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1. Abstract

In real-life, randomness is everywhere. However, some arbitrary things turn out to follow
rules nicely. The Law of the iterated logarithm bounds the partial sum of the random
variables when n goes to infinity. In this paper, our primary objective is to illustrate a
formal proof of the law of the iterated logarithm. To achieve this, we’ll first walk through
the basic definitions in probability theory. We’ll also provide famous and interesting limit
theorems, which lays the foundation of the proof for the LIL. Lastly, we’ll discuss the two
lemmas that are turn out to be the last building blocks to the proof, and we’ll formally give
an intuitive and less-obvious proof of the law of the iterated logarithm. Notably, compared
to lots of proofs out there, our proof doesn’t involve heavy measure theory.

This is both an interesting and important theorem to prove because it is a major result
in probability theory and allows for applications in finance, machine learning, and the study
of statistics. After reading the paper, the reader will have a solid grasp of the fundamental
limit theorems and be able to understand the intuitive steps to prove the law of the iterated
logarithm.

2. Introduction

If you’re not an NPC, you’ve probably had moments when life feels completely random,
like getting soaked right after forgetting your umbrella, watching the stock market bounce
for no reason, or seeing your favorite NBA team lose to one that’s clearly tanking for Cooper
Flagg. At first glance, a random walk seems to follow that same chaotic logic. But what’s
truly fascinating is that even this kind of randomness has its limits.

The law of the iterated logarithm lies upon probability theory, along with some statistics.
Probability theory is the study that focuses on quantifying the uncertainty and analyzing
the random events. Unlike the “naive” probability that we learn in high school, as Blitzstein
referred to, the study of probability aims to analyze much more complex and uneven prob-
ability, which are sometimes very counterintuitive.

Here we’ll illustrate two interestingly counterintuitive examples that can be extrapolated
by probability: the Birthday Paradox and the Monty Hall problem.

We have 365 days in a year, therefore it seems unlikely that in a small group of people,
two would share the same birthday. However, according to the Birthday Paradox, it turns
out that with just 23 people, the probability that at least two share the same birthday is
greater than 50%. Another result from the Monty Hall problem states as follows: on the
American show ”Let’s Make a Deal”, there are three doors, one with a car behind and two
with a goat behind. After the contestant selects a door, the host, Monty Hall then removes
one of the other two door, guaranteed that a goat is behind it. The contestant then chooses
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whether to switch doors, in order to maximize his chance of winning the car. It turns
out that switching doors doubles the chance of winning the car, which is counter-intuitive.
While people may think that either switching or non-switching has a 1

2
, the probability after

switching is actually 2
3
.

These two illustration provides a brief background and understanding of why we care
about probability theory, and in fact, it has far more interesting applications in our real-life.

In real life, things don’t just average out cleanly. Sometimes they drift far from what
we expect. The Law of the Iterated Logarithm (LIL) helps us understand just how far
things can go, and how often. Whether it’s modeling financial markets, training AI, or
even estimating how long you’ll be waiting in a Starbucks line, understanding the limits of
fluctuation matters.

3. Background

Definition 3.1 (Random Variables). A random variable is a function that maps random
events to a number; it is a way of quantifying events to study them.

Figure 1. A graph of Random Variables [1]

For example, from tossing the coin, there are two possible outcomes: Heads(H) and
Tails(T)(1). This is the domain of the function. According to the function, we can map
Heads to the random variable +1 and Tails to the random variable −1. This is the range
of the function. Keep in mind, that the randomness occurs when choosing the possible out-
comes from the sample space, which in this case are heads and tails, while the process of
mapping the possible outcomes to a specific number is fixed.

Specifically, an indicator random variable (IA or 1A) is a simple but powerful concept:
it takes the value 1 if an event A occurs, and 0 otherwise.



ON THE LAW OF THE ITERATED LOGARITHM 3

IA(ω) =

{
1 if ω ∈ A

0 if ω /∈ A

An interesting property is that its expected value is precisely the probability of the
event: E[IA] = P (A). This allows us to convert statements about event probabilities into
numerical expectations, often simplifying calculations. In advanced probability, indicator
variables are crucial for transforming abstract event-based arguments into tangible numerical
forms.

