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Motivation

Random walk seems chaotic, but it has structure.

LIL tells us the boundary for how far randomness can go.



Law of the Iterated Logarithm

Formally, let {Xn}∞n=1 be a sequence of independent, identically
distributed random variables with E[Xi ] = 0 and Var(Xi ) = 1, and
let Sn = X1 + X2 + · · ·+ Xn. Then the Law of the Iterated
Logarithm states:

lim sup
n→∞

Sn√
2n log log n

= 1 almost surely.



The LIL Visualization

LIL describes the maximal oscillations of partial sums Sn.
Unlike LLN or CLT, it characterizes extreme events.



Law of Large Numbers

The Strong Law of Large Numbers(SLLN) states that the average
of the independent and identically distributed (i.i.d.) Random
Variables converges almost surely to the expected value, that is,

Pr( lim
n→∞

X1 + X2 + X3 + X4 . . .Xn

n
= µ) = 1,

where µ is the expected value.



Central Limit Theorem

The Central limit theorem, or the CLT, states that for large n, the
distribution of the random variable X̄n after standardization,
meaning centered at zero, and divide by the standard deviation of
X̄n, converges to the normal distribution N (0, 1).
In other words, as n → ∞,

√
n

(
X̄n − µ

σ

)
→ N (0, 1).



Central Limit Theorem



Random Variables

A random variable is a function that maps random events to a
number; it is a way of quantifying events to study them.
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X : Ω → R



Inequality Toolbox

Markov’s Inequality:

P(X ≥ a) ≤ E[X ]

a

Chebyshev’s Inequality:

P(|X − µ| ≥ a) ≤ σ2

a2

Chernoff’s Bound:

P(X ≥ a) ≤ E[etX ]
eta



The Borel-Cantelli Lemmas

First Borel-Cantelli Lemma:

If
∑

P(En) < ∞, then P(En occurs i.o.) = 0

Rare events with summable probabilities occur only finitely
often.

Second Borel-Cantelli Lemma:

If
∑

P(En) = ∞ and the En are independent, then
P(En occurs i.o.) = 1

Frequent events with diverging probabilities occur infinitely
often.



Maximal Inequality

Let Sn = X1 + X2 + · · ·+ Xn, where {Xj}∞j=1 are independent and
identically distributed (i.i.d.) random variables with zero mean
(E [Xj ] = 0) and unit variance (E [X 2

j ] = 1). (And implicitly all
moments of Xj exist and can be determined by taking the
derivative of the moment generating function). Suppose that the
positive constant sequence a1, a2, . . . , an, . . . satisfies an → ∞ and
an√
n
→ 0.

Then there exists a sequence ζ1, ζ2, . . . with ζn → 0 such that

P[Sn ≥ an
√
n] = e−a2n(1+ζn)/2.



Maximal Inequality

Let Sn = X1 + · · ·+ Xn, where {Xj}∞j=1 are independent and
identically distributed (i.i.d.) random variables with mean 0 and
variance 1. (And all moments of Xj exist, which can be determined
by taking the derivatives of its moment generating function). Also,
let Pr[S0 = 0] = 1.
Then for α ≥

√
2,

Pr
[
max{S0, S1, . . . ,Sn} ≥ α

√
n
]
≤ 2Pr

[
Sn√
n
≥ α−

√
2

]
.



Proof Strategy Sketch

Prove upper bound: lim sup ≤ 1 using First Borel-Cantelli
Lemma

Prove lower bound: lim sup ≥ 1 using Second Borel-Cantelli
Lemma

Key idea: show how often deviations above/below threshold
happen



Definition of lim sup

Pr

[
lim sup
n→∞

X1 + X2 + · · ·+ Xn

σ
√
2n log log n

= 1

]
= 1

it suffices to prove that for every positive ϵ, (where ϵ is understood
as ”countable” in its range),

P

({
x ∈ R∞ : (∃N)(∀n > N)

x1 + x2 + · · ·+ xn
σ
√
2n log log n

− 1 < ϵ

})
= 1

and

P

({
x ∈ R∞ : (∀N)(∃n > N)

x1 + x2 + · · ·+ xn
σ
√
2n log log n

− 1 > −ϵ

})
= 1



Equivalently,

P

( ∞⋃
N=1

∞⋂
n=N

{
x ∈ R∞ :

x1 + x2 + · · ·+ xn
σ
√
2n log log n

− 1 ≥ ϵ

})
= 0

and

P

( ∞⋂
N=1

∞⋃
n=N

{
x ∈ R∞ :

x1 + x2 + · · ·+ xn
σ
√
2n log log n

− 1 > −ϵ

})
= 1.



Upper Bound Outline

Let θ > 1 be a fixed constant. Define a subsequence
nk = ⌊θk⌋ to sparsely sample the indices.

This spacing ensures that the growth of nk is exponential,
which helps in bounding the probability of rare events.

Using large deviation estimates:

P(Snk ≥ (1 + ϵ)
√

2nk log log nk) ≈ e−c log k =
1

kc

Since
∑

P(Snk ≥ (1 + ϵ)
√
2nk log log nk) < ∞, by the first

Borel-Cantelli Lemma,

⇒ With probability 1, only finitely many Snk exceed
(1 + ϵ)

√
2nk log log nk .



Lower Bound Outline

Choose subsequence differences Snk − Snk−1

Construct ak such that:∑
P(Snk − Snk−1

≥ ak
√
mk) = ∞

Apply Borel-Cantelli #2 ⇒ event happens infinitely often



Why It Matters

Reveals structure in extreme randomness

Has applications in: finance, ML, queueing, network theory

A peak achievement in 20th century probability



Thank you!


