with the original (non-blank) cells.

Therefore, Latin Square Completion ∈ NP .

To prove that Latin Square Completion is NP -hard, [JH19] uses reduction from memetic

graph coloring. This is beyond the scope of this paper. So, we just consider the result that

LSC is NP -hard.

Conclusion:

Since Latin Square Completion is both in NP and is NP -hard, Latin Square Completion is

NP -complete.

Proving Sudoku is NP -complete.

Proof. This proof follows from [Hoe20].

To show that Sudoku is NP -complete, we must prove two things:

1. Sudoku is in NP

2. Sudoku is NP -hard

First, we show that Sudoku ∈ NP .

We consider the generalized Sudoku problem on an n2×n2 grid, where each cell must contain

a digit from {1, 2, . . . , n2}.
The constraints for the numbers in each cell are:

• Each row must contain all digits from 1 to n2 exactly once.

• Each column must contain all digits from 1 to n2 exactly once.

• Each of the n×n subgrids (blocks) must contain all digits from 1 to n2 exactly once.

• Some cells are pre-filled as part of the input puzzle.
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Given a candidate filled grid (a certificate), we can verify in polynomial time whether all

constraints are satisfied. This verification can be done in the following times:

• Checking all n2 rows takes O(n4) time.

• Checking all n2 columns takes O(n4) time.

• Checking all n2 blocks takes O(n4) time.

Thus, the verification of a solution can be performed in polynomial time with respect to

the input size.

Therefore, Sudoku ∈ NP .

Now, we show that Sudoku is NP -hard.

We prove this by reduction from the Latin Square Completion (LSC) problem, which is

known to be NP-complete (as proven above).

Recall that a Latin square of order n is an n × n grid filled with numbers from the set

{1, 2, . . . , n}, such that each number appears exactly once in each row and each column. It

is similar to a Sudoku, except that it does not require the subgrids (blocks) to contain all

digits from 1 to n2 exactly once. The Latin Square Completion problem asks whether a

partially filled Latin square can be completed to a full Latin square.

Given an instance of the Latin Square Completion problem, we construct a Sudoku in-

stance as follows:

• Let the partially filled Latin square be denoted by a function:

L : {1, . . . , n} × {1, . . . , n} → {1, . . . , n} ∪ {□}

Here, L(i, j) is the value in row i, column j of the Latin Square.

If the cell is already filled, then L(i, j) ∈ {1, . . . , n}
If the cell is blank, then L(i, j) = □

• Then we construct a Sudoku grid S of size n2 × n2. The idea is to embed the Latin

square inside the Sudoku grid. Each entry L(i, j) is placed into a specific sub-region

of S, ensuring that row and column uniqueness from the Latin square are preserved.

This helps us create a grid that satisfies all conditions of uniqueness: rows, columns

and subgrids (blocks).

• For each known entry L(i, j) = a, we fix the corresponding cell in the Sudoku grid:

S[(i− 1) · n+ 1, (j − 1) · n+ 1] = a
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This entry is treated as a fixed clue in the Sudoku puzzle.

For example, we embed a 3×3 Latin square into a 9×9 Sudoku grid. If the Latin

square has value 2 at position (2,3), then,

(i− 1) · n+ 1 = (2− 1) · 3 + 1 = 4

(j − 1) · n+ 1 = (3− 1) · 3 + 1 = 7

So, S(4, 7) = 2, which means that the number 2 will be in the cell (4,7) of the Sudoku.

1 2 3
3 1 2
2 3 1

Latin Square (3×3)

1 2 3

3 1 2

2 3 1

Sudoku Grid (9×9)

These figures show a sample embedding from a Latin Square to a Sudoku. Note

that even though real Sudoku puzzles usually need more clues, here we only embed

nine. This is just enough to preserve the logic of the Latin square. We only need to

check if a valid solution exists. We do not need to find a unique one.

• The remaining entries of the Sudoku are left blank. The rules of Sudoku enforce

Latin square properties via:

– Row uniqueness,

– Column uniqueness,

– Block uniqueness.

Thus, any valid completion of the Sudoku corresponds to a valid Latin square completion.

And conversely, a completed Latin square yields a valid Sudoku solution under this embed-

ding.