Back to the coin toss as illustrated in 1, let A be the even that a fair coin lands on heads.
Simply define the indicator random variable

IA =

{
1 if the coin lands on heads

0 otherwise

Then E[IA] = P[A] = 1
2
.

Definition 3.2 (o-notation). Suppose that g(x) ̸= 0 for all x ̸= a in some open interval
containing a. Then f(x) is little-oh of g(x) or f(x) is of smaller order than g(x), denoted by

f(x) = o(g(x)) as x → a,

if

limx→a
f(x)

g(x)
= 0

Definition 3.3 (O-notation). Suppose that g(x) ̸= 0 for all x ̸= a in some open interval
containing a. f(x) is big-oh of g(x) or f(x) is the same order as g(x), denoted by

f(x) = O(g(x)) as x → a,

if

lim
ϵ→0

sup
{x∈R:|x−a|<ϵ}

∣∣∣∣f(x)g(x)

∣∣∣∣ < ∞.

Definition 3.4 (Kolmogorov’s Axioms). Kolmogorov’s Axioms are the basic rules in Prob-
ability Theory. It’s like in Euclidean space, it is agreed upon that two parallel lines don’t
concur. On the other hand, projective geometry sSignificanceee two parallel lines to concur
at the infinity point.

Let Ω be the sample space (set of all possible outcomes), and let F be a σ-algebra of subsets
of Ω, representing the set of all events. A probability measure is a function P : F → [0, 1].
The three Kolmogorov axioms are as follows:

(1) Non-negativity: For any event A ∈ F , its probability is non-negative:

P (A) ≥ 0.

(2) Normalization: The probability of the entire sample space (the certain event) is 1:

P (Ω) = 1.
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(3) Countable Additivity: For any sequence of pairwise disjoint eventsA1, A2, A3, · · · ∈
F (i.e., Ai ∩ Aj = ∅ for i ̸= j), the probability of their union is the sum of their in-
dividual probabilities:

P

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).

[7]

Definition 3.5 (Moment Generating Function (MGF)). Let X be a real-valued random
variable. The moment generating function of X, denoted MX(t), is defined as

MX(t) = E[etX ]

for all values of t ∈ R such that the expectation exists and is finite. The MGF, when it
exists in an open interval around 0, uniquely determines the distribution of X, and its n-th
derivative at t = 0 yields the n-th moment of X, i.e.,

M
(n)
X (0) = E[Xn].

Definition 3.6 (Cumulant Generating Function (CGF)). The cumulant generating function
of a random variable X is defined as the natural logarithm of its moment generating function:

KX(t) = logMX(t) = logE[etX ]

for all t ∈ R where the MGF exists and is finite. The n-th derivative of the CGF at t = 0
yields the n-th cumulant of X, denoted κn:

κn = K
(n)
X (0).

Cumulants provide alternative characterizations of a distribution, with the first cumulant
representing the mean, the second the variance, and higher-order cumulants capturing as-
pects such as skewness and kurtosis.

Theorem 3.7 (Markov’s Inequality). For a nonnegative random variable X and a > 0,

P (X ≥ a) ≤ E[X]

a

The proof for this is surprisingly simple. Let Y = X/a, therefore we need to show that
P (Y ≥ 1) ≤ E(Y ). Here is where the magic comes in. Note that

I(Y ≥ 1) ≤ E(Y ).

If I(Y ≥ 1) = 0 then the inequality reduces to Y ≥ 0, which is true based on the assumption;
and if I(Y ≥ 1) = 1 then Y ≥ 1, because the indicator says so. Taking the expectation of
both sides, we have Markov’s inequality.

Markov’s inequality is an interesting application of indicator random variables and makes
things easier afterwards.

Theorem 3.8 (Chebyshev’s inequality). Let µ and σ2 be the mean and variance of X,
respectively. Then for any nonnegative a,

P (|X − µ| ≥ a) ≤ σ2

a2
.
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By Markov’s inequality,

P (|X − µ| ≥ a) = P ((X − µ)2 ≥ a2) ≤ E(X − µ)2

a2
=

σ2

a2
.

