GEOMETRIC GROUP THEORY

RISHI BALAJI

ABSTRACT. This paper gives an introduction to the subject of geometric group theory.
Geometric group theory is a field which relates the algebraic properties of groups with the
geometric properties of spaces. Key concepts include a group’s Cayley graph and its word
metric, group actions on a set, quasi-isometries between groups, the growth of groups, and
hyperbolic groups. The paper provides an overview of each topic with important definitions
and examples showing how each relies on the others to build many of their main ideas and

are relevant to geometry and group theory in many interesting and applicable ways.

1. INTRODUCTION

1.1. Overview. Geometric group theory is an area of abstract algebra that studies finitely
generated groups. Specifically, it is used to explore the connections between the algebraic
and geometric properties of groups and spaces. Geometric group theory can be used as a
means to learn about the properties of geometric objects through groups, or to represent

groups themselves geometrically.

1.2. Historical Background. Geometric group theory is a relatively new branch of math-
ematics. It began to develop more towards the end of the 20th century and has roots in the
field of combinatorial group theory, which studied discrete groups with group presentations.
Related topics were first studied around the mid and late 19th century, by mathematicians
such as William Rowan Hamilton and Walther von Dyck. In the first half of the 20th century,
the work of those such as Max Dehn, Jakob Nielson, Otto Schreier, and Egbert van Kam-
pen helped introduce some geometric and topological ideas into the field. Geometric group

theory really emerged as a new and distinct area after Mikhail Gromov’s 1987 monograph
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“Hyperbolic Groups”, which was influential to the field as it set up new ideas that led to the

use of the term “geometric group theory”.

1.3. Outline. This paper provides an overview of some of the fundamental concepts and key
ideas in geometric group theory, with various definitions and examples within those topics
as well as explanations of how they are related to each other notions in geometry and group

theory.

e This paper begins with a few introductory definitions and preliminary information
related to group theory, as well as examples of some types of groups relevant to
geometric group theory.

e Then, Cayley graphs of groups are discussed, which are a way to geometrically vi-
sualize a group, as well as a group’s word metric, which offers a way to measure
distances in a group with respect to the generating set.

e Next, we discuss group actions, which

e Following that, we explore quasi-isometries, another notion of distance and the sim-
ilarity between groups in terms of large-scale geometry.

e After that, we examine group growth

e Finally, we go over hyperbolic groups, which are a specific type of group whose Cayley

graph and word metric satisfy properties related to hyperbolic geometry.

2. PRELIMINARIES

Before delving into geometric group theory, we will begin with some preliminary definitions

and background with respect to group theory in general.

2.1. Groups.

Definition 2.1 (Group). A group (G, *) is a set G with a binary operation x : G x G — G,

satisfying the following axioms:

e Associativity — For g1, g2, g3 € G, we have that

g1 * (92 % g3) = (91 % g2) * g3.
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e [dentity — There exists an identity element e such that for all g € G,
gxe=exg=g.

e Inverses — For each g € G, there exists an inverse element g~! € G such that

gxg =g 'xg=e

Definition 2.2 (Generating set). A group G is generated by a subset S C G if every element

g € G can be expressed as a combination of finitely many generators, that is s;1s9 -+ - s, for

S; € SuUSt.

Definition 2.3 (Relations). A relation of a group G is a relationship (equality) between
some of the generators of G. A relator is a term without an equals sign, which is taken to

be equal to the identity e.

Notation (Group Presentation). We use (S | R) to denote the group with a generating set

S and a set of relations R.

Definition 2.4 (Finitely generated group). A finitely generated group is a group G with a

finite generating set .S.

2.2. Types of Groups. Here are some examples of a few different types of groups. These
groups are relatively common in group theory and have connections to geometry as well.
They will also be used in various examples throughout this paper, as they are relevant to

the upcoming topics.

2.2.1. Symmetry Groups.

Definition 2.5 (Symmetry group). A symmetry group is the group of all geometric trans-
formations on an object which leave it invariant. The group operation is composition of

these transformations.
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Definition 2.6 (Cyclic group). A cyclic group is a group that can be generated by a single
element. It is denoted by C,, and has the presentation (g | ¢" = e). A cyclic group can also

represent the n-fold rotational symmetries of an object.

Definition 2.7 (Dihedral group). A dihedral group is the group of symmetries of a regular

polygon, which consists of rotations and reflections.

FExample. Figure (1| shows the eight symmetries of a square. These symmetries form the

2

dihedral group Dy = (r,s | 7%, 5% rs = sr~!), a symmetry group with order 8.

A B D A C D B C
D C C B B A A D
B A D C C B A D
! // \\\
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! ’ N
| a B
C D A B D A B C

Figure 1. Symmetries of a square.

