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Definition 1

A group G is a set paired with a binary operation on its
elements, · that satisfies the following axioms:

1 Closure: for all a, b ∈ G , a · b ∈ G .

2 Associativity: for all a, b, c ∈ G , a · (b · c) = (a · b) · c .
3 Existence of Identity: There exists some 1 ∈ G such that

for all a ∈ G , 1 · a = a · 1 = a.

4 Existence of Inverses: For all a ∈ G , there exists some
a−1 ∈ G such that a · a−1 = a−1 · a = 1.
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Definition 2

If G has a subset, S , which is also a group under the same
operation as G , we call S a subgroup, S ≤ G .

Definition 3

We call a subgroup N of a group G normal if for all g ∈ G and
all n ∈ N, gng−1 ∈ N.

Definition 4

We call a group G simple if the whole group G and the trivial
subgroup {1} are the only normal subgroups of G .
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The Hölder Program is a program to classify all finite groups,
which involves classifying all simple finite groups (completed in
the Enormous Theorem), then finding all ways of “putting
simple groups together.”

Theorem 5 (The Enormous Theorem)

Every simple finite group G can be classified as

1 A cyclic group of prime order.

2 An alternating group of order greater than 5.

3 A group of Lie type. These are further broken down into
16 infinite families.

4 One of 26 Sporadic groups.
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Whenever we have a subset S of a group G , where all elements
of G are a product of elements of S and their inverses, this is
called a set of generators of G .

Theorem 6

All simple finite groups are generated by 2 of their elements.
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Definition 7

A field is a set F with two binary operations, addition and
multiplication defined on all elements satisfying the following
axioms:

1 F is an abelian group under addition with identity 0.

2 F\{0} also written as F× is an abelian group under
multiplication with identity 1.

3 Multiplication distributes over addition: for all a, b, c ∈ F,
a(b + c) = ab + ac . This also implies that 0a = 0 for all
a ∈ F.

We say Fq is the unique field with q elements.
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Lie groups are groups that are also manifolds, and the group
operation and taking inverses correspond to smooth maps of
the manifold.

Example

GLn(R) is a submanifold of Rn2 , and also a group.

The classical groups are finite groups of lie type related to
subgroups of GLn(q) when F is a finite field.
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Theorem 8

|GLn(q)| = (qn − 1)(qn − q) . . . (qn − qn−1).

Proof.

For a matrix to be in GLn(q) it must have nonzero
determinant, so its columns must be linearly independent.
There are qn possible values for the first column, and we
subtract 1 to avoid the case where all entries are 0. The second
column cannot be one of the q multiples of the first so there
are qn − q possibilities and so on. ■
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Definition 9

Given a group G , its center, Z (G ) is the subgroup such that
for all a ∈ Z (G ) and b ∈ G , a · b = b · a.

The center of GLn(q) is the set of scalar matrices λIn such that
λ ∈ Fq We can quotient GLn(q) by its center to get PGLn(q).
Since there are q − 1 possibilities for λ, |Z (GLn(q)) = q − 1|
and |PGLn(q)| = 1

q−1 |GLn(q)|.
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Definition 10

We define the special linear group, SLn(q) ≤ GLn(q) to be the
subgroup of matrices with determinant 1.

Its center also consists of scalar matrices, and since
det(λIn) = λn, λn = 1. We can take the quotient of SLn(q) by
its center to get PSLn(q), which is one of the 16 infinite
families of Lie groups in the classification theorem.
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Definition 11

A transvection in a vector space, V is a linear transformation
that fixes a hyperplane H and has determinant 1.

Transvections are shear transformations of vector spaces. Given
a transvection, T , then we can choose a basis such that T has
a matrix of the following from:

1 1 0 · · · 0
0 1 0 · · · 0

0 0
. . .

... 0
...

... . . . 1 0
0 0 0 0 1

 .
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Lemma 12

SLn(q) is generated by transvections.

Lemma 13

If N is a normal subgroup of SLn(q), and A ∈ N but
A ̸∈ Z (SLn(q), then there exists some transvection T ∈ N.
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Theorem 14

The groups PSLn(q) when n ≥ 3 are simple.

Proof.

We show that PSLn(q) is simple by showing that if a normal
subgroup N of SLn(q) contains some A ̸∈ Z (SLn(q)) then
N = SLn(