Substituting cσ for a, we have the equivalent form described as:

P (|X − µ| ≥ cσ) ≤ 1

c2
.

Interpreting this inequality by the common use of language, this gives an upper bound
on the probability of an random variable being more than c standard deviations away from
its mean. For example, there can’t be more than 25% chance of being 2 or more standard
deviations from the mean.

Theorem 3.9 (Chernoff’s inequality). For any random variable X and constants a > 0 and
t > 0,

P (X ≥ a) ≤ E(etX)

eta
.

By Markov’s inequality again,

P (X ≥ a) = P (etX ≥ eta) ≤ E(etX

eta
.

Chernoff’s bound offers more than Markov’s because the right-hand side can be optimized
over t to give the tightest upper bound by taking the derivative.

Remarkably, without any additional operations, just simply by derivation from Markov’s in-
equality, both Chebyshev and Chernoff’s inequalities give a more precise bound than Markov’s.
[6]

Definition 3.10. Let (En)
∞
n=1 be a sequence of events. The limit supremum (or limit

superior) of the sequence of events, denoted by lim supn→∞ En, is the event that infinitely
many of the events (En) actually occur.
Explicitly, it is defined as:

lim sup
n→∞

En =
∞⋂
n=1

∞⋃
k=n

Ek

Lemma 3.11 (The First Borel-Cantelli Lemma). The Lemma states that if the sum of the
probabilities of the events En is finite:

∞∑
n=1

Pr(En) < ∞,

then the probability that infinitely many of them occur is 0, that is,

Pr(lim sup
n→∞

En) = 0.

Lemma 3.12 (The Second Borel-Cantelli Lemma). Conversely, if the sum of the probabilities
of the events En diverges,

∞∑
n=1

Pr(En) = ∞,

then the probability that infinitely many of them occur is 1,

Pr(lim sup
n→∞

En) = 1.
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[5]

Theorem 3.13 (Central limit theorem). some sequence of random variables with the same
distribution X1, X2, . . . with mean µ and variance σ2. Xn = 1

n
(X1 + . . .+Xn).

The Central limit theorem, or the CLT, states that for large n, the distribution of the ran-
dom variable X̄n after standardization, meaning centered at zero, and divide by the standard
deviation of X̄n, converges to the normal distribution N (0, 1).

In other words, as n → ∞,

√
n

(
X̄n − µ

σ

)
→ N (0, 1).

P roof. Let

Yi =
Xi − µ

σ
so that E[Yi] = 0,Var(Yi) = 1.

Then Zn =
√
nȲn = 1√

n

∑n
i=1 Yi.

We now compute the moment generating function (MGF) of Zn:

MZn(t) = E
[
etZn

]
= E

[
e
t· 1√

n

∑n
i=1 Yi

]
Since the Yi are independent, the expectation of a product of independent variables is the

product of expectations:

MZn(t) =
n∏

i=1

E
[
e

t√
n
Yi

]
=

(
MY

(
t√
n

))n

where MY (t) = E[etY ] is the MGF of a single standardized variable Yi.
Letting n → ∞, we get the indeterminate for 1∞, therefore we should take the limit of the

logarithm, which gives:

lim
n→∞

n logM

(
t√
n

)
= lim

y→0

logM(yt)

y2
where y =

1√
n

= lim
y→0

tM ′(yt)

2yM(yt)
by L’Hôpital’s rule

=
t

2
lim
y→0

M ′(yt)

M(yt)
· 1
y

=
t

2
lim
y→0

M ′(yt)

y
since M(yt) → 1

=
t2

2
lim
y→0

M ′′(yt) by L’Hôpital’s rule

=
t2

2
.

As a result,

(
M( t√

n
)

)n

, the MGF of
√
nX̄n (or in this case Ȳi), approaches e

t2

2 , the

N (0, 1) MGF.
More generally,

X̄n ∼ N (µ,
σ2

n
).
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Figure 2. An illustration of the CLT [4]

[6]

What this is saying is that when there is a sufficiently large number n of random vari-
ables, regardless of the distribution(i.e., Poisson, Binomial, etc.), the distribution form a bell
curve, more formally, it is referred as the normal distribution, denoted as N . According to
3Blue1Brown’s video on the CLT2, when we roll 2,5,10,15 dices, correspondingly, and sum
the values up, we discover that the distribution apporaches the bell-curved normal distribu-
tion. This is pretty counter-intuitive especially because when n is sufficiently large, it doesn’t
matter what the distribution is, or in other words, the dice can be uneven, the distribution
still approaches the normal distribution.