2.2.2. Permutation Groups.

Definition 2.8 (Permutation). A permutation is a bijection o : X — X from a set X to
itself. A permutation is essentially just a reordering of the elements of a set into a new

arrangement.

Notation (Word representation). A permutation can be written as a word representation,
which is just the resultant sequence after the permutation is applied to the set’s natural

ordering.

Notation (Cycle notation). A permutation o can be represented in cycle notation. A cycle
is written as (z o(z) o(o(x)) --- o~ (z)), and multiple cycles are written together until all

elements have been written. 1-cycles such as (z) can also be omitted in the notation.
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o
1 1
2 2
3 3
4 4
5 5
6 6

Figure 2. A permutation mapping o.

Ezample. Figure [2| shows a permutation of the set {1,2,3,4,5,6}. The word representation
would be o = 246153. In cycle notation, o = (124)(36).

Definition 2.9 (Permutation group). A permutation group is a group G whose elements are

permutations of a given set X. The group operation is composition of these permutations.

Definition 2.10 (Symmetric group). The symmetric group Sym(X) is the group of all
permutations of X. If X = {1,2,... n}, then Sym(X) can be denoted S,,, which has n!

elements.
2.2.3. Free Groups.

Definition 2.11 (Word). A word w is a concatenated sequence s15s...s, of a group G’s
generators S and their inverses S~

The length of the word w is the integer n.

The reduction of the word w involves removing redundant pairs of generators and their
inverses, such as gg~! or ¢~'g, which simplifies the word but keeps the corresponding group
element the same.

The evaluation of the word w is the element w given by applying the group operation to

the entries of the word in order.
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Definition 2.12 (Free group). A free group Fs over a generating set S is the group of all
words that can be made from S. The group operation is concatenation of the generators,
followed by reduction if necessary. The rank of a free group is the number of generators,
and F), can be used to denote a free group of rank n. Free groups are “free” because there

are no relations between elements, apart from trivial relations from group axioms.

Ezxample. For example, the free group F; has the presentation ({a,b} | &).

2.2.4. Integer Groups.

Definition 2.13 (Z). The group of integers (Z, +) is the set Z of all integers and the additive

operator +.

Addition is usually the operator used for integer groups, so the groups can be written with

the operator and ordered pair, for example as Z.

Definition 2.14 (Z/nZ). The group Z/nZ is integers modulo n under the operation of
addition modulo n. The elements are the equivalence classes of the integers modulo n, and

are denoted as {[0],[1],...,[n — 1]}.

The group Z/nZ is a cyclic group of order n, while the group Z is an infinite cyclic group.

Therefore Z is also a free group of rank 1.

Definition 2.15 (Z x Z). The cartesian product Z x Z of sets of integers forms a group
under addition. The product Z x Z can be denoted as Z2, and in general Z" for higher

dimensions.

Definition 2.16 (Z x Z). The free product Z x Z of sets of integers forms a group under
addition. The free product essentially combines the two groups such that the elements are

concatenated and reduced words from both groups.

The free product Z * Z is also isomorphic to the free group F5.
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3. CAYLEY GRAPHS

3.1. Cayley Graphs. Cayley graphs are a powerful tool for visually representing groups.
Like graphs in general, Cayley graphs can be embedded in a space (e.g. a 2D plane), which

makes studying them geometrically much easier.

Definition 3.1 (Graph). A graph is a pair of sets (V, E), where the elements of V' are
vertices and the elements of E are edges. An edge e € E is an unordered pair {u,v} of

vertices u,v € V.

Definition 3.2 (Directed graph). A directed graph is similar to a graph, except the edges
E are ordered pairs (u,v) for u,v € V. This introduces a sense of “direction” to the edges,

which are also called arcs in a directed graph.

.\.

Figure 3. A graph and a directed graph.

\.

Definition 3.3 (Cayley graph). The Cayley graph I'(G,S) is a graph of a group (G, -) and
its generating set S. Its vertex set is G and its edges are directed (g, g-s) for g € G and some
s € S. The edges of the Cayley graph can also be labeled corresponding to the generator s

being used.

See Appendix [A] for diagrams of Cayley graphs for different groups.

3.2. Word Metrics. While the Cayley graph provides a visual geometric representation,

the word metric provides a way to make measurements within a group.
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Definition 3.4 (Metric space). A metric space is a pair (X, d) of a set X and a metric d

which is a function d : X x X — R satisfying the following properties for all z,y, 2z € X:

e d(xz,y) =0 if and only if x = y, and otherwise d(z,y) > 0.
e The distance d(z,y) = d(y, z) is symmetric.
e The triangle inequality holds, so d(z, z) < d(z,y) + d(y, z).