Thus, we have:

The Latin square L is completable ⇐⇒ The Sudoku instance S is solvable

This construction is computable in polynomial time, as we are only mapping positions

and values between two grids of size O(n2).

Conclusion:

Since

• A proposed solution to a Sudoku puzzle can be verified in polynomial time, and
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• Solving Sudoku is at least as hard as solving the NP -complete Latin Square Com-

pletion problem via a polynomial-time reduction,

Sudoku is NP-complete.

■

5. PSPACE-completeness

In this section, we will be looking at a proof of a well-known problem, which is proven

to be PSPACE complete. This proof follows from [AB09]. From this proof we understand

that TQBF corresponds to PSPACE in a similar way by which SAT corresponds to NP .

First, we understand what TQBF is.

TQBF stands for True Quantified Boolean Formula. A sample would look like this:

∃x1∀x2∃x3 . . . φ(x1, x2, x3, . . . )

where φ is a Boolean Formula (like SAT) and the quantifiers alternate.

Theorem: TQBF is PSPACE-complete.

Proof. To prove this, we need to show two things:

1. TQBF is in PSPACE, and

2. TQBF is PSPACE-Hard

First, we show that TQBF is in PSPACE.

Let Ψ = Q1x1Q2x2 . . . Qnxn φ(x1, . . . , xn) be a fully quantified Boolean formula, where each

Qi ∈ {∀,∃}.
Here, Ψ is an expression made of quantifiers (∃, ∀), variables (x1, x2, . . . ), and a Boolean

formula φ. Also, φ is the Boolean formula that we trying to make true.

We can decide the truth of Ψ using a recursive procedure:

• If there are no remaining quantifiers, evaluate the propositional formula φ. Once all

the quantifiers are gone, evaluate φ like a SAT instance. We just plug in the values

of the variables and check if the formula is true.

• If the first quantifier is ∃xi, then check if Ψ is true for xi = 0 or xi = 1. Here, we

check if at least one of the two assignments (0 or 1) makes the rest of the formula

true.

• If the first quantifier is ∀xi, then check if Ψ is true for both xi = 0 and xi = 1. here,

we check if both values make the formula true because it must be true for all possible

values.

At each step, we only need to remember the current variable assignment (which takes

O(n) space) and the formula φ, so the space used is polynomial in the size of Ψ. So, even
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though there are exponentially many branches, we use only polynomial space to track each

one. Therefore, TQBF ∈ PSPACE.

Now, we prove that TQBF is PSPACE-Hard.

Let L ∈ PSPACE, where L is any problem. Then there exists a deterministic Turing ma-

chine M that decides (solves) L using at most S(n) space for inputs of length n, where S(n)

is a polynomial. This means that M can solve the problem in polynomial space.

Let w be an input of length n. We construct a quantified Boolean formula Ψw such that:

Ψw is true ⇐⇒ M accepts w

In simpler words, we are trying to reduce any PSPACE problem to TQBF . We build a

formula Ψw that is true if and only if M accepts w.

Let Cstart and Caccept be the start and accepting configurations ofM on w. A configuration

is a snapshot of M ’s current state, tape content, and head position. Each configuration uses

O(S(n)) space because this is the tape’s bound. So we can encode a configuration as a binary

string of polynomial length.

There are at most T = 2O(S(n)) possible configurations (since space is limited), so the

maximum number of steps in the computation is also at most T . This is justified because

if the machine only has 2S(n) possible configurations, then that longest computation (before

accepting or repeating) must be ≤ than that.

To clarify further, since a Turing machine using at most S(n) space is limited to writing on

a polynomial-sized portion of its tape and has a finite number of states and tape symbols,

the total number of possible configurations is at most 2O(S(n)), which is exponential in the

space used. This bound ensures that the cannot run for more than an exponential number

of steps without repeating a configuration, which would imply an infinite loop. However,

this does not mean that the machine is using exponential space. It still uses only S(n),

which is polynomial. The exponential bound here refers to time and not space. When

we simulate this machine using a quantified Boolean formula in the TQBF reduction, we

construct the formula in a way where each recursive call keeps track of a constant number

of configurations and time bounds. Importantly, this simulation only requires polynomial

space to store intermediate configurations and quantifiers at each level. Hence, although the

number of steps may be exponential, the simulation remains within PSPACE.