4. Law of the Iterated Logarithm

4.1. Two Preliminaries. To prove the Law of the Iterated Logarithm, we reqiure two
preliminary theorems:

Lemma 4.1 (Large Deviation Bound). Let Sn = X1 + X2 + · · · + Xn, where {Xj}∞j=1 are
independent and identically distributed (i.i.d.) random variables with zero mean (E[Xj] =
0) and unit variance (E[X2

j ] = 1). (And implicitly all moments of Xj exist and can be
determined by taking the derivative of the moment generating function). Suppose that the
positive constant sequence a1, a2, . . . , an, . . . satisfies an → ∞ and an√

n
→ 0.

Then there exists a sequence ζ1, ζ2, . . . with ζn → 0 such that

P [Sn ≥ an
√
n] = e−a2n(1+ζn)/2.

This theorem provides a more accurate bound for the tail probabilities compared to the
central limit theorem. However, the proof of this is rigorous, and we will not prove it here.
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The proof involves clever manipulations the moment generating function and the cumulant
generating function, the application of the Chernoff bound(which is the Markov inequal-
ity when optimized), and some asymptotic analysis involving the o-notation mentioned in
previously.

A key insight is that Sn/
√
n converges in distribution to zero-mean unit-variance Gauss-

ian(Central Limit Theorem). So

P
[
Sn ≥ a

√
n
]
→
∫ ∞

a

1√
2π

e−s2/2 ds

=
1√
2πa

e−a2/2

(
1− 1

a2
+

1 · 3
a4

− 1 · 3 · 5
a6

+ · · ·
)
,

where the last equality holds for a > 0. In this theorem, we divide Sn by a little larger
quantity than

√
n. For a precise and full proof of the Large Deviation bound, refer to

Billingsley’s book on probability and measure theory.

Lemma 4.2 (Maximal Inequality). The second preliminary, the Maximal inequality, is de-
scribed as follows:

Let Sn = X1+ · · ·+Xn, where {Xj}∞j=1 are independent and identically distributed (i.i.d.)
random variables with mean 0 and variance 1. (And all moments of Xj exist, which can be
determined by taking the derivatives of its moment generating function). Also, let Pr[S0 =
0] = 1. Then for α ≥

√
2,

Pr
[
max{S0, S1, . . . , Sn} ≥ α

√
n
]
≤ 2Pr

[
Sn√
n
≥ α−

√
2

]
.

The maximal inequality provides a powerful bound: it states that the probability of the
maximum sum reaching a high value is bounded by twice the probability of the final sum
(Sn) exceeding a slightly smaller threshold (α− 2). This is significant because probabilities
involving only the final sum Sn are generally easier to estimate compared the the maximum
function.

The proof for this preliminary is relatively straightforward compared to the previous one,
we will illustrate the proof in the following.

Proof. Denote Mn = max{S0, S1, . . . , Sn}. Then Mn is non-negative and non-decreasing in
n.

Pr

[
Mn√
n
≥ α

]
= Pr

[
Mn√
n
≥ α ∧ Mn−1√

n
< α ∨ · · · ∨ M1√

n
≥ α ∧ M0√

n
< α

]
= Pr

[
Mn√
n
≥ α ∧ Mn−1√

n
< α ∧ · · · ∧ M1√

n
< α ∧ M0√

n
< α

]
=

n∑
j=1

Pr

[
Mj√
n
≥ α ∧ Mj−1√

n
< α

]
.
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Using this result, we can further derive:

Pr

[
Mn√
n
≥ α

]
= Pr

[(
Mn√
n
≥ α

)
∧
(

Sn√
n
≥ α−

√
2

)]
+ Pr

[(
Mn√
n
≥ α

)
∧
(

Sn√
n
< α−

√
2

)]
= Pr

[(
Mn√
n
≥ α

)
∧
(

Sn√
n
≥ α−

√
2

)]
+

n∑
j=1

Pr

[(
Mj√
n
≥ α >

Mj−1√
n

)
∧
(

Sn√
n
< α−

√
2

)]
≤ Pr

[
Sn√
n
≥ α−

√
2

]
+

n∑
j=1

Pr

[(
Mj√
n
≥ α >

Mj−1√
n

)
∧
(

Sn√
n
< α−

√
2

)]
.