Definition 3.5 (Word metric). The word metric dg on a group (G, -) with generating set
S C G is associated with the Cayley graph I'(G, S). The distance between elements g, h € G
is given by

dg(g,h):min{nGN:gflh:sl---sn,si ESUS’l}.

A useful fact which relates the Cayley graph and the word metric is that the distance
ds(g,h) is actually equivalent to the shortest path between the elements g and h on the

Cayley graph.

(1,0)

Figure 4. Path between (—1,—1) and (1,0) on Cayley graph of
[(Z2,{(1,0),(0,1)}).
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Ezample. The distance dg((—1,—1),(1,0)) = 3 in the Cayley graph in Figure[d In fact, the
Cayley graph of Z? is what is known as the taxicab geometry, and the word metric is the

related Manhattan distance.

4. GROUP ACTIONS

Group actions are a way to view a group G as the group of symmetries of a set X, that
is, the symmetric group Sym(X). The elements of G can act on the set X in a way that

preserves certain properties, similar to geometric symmetries

4.1. Group Actions.

Definition 4.1 (Group Action). A group action of a group G on a set X is a map - :

G x X — X satisfying the following properties:

e [dentity — Forallz € X, e-x = x.
e Compatability — For all g;h € Gandallz € X, (¢g-h)-x =g (h-x).

Definition 4.2 (Free action). A group action is free if forallz € X and allg € G, g-x ==z

only if g = e.

Definition 4.3 (Transitive actions). A group action is transitive if for any two elements

x,y € X, there exists g € G such that g-x =y.

Definition 4.4 (Orbit). Let G be a group acting on a set X. The orbit of an element z € X
is

G-z={g-z|geG}.

Definition 4.5 (Stabilizer). Let G be a group acting on a set X. The stabilizer group of an

element ¢ € X is

G,={9€G|g-z=uzx}

The orbit describes the set of possible configurations of a point under transformations,

while the stabilizers are points that are fixed under the transformation.
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4.2. Actions on Trees.

Definition 4.6 (Group actions on graphs). A group G acts on a graph (V, E) by the homo-
morphism G — Aut((V, E)) with the properties from Definition 4.1|for g,h € G and z € V'
or x € E. Also, if there is an edge e € E between vertices v,w € V, then g-e € E is an edge

between g - v,g-w € V.

Definition 4.7 (Tree). A tree is a connected graph that does not contain any cycles. A
connected graph is a graph with paths between every pair of vertices, and a cycle is a non-

empty path which starts and ends at the same vertex.
Theorem 4.8. A group is free if and only if it acts freely on a tree.

Although we won’t cover the proof of this theorem, a direct consequence of it is Theo-

rem [£.9
Corollary 4.9 (Nielson-Schreier Theorem). Fvery subgroup of a free group is free.

Proof. For a free group G and a subgroup H C G, the group G acts freely on a tree and
thus so does the subgroup H. Therefore, by Theorem [4.8 H is also a free group. [ |

Theorem 4.10 (Orbit-Stabilizer Theorem). For a finite group G acting on a set X with
reX,
|G- x| =[G : Gyl

5. QUASI-ISOMETRIES

Quasi-isometries are another way to look at the metric properties of a group, with focus

especially on large-scale geometric structure.

5.1. Quasi-isometries.

Definition 5.1 (Quasi-isometry). Let f: X — Y be a map between metric spaces (X, dy)
and (Y, dy).

The map f is a quasi-isometry if the following properties hold:



GEOMETRIC GROUP THEORY 11

e The map f is a (a,b)-quasi-isometric embedding if there are constants a > 1, b > 0

such that for all z,2’ € X,

Ll o) = b < dy (F(2), F(2)) < a-dx(z,2) + b.

a
e Every point of Y is within a constant distance ¢ > 0 of an image point, so for all

y € Y, there exists x € X such that

dy(y, f(r)) <c.

Figure 5. Cayley graph of I'(Z,{1}) and I'(Z, {2, 3}).

Ezample. For example, in Figure [5], the Cayley graphs of the two groups would look similar

if zoomed out, since they are both quasi-isometric.
Ezxample. The groups Z and R as well as the groups Z? and R? are quasi-isometric.
5.2. Quasi-geodesics.

Definition 5.2 (Geodesic space). Let (X, d) be a metric space. A geodesic of length L > 0
is an isometric embedding «y : [0, L] — X. The points v(0) and (L) are the start and end
points of the geodesic, respectively.

The space is a geodesic space if for all x, 2" € X, there exists a geodesic in X with start

point x and end point x’.