We define a recursive Boolean formula PATH(C1, C2, t) that is true if and only if M can

go from configuration C1 to C2 in t or fewer steps. The idea is to divide the path into two

halves:
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PATH(C1, C2, t) = ∃M∀(Ci, Cj) ∈ {(C1,M), (M,C2)} PATH(Ci, Cj, t/2)

This is done so that we simulate the entire computation of M on w by checking whether

a valid midpoint configuration exists.

This reduces the time bound t by half in each recursive step. This leads to a recursion

depth of logT = O(S(n)). So, the resulting Boolean formula will be of polynomial size.

Hence, we construct a fully quantified Boolean formula Ψw such that:

Ψw = PATH(Cstart, Caccept, T )

and Ψw ∈ TQBF is true if and only if M accepts w.

Conclusion:

We have shown:

1. TQBF ∈ PSPACE

2. TQBF is PSPACE-hard

Therefore, TQBF is PSPACE-complete.

■

6. Formula-Game

In this section we explore winning strategies for games through the Formula-Game, which

is a very interesting yet simple way to look at PSPACE problems [AB09].

Formula-Game explanation. Let ϕ = Q1x1Q2x2Q3x3 . . . Qkxk [ψ] be a fully quantified

Boolean formula, where each Qk is either an ∃ or ∀ quantifier , and ψ is the Boolean formula

with no quantifiers.

This can be represented as grame between 2 players:

(1) Two players, Player A and Player B, take turns assigning truth values to the variables

x1, x2, . . . , xk in the order they appear.

(2) Player A chooses values for all variables bound by the universal quantifier ∀, and
Player B chooses values for all variables bound by the existential quantifier ∃.

(3) Both Players choose one at a time. For example, if the order of quantifiers is ∃ ∀ ∃,
Player B chooses first, Player A goes second and then Player B chooses the third

value.

(4) Once all variables are assigned, we evaluate the Boolean formula ψ under those

assignments. If ψ is true, Player B wins the game. If ψ is false, Player A wins.

Let’s consider an example:

ϕ1 = ∃x1∀x2∃x3 [(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (¬x2 ∨ ¬x3)]
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In this formula, the quantifiers alternate between ∀ and ∃, so:
• Player A chooses x2 (the ∀ quantified variables).

• Player B chooses x1 and x3 (the ∃ quantified variable).

• Note that Player B chooses x1, then Player A chooses x2, and finally, Player B chooses

x3.

Now, we simulate a round of the game:

• Suppose Player B chooses x1 = 1.

• Player A chooses x2 = 0.

• Player B chooses x3 = 1.

Substituting these into ϕ1, we get:

(1 ∨ 0) ∧ (0 ∨ 1) ∧ (¬0 ∨ ¬1) = 1 ∧ 1 ∧ 1 = 1

Since the formula evaluates to 1, which means true, Player B wins. In fact, Player B has a

winning strategy in this game. If Player B always chooses x1 = 1, and then selects x3 to be

the negation of whatever Player A chooses for x2, it is guaranteed that ϕ1 evaluates to true

no matter what Player A chooses for x2.

Next, consider a formula where Player A has a winning strategy:

ϕ2 = ∃x1∀x2∃x3 [(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ ¬x3)]

The quantifier structure is the same, so Player A again chooses x2 and Player B chooses x1

and x3. Player A now has a winning strategy because no matter what Player B selects for

x1, Player A may select x2 = 0, thereby falsifying the part of the formula appearing after

the quantifiers. This is not affected by Player B’s last move.

Now, we prove that Formula-Game is PSPACE-complete.

Theorem: Formula-Game is PSPACE-complete.

Proof. The formula ϕ = ∃x1∀x2∃x3 . . . [ψ] is True when there exists a case of x1 such that,

for any case of x2, a case of x3 exists such that, and so on . . . , where ψ is True under those

cases of the variables. Similarly, Player B has a winning strategy in the game when Player

B can make some assignment to x1, such that for any value of x2, Player B can make an

assignment to x3 such that, and so on . . . , ψ is True under these setting of the variables.