Since
Mj√
n
≥ α >

Mj−1√
n

implies
Sj√
n
≥ α, we have:

Pr

[(
Mj√
n
≥ α >

Mj−1√
n

)
∧
(

Sn√
n
< α−

√
2

)]
≤ Pr

[(
Mj√
n
≥ α >

Mj−1√
n

)
∧
(
Sn − Sj√

n
< α−

√
2− Sj√

n

)]
= Pr

[(
Mj√
n
≥ α >

Mj−1√
n

)
∧
(
Sj − Sn√

n
>

√
2

)]
= Pr

[
Mj√
n
≥ α >

Mj−1√
n

]
Pr

[
Sj − Sn√

n
>

√
2

]
(Mj and Mj−1 only depend on X1, . . . , Xj;Sj − Sn only depends on Xj+1, . . . , Xn.

So the above two events are independent.)

≤ Pr

[
Mj√
n
≥ α >

Mj−1√
n

]
Pr

[∣∣∣∣Sj − Sn√
n

∣∣∣∣ > √
2

]
≤ Pr

[
Mj√
n
≥ α >

Mj−1√
n

]
Var[Sn − Sj]

2n
(by Chebyshev’s ineq.)

= Pr

[
Mj√
n
≥ α >

Mj−1√
n

]
(n− j)

2n
· 1

=
n− j

2n
Pr

[
Mj√
n
≥ α >

Mj−1√
n

]
.
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Consequently,

Pr

[
Mn√
n
≥ α

]
≤ Pr

[
Sn√
n
≥ α−

√
2

]
+

n∑
j=1

Pr

[(
Mj√
n
≥ α >

Mj−1√
n

)
∧
(

Sn√
n
< α−

√
2

)]

≤ Pr

[
Sn√
n
≥ α−

√
2

]
+

1

2

n∑
j=1

Pr

[
Mj√
n
≥ α >

Mj−1√
n

]
= Pr

[
Sn√
n
≥ α−

√
2

]
+

1

2
Pr

[
Mn√
n
≥ α

]
.

■

After so many preliminaries, we come to the final boss.

4.2. Proof of the Law of the Iterated Logarithm.

Proof. Formally, let {Xn}∞n=1 be a sequence of independent, identically distributed random
variables with E[Xi] = 0 and Var(Xi) = 1, and let Sn = X1 +X2 + · · ·+Xn. Then the Law
of the Iterated Logarithm states:

lim sup
n→∞

Sn√
2n log log n

= 1 almost surely.

Recall
lim supn→∞ an = a if, and only if, (∀ϵ > 0) (∃N) (∀n > N) an − a < ϵ and (∀ϵ > 0) (∃N)

(∀n > N) an − a > −ϵ.
lim supn→∞ an = limN→∞ sup{aN , aN+1, aN+2, . . .}
Hence, to prove

Pr

[
lim sup
n→∞

X1 +X2 + · · ·+Xn

σ
√
2n log log n

= 1

]
= 1

it suffices to prove that for every positive ϵ, (where ϵ is understood as ”countable” in its
range),

P

({
x ∈ R∞ : (∃N)(∀n > N)

x1 + x2 + · · ·+ xn

σ
√
2n log log n

− 1 < ϵ

})
= 1

and

P

({
x ∈ R∞ : (∀N)(∃n > N)

x1 + x2 + · · ·+ xn

σ
√
2n log log n

− 1 > −ϵ

})
= 1

Equivalently (refer back to Definition 3.10),

P

(
∞⋂

N=1

∞⋃
n=N

{
x ∈ R∞ :

x1 + x2 + · · ·+ xn

σ
√
2n log log n

− 1 < ϵ

})
= 1

and

P

(
∞⋂

N=1

∞⋃
n=N

{
x ∈ R∞ :

x1 + x2 + · · ·+ xn

σ
√
2n log log n

− 1 > −ϵ

})
= 1.
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Or equivalently, by De Morgan’s law,