Definition 5.3 (Quasi-geodesic space). A (a, b)-quasi-geodesic in X is a (a, b)-quasi-isometric

embedding v : [¢,t'] = X, where (t) is the start point of v and (¢') is the end point.
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The space is a quasi-geodesic space if for all z, 2’ € X, there exists a (a, b)-quasi-geodesic

in X with start point x and end point z’.

6. GROUP GROWTH

Somewhat related to the idea of metrics on groups and their Cayley graphs is the study
of group growth. The growth of a group is based the size or “volume” of a ball centered
around the identity, and the growth of the ball as the radius increases provides insight into

the group’s structure.

-1 2 bat a b a>b1 b~ la b2 b la

a ab ab ba b

Figure 6. Growth of F5.

6.1. Growth Functions.

Definition 6.1 (Growth function). Let G be a finitely generated group with a generating

set S C G. The ball of radius r around the identity is
Bas(r)={g € G|ds(g,e) <r}.
The growth function of G with respect to S is fg,¢ : N — N where
Be,s(r) = |Bas(r)]-
6.2. Growth Types.

Definition 6.2 (Growth types). A group has a
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e Polynomial growth rate if

BG,S(T) S OTk.

e Fxponential growth rate if

Bas(r) >a".

e Intermediate growth rate if
Cr* < Bas(r) <a’.
Ezample. For example, the growth of F; as shown in Figure [f] is exponential.

7. HyPERBOLIC GROUPS

Hyperbolic geometry is a type of non-Euclidean geometry where every point is a saddle
point and curvature is negative, as opposed to being zero like in Euclidean geometry or

positive like in elliptic geometry.

7.1. Hyperbolic Space. A hyperbolic space is a metric space satisfying properties related
to hyperbolic geometry. Gromov first introduced the definition, along with the use of large-

scale hyperbolicity to study hyperbolic groups.

Definition 7.1 (6-slim triangle). Let X be a metric space and z,y,2z € X. A geodesic
triangle is the union of the geodesic segments [z, y|, [z, 2], and [y, z].
If for any p € [y, 2], there is a point in [z,y] U [z, 2] a distance less than ¢ > 0 away, then

the triangle is d-slim.

Figure [7] gives an example of a geodesic triangle that is d-slim, since all points on any of
its sides are within a distance of ¢ from the other two, as shown with the red side [y, z] being

contained completely withing the blue region.

Definition 7.2 (Hyperbolic space). A space X is d-hyperbolic if all geodesic triangles in X

are 0-slim. A space is hyperbolic if there exists a 0 > 0 such that X is d-hyperbolic.
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i

y z
Figure 7. A ¢-slim triangle.

In relation to quasi-isometries, the notion of a quasi-hyperbolic space can also be defined

analogously to a hyperbolic space, but using quasi-geodesics instead of regular geodesics.

7.2. Hyperbolic Groups. Now we discuss the hyperbolic group, also developed by Gromov

from classical hyperbolic geometry.

Definition 7.3 (Hyperbolic group). Let G be a finitely generated group with generating set
S C G. Let X be the corresponding Cayley graph, which is a metric space with the word

metric. The group G is a hyperbolic group if X is a hyperbolic space.

Definition 7.4 (Word problem). Let (S | R) be a presentation for a group G. The word
problem for the presentation is solvable if there is an algorithm for every input word w with

entries in S U S~! that can decide whether w represents the identity element e.

Based on work by Gromov and Dehn, it is known that hyperbolic groups have solvable

word problems.

8. CONCLUSION

8.1. Summary. Geometric group theory is a very useful for learning about the algebraic
and geometric properties of groups and spaces.
o Cayley graphs provide a geometric representation of a group, in terms of the graph
and its word metric.

e Group actions allow groups to be seen through symmetries.
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e Quasi-isometries examine the large-scale geometric properties of groups.
e Growth of groups analyze the Cayley graph and comparison between groups.

e Hyperbolic groups are a type of group related to hyperbolic geometry.

These are only some of the many aspects of geometric group theory,

8.2. Applications. The topics covered in this paper also have applications to other fields
as well, within and outside of mathematics. This includes some of the more obvious appli-
cations, such as general group theory and geometry, but also areas such as topology and
number theory. It is also useful in physics and computer science, for example, with respect

to symmetric crystal structures and computational geometry.
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APPENDIX A. CAYLEY GRAPH EXAMPLES
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Figure 8. Cayley graph of I'(Z, {1}).
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Figure 10. Cayley graph of I'(Z/67Z,{[1]}) = T'(Cs, {r}).
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Figure 11. Cayley graph of I'(Dy, {r, s}).
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Figure 12. Cayley graph of I'(S5 = Ds, {(123), (12)}).
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Figure 13. Cayley graph of I'(Fy, {a,b}).
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