The same reasoning applies when the formula does not alternate between ∃ and ∀ quantifiers.

If ψ = ∀x1, x2, x3∃x4, x5∀x6[ψ], Player A would make the first three moves as it chooses for

∀ and assigns values to x1, x2, x3. Then, Player B would make 2 moves to assign values to

x4 and x5. Finally, Player A would assign a value to x6.
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Hence, ϕ ∈ TQBF exactly when ϕ ∈ Formula-Game.

Thus, Formula-Game is PSPACE-complete because it is the same as TQBF

Formula−Game = TQBF

■

7. Another Sudoku Relation

Earlier, we proved that Sudoku is NP -complete.

Now, we investigate whether Sudoku is PSPACE-complete.

Recall that for a problem to be PSPACE-complete:

(1) It must be in PSPACE, and

(2) It must be PSPACE-hard—i.e., at least as hard as any other problem in PSPACE.

1. Sudoku is in PSPACE

This follows from the known complexity class hierarchy:

P ⊆ NP ⊆ PSPACE ⊆ PH.

Since Sudoku is in NP , and NP ⊆ PSPACE, it follows that Sudoku ∈ PSPACE.

2. Is Sudoku PSPACE-hard?

Many PSPACE-complete problems involve:

• Two-player games with alternating moves,

• Long sequences of decisions with recursive or branching structure,

• Quantifier alternation, such as in TQBF .

Examples include:

• TQBF (True Quantified Boolean Formula),

• The Formula Game,

• Generalized Geography.

Sudoku, by contrast, does not exhibit these traits:

• It is a single-player puzzle with no alternation or interaction.

• Once a candidate solution is proposed, it can be verified efficiently.

• It does not simulate universal or existential quantifier alternation.

This strongly suggests that Sudoku is not PSPACE-hard. However, we cannot for-

mally prove that Sudoku is not PSPACE-complete unless we resolve the open question

NP ̸= PSPACE.
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Analogy for Intuition

Problem Type Analogy Examples

NP -complete Solving a puzzle in one go Sudoku, SAT

PSPACE-complete Playing a game with turns TQBF , Formula Game

Conclusion. Sudoku is NP -complete and hence in PSPACE, but we have no known re-

duction proving it to be PSPACE-hard. Therefore, Sudoku is not currently known to be

PSPACE-complete, and most evidence suggests it likely is not, unless NP = PSPACE,

which remains an open problem.

8. Open-problems and other relationships between complexity classes

In this section, we highlight some of the most important open questions in computational

complexity theory. These problems are central to understanding how various complexity

classes such as P , NP , PSPACE, and the Polynomial Hierarchy (PH) are related, [Ueh11].

1. The P vs NP Problem. The most famous open problem in complexity theory is:

Does P = NP?

This asks whether every problem whose solution can be verified quickly (in polynomial

time) can also be solved quickly. If P = NP , it would mean that all NP-complete problems

such as SAT, 3-SAT, and Sudoku can be solved in polynomial time.

Currently, no one knows the answer. Most complexity theorists believe that P ̸= NP .

A proof, which could prove either of the above (P = NP or P ̸= NP ) would have enor-

mous consequences across mathematics and computer science.

2. NP vs PSPACE. Another major open question is:

Does NP = PSPACE?

We know that:

P ⊆ NP ⊆ PSPACE

But whether these inclusions are strict is not known. Most researchers believe:

P ⊂ NP ⊂ PSPACE

This means that PSPACE-complete problems (such as TQBF or Formula-Game) are

believed to be strictly harder than NP-complete problems.

3. PSPACE and EXPTIME. To better understand the relationship between PSPACE

and EXPTIME, we first define the class EXPTIME.
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Definition: EXPTIME. The class EXPTIME (Exponential Time) is the set of all decision

problems that can be solved by a deterministic Turing machine in exponential time. Formally,

EXPTIME =
⋃
k∈N

TIME(2n
k

)

This means that a problem is in EXPTIME if it can be solved in time bounded by an

exponential function of the input size.