P

(
∞⋃

N=1

∞⋂
n=N

{
x ∈ R∞ :

x1 + x2 + · · ·+ xn

σ
√
2n log log n

− 1 ≥ ϵ

})
= 0

and

P

(
∞⋂

N=1

∞⋃
n=N

{
x ∈ R∞ :

x1 + x2 + · · ·+ xn

σ
√
2n log log n

− 1 > −ϵ

})
= 1.

Intuitively, the first inequality we aim to prove is related to the First Borel-Cantelli Lemma,
and the second inequality is related to the Second Borel-Cantelli Lemma.

Or equivalently (as written in Billingsley’s book),

Pr
[
X1 +X2 + · · ·+Xn ≥ (1 + ϵ)σ

√
2n log log n i.o.

]
= 0

and

Pr
[
X1 +X2 + · · ·+Xn > (1− ϵ)σ

√
2n log log n i.o.

]
= 1.

To reduce the confusion, here we distinguish between the “event” and the “set”.
That is why we put “Pr[event]” and use “P (set)”, where the event is defined through
some random variables, and the probability of a set is measured by probability
measure P . Billingsley’s book sometimes mixes the two together, which may be
confusing.

Assumption Without loss of generality, we assume that the variance σ2 is unity.
We’ll first prove the first statement. Choose a positive θ such that 1 < θ3 < 1 + ϵ.
Let nk ≜ ⌊θk⌋ > θk − 1, and
for k ≥ logθ(e

e + 1) (i.e., θk − 1 ≥ ee, which implies log log(nk) ≥ 1), let xk ≜
θ
√

2 log log(nk) (≥ θ
√
2) ≥

√
2.

Then 4.1 and 4.2 give that for k ≥ logθ(e
e + 1) and for some ζk → 0,

Pr

[
Mnk√
nk

≥ xk

]
≤ 2Pr

[
Snk√
nk

≥ xk −
√
2

]
4.2

= 2 exp

{
−1

2
(xk −

√
2)2(1 + ζk)

}
4.1

= 2 exp

{
−θ2 log(k)

(xk −
√
2)2(1 + ζk)

2θ2 log(k)

}
.

Since

lim
k→∞

(xk −
√
2)2(1 + ζk)

2θ2 log(k)
= lim

k→∞

(
θ
√

2 log log(θk)−
√
2
)2

2θ2 log(k)
(Because ζk ↓ 0)

= lim
k→∞

(θ
√
log(θk)− 1)2

θ2 log(k)
= lim

k→∞

(
θ
√
log(k) + log log(θ)− 1

)2
θ2 log(k)

= 1,
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there exists K such that for k ≥ K,

(xk −
√
2)2(1 + ζk)

2θ2 log(k)
≥ 1

θ
.

Accordingly, for k ≥ K0 ≜ max{K, logθ(e
ϵ + 1)},

Pr

[
Mnk√
nk

≥ xk

]
≤ 2 exp {−θ log(k)} =

2

kθ
.

Now for n ≥ eθ
2
fixed, there exists k such that nk−1 < n ≤ nk, and

√
2n log log(n) ≥

√
2(nk−1 + 1) log log(nk−1 + 1) >

√
2
(nk

θ

)
log log

(nk

θ

)
.

The last strict inequality follows from:

nk−1 = ⌊θk−1⌋ > θk−1 − 1 =
θk

θ
− 1 ≥ ⌊θk⌋

θ
− 1 =

nk

θ
− 1.

which implies that (This is the only step requiring θ3 < (1 + ϵ))

(1 + ϵ)
√

2n log log(n) > θ3
√

2
(nk

θ

)
log log

(nk

θ

)
= θ2

√
2nk log log

(nk

θ

)
≥ θ
√
2nk log log(nk) (since θ2 > θ)

Claim: Given θ > 1, f0(x) ≜ log
(
x
θ

)
− 1

θ
log x ≥ 0 for x ≥ eθ.

Proof: The claim can be validated by f ′
0(x) = (θ−1) log(x)+log(θ)

xθ log(x)[log(x)−log(θ)]
> 0 for x ≥ eθ and

f0(e
θ) = log[eθ − log(θ)]− 1 > 0 for any θ > 1. □

Accordingly, [Sn ≥ (1 + ϵ)
√
2n log log(n)] implies that

Mnk
≥ Sn ≥ (1 + ϵ)

√
2n log log(n) ≥ θ

√
2nk log log(nk),

where k is the unique integer satisfying ⌊θk−1⌋ < n ≤ ⌊θk⌋ (namely, k = ⌊logθ(n)⌋). As a
consequence,

Pr
[
Sn ≥ (1 + ϵ)

√
2n log log(n) i.o. in n

]
≤ Pr

[
Mnk

≥ θ
√
2nk log log(nk) i.o. in k

]
.
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By the first Borel-Cantelli lemma,

∞∑
k=1

Pr
[
Mnk

≥ θ
√
2nk log log(nk)

]
=

K0∑
k=1

Pr
[
Mnk

≥ θ
√
2nk log log(nk)

]
+

∞∑
k=K0+1

Pr
[
Mnk

≥ θ
√

2nk log log(nk)
]

≤ K0 +
∞∑

k=K0+1

2

kθ

≤ K0 +

∫ ∞

K0

2

xθ
dx

= K0 +
2

(θ − 1)Kθ−1
0

< ∞,

we obtain (The below equality holds without the condition that θ3 < (1 + ϵ)):

Pr
[
Mnk

≥ θ
√

2nk log log(nk) i.o. in k
]
= 0.

This completes the proof of the first part. ■

2. Pr
[
Sn > (1− ϵ)

√
2n log log(n) i.o.

]
= 1.

Choose ξ satisfying ξ > max{1, 9/ϵ2}. Take nk ≜ ⌊ξk⌋.
For any k, let mk = nk − nk−1 and ak =

(
1− 1

ξ

)√
2nk log log(nk).

Then ak → ∞ and ak√
mk

→ 0 as k → ∞.

• ak ≥
(
1− 1

ξ

) √
2nk log log(nk)√

nk
=
(
1− 1

ξ

)√
2 log log(nk) → ∞.

• limk→∞
ak√
mk

= limk→∞
(1− 1

ξ )
√

2nk log log(nk)
√
mk

= lim
k→∞

(
1− 1

ξ

)√
2ξk log log(ξk)√

ξk − ξk−1

= lim
k→∞

√
2 log log(ξk)

ξk
= 0
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4.1 then implies:

Pr

[
Snk

− Snk−1
≥
(
1− 1

ξ

)√
2nk log log(nk)

]
= Pr

[
Xnk−1+1 + · · ·+Xnk

≥ ak
√
mk

]
= exp

{
−1

2
a2k(1 + ζk)

}
for some ζk → 0

= exp

−1

2


(
1− 1

ξ

)√
2nk log log(nk)
√
mk

2

(1 + ζk)


= exp

{
−(ξ − 1)2[2nk log log(nk)](1 + ζk)

ξ2(nk − nk−1)

}
≥ exp

{
−(ξ − 1)2[2ξk log log(ξk)](1 + ζk)

ξ2(ξk − ξk−1)

}
(since ξk−1 < nk ≤ ξk and nk−1 ≤ ξk−1)

= exp

{
−(ξ − 1)2[2ξk log log(ξk)](1 + ζk)

ξ2(ξk − ξk−1)

1

1− 1
ξ

}

= exp

−(ξ − 1)2[2 log log(ξk)](1 + ζk)

ξ2
(
1− 1

ξ

)


= exp

{
−(ξ − 1)2[2 log log(ξk)](1 + ζk)

ξ(ξ − 1)

}
= exp

{
−(ξ − 1)[2 log log(ξk)](1 + ζk)

ξ

}
= exp

{
−2

(
1− 1

ξ

)
log log(ξk)(1 + ζk)

}
As ζk → 0, there exists K1 such that ζk <

1
2ξ−1

for all k ≥ K1.