Example Problems in EXPTIME:

• Generalized Chess: Determining whether a player has a winning strategy in an n×n

chessboard is in EXPTIME.

• Alternating Turing Machine Acceptance: For certain machines and bounds, deter-

mining acceptance can use exponential time.

Now, we look at the relationship with PSPACE.

We have the known inclusion:

PSPACE ⊆ EXPTIME

If a problem can be solved using polynomial space, it can be simulated using exponential

time, because the number of possible configurations of a polynomial-space Turing machine

is at most exponential. Why PSPACE ⊆ EXPTIME?

Suppose a Turing machine uses at most polynomial space (like nk cells) on an input of

size n. Even if it runs for a long time, the number of different configurations (tape contents,

head position, and state) it can be in is limited.

Since each configuration only uses polynomial space, the total number of different config-

urations is at most exponential in n.

We can simulate the machine by:

• Listing all possible configurations, which are exponentially many.

• Checking if the machine can go from the starting configuration to the accepting one.

This takes exponential time, but is always possible. So every problem that can be solved

in polynomial space can also be solved in exponential time. Therefore,

PSPACE ⊆ EXPTIME

The Separation Between PSPACE and EXPTIME has been proven:

PSPACE ̸= EXPTIME

This separation follows from a time-space hierarchy theorem, which shows that problems

solvable in exponential time strictly contain those solvable in polynomial space. This means

that there are some problems that can be solved in exponential time, but not with only
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polynomial space. In other words, some problems in EXPTIME are too big to fit within

the memory limits of PSPACE.

Why this matters:

• Some problems need a lot of time and a lot of memory to solve.

• Allowing a machine to run for a long time (here exponential time) does not mean it

can solve problems using just a small amount of memory.

• PSPACE problems are limited by memory, while EXPTIME problems are limited

by time.

This is one of the few clear separations between major complexity classes. It tells us that

giving a computer more time (exponentially more) lets it solve problems that just can’t be

done with limited memory alone. So, EXPTIME is more powerful than PSPACE.

4. The Polynomial Hierarchy (PH). The Polynomial Hierarchy (PH) is a generalization

of the classes P , NP , and coNP using alternating quantifiers. It contains levels such as

ΣP
1 = NP and ΠP

1 = coNP , and higher levels with alternating existential and universal

quantifiers.

Definition of coNP : The class coNP consists of the complements of problems in NP .

That is, a language L is in coNP if and only if its complement L is in NP . In simpler

words, while NP is the class of problems for which a “yes” answer can be verified quickly

(in polynomial time), coNP is the class of problems for which a “no” answer can be verified

quickly.

Example of a problem in coNP : Consider the problem of checking whether a Boolean formula

is a tautology, that is it is always true. This problem is in coNP , because its complement,

which is checking whether a formula is not a tautology (it has at least one false assignment),

is in NP .

A big question in complexity theory is does the Polynomial Hierarchy collapse? An im-

portant open question is whether the hierarchy is strict at each level. If NP = coNP or

NP = P , the entire hierarchy would collapse to a lower level.

Importance of solving these problems. These open problems affect fields such as cryp-

tography. Most modern encryption relies on the assumption that P ̸= NP . Cryptography

deals with hard and important tasks like protecting passwords, private messages, bank ac-

counts, and national security. It relies on very difficult mathematical problems that current

computers are not able to solve quickly. Problems like factoring large numbers or solving

complex puzzles with no known shortcuts form the core of secure encryption. Complexity
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theory helps us understand how difficult these problems are by grouping them into classes

like P and NP . The more difficult the problem, the more secure the system.

The challenge is that we still do not know for sure whether these problems truly require a

lot of time to solve. So far, no one has discovered an efficient solution, but that does not

mean one cannot exist. If open questions such as “Is P = NP?”are ever answered, it could

completely change the way cryptography and digital security work.

Relationships between complexity classes. We currently have the following known

inclusions between classes, [Ueh11]:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP

The definitions and purposes of the other classes (not mentioned in this paper) can be

explored in [AB09,Sip12,Ueh11]

Ultimately, complexity theory helps us understand not just what computers can do, but

why some problems remain inherently hard to solve, and how answering these questions

could reshape computation, cryptography, and beyond.
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