Also, k ≥ log(ξ)+log(2ξ−1)−log(ξ−1)
log(ξ)

, if and only if 1
ξk−ξk−1 ≤ 1

2ξ−1
.

Hence, for k ≥ K2 ≜ max
{
K1,

log(ξ)+log(2ξ−1)−log(ξ−1)
log(ξ)

}
,

Pr

[
Snk

− Snk−1
≥
(
1− 1

ξ

)√
2nk log log(nk)

]

≥ exp

−(ξ − 1) log log(ξk)(1 + ζk)

ξ
(
1− 1

ξk−ξk−1

)


≥ exp

−
(ξ − 1) log log(ξk)

(
1 + 1

2ξ−1

)
ξ
(
1− 1

2ξ−1

)


= exp
{
− log log(ξk)

}
=

1

k log(ξ)
.
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Since
{[

Snk
− Snk−1

≥
(
1− 1

ξ

)√
2nk log log(nk)

]}∞

k=1
are independent events, and

∞∑
k=1

Pr

[
Snk

− Snk−1
≥
(
1− 1

ξ

)√
2nk log log(nk)

]

≥
∞∑

k=K2

Pr

[
Snk

− Snk−1
≥
(
1− 1

ξ

)√
2nk log log(nk)

]

≥
∞∑

k=K2

1

k log(ξ)
= ∞,

it follows from the second Borel-Cantelli lemma that with probability 1, Snk
− Snk−1

≥(
1− 1

ξ

)√
2nk log log(nk) infinitely often in k.

Now we can let Xn = −Xn, and let Mn and Sn be respectively the counterparts of Mn

and Sn for {Xn} (and nk = ⌊ξk⌋), and apply the proof in the first part with θ =
√
2 to show

that (cf. Slide 9-72)(This holds without θ3 < (1 + ϵ)):

Pr
[
Mnk

≥ θ
√
2nk log log(nk) i.o. in k

]
= 0.

Hence, it is with probability 1 that −Snk−1
= Snk−1

≤ Mnk−1
< θ

√
2nk−1 log log(nk−1) for

all but finitely many k.
Observe that θ

√
2nk−1 log log(nk−1) ≤ 2√

ξ

√
2nk log log(nk).

The validity of the above inequality follows:

• Apply nk−1

(
≜ ⌊ξk−1⌋

)
≤ ξk−1 = ξk

ξ
≤ nk+1

ξ
≤ 2nk

ξ
for nk−1 outside log(·).

• Apply nk−1 ≤ nk for nk−1 inside log(·).

As a result, it is with probability 1 that −Snk−1
≤ 2√

ξ

√
2nk log log(nk) for all but finitely

many k.
To summarize, it is with probability 1 that for infinitely many k,

Snk
≥
(
1− 1

ξ

)√
2nk log log(nk) + Snk−1

≥
(
1− 1

ξ

)√
2nk log log(nk)−

2√
ξ

√
2nk log log(nk)

=

(
1− 1

ξ
− 2√

ξ

)√
2nk log log(nk)

≥
(
1− 1√

ξ
− 2√

ξ

)√
2nk log log(nk)

=

(
1− 3√

ξ

)√
2nk log log(nk)

≥ (1− ϵ)
√

2nk log log(nk).

[8]
To encapsulate, we proved the two statements. Combining leads to the formal statement

of the law of the iterated logarithm.



16 RICHARD MAI

Figure 3. A graph on the law of the iterated logarithm [2]

Remark. The original statement of the law of the iterated logarithm was given by A.Y.
Kinchin in 1924. Another statement was given by A. N. Kolmogorov in 1929.

5. Conclusion

It is a special and fascinating phenomenon in probability theory that X1+X2+···+Xn

σ
√
2n log logn

oscil-

lates between ±1 when n is sufficiently large, as illustrated in Figure 3, regardless of the
distribution.

Figure 4 gives a more general graph of the limits, when the partial sums are divided by
1,
√
n log log n,

√
n, n, correspondingly.
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Figure 4. A graph on different limit theorems [3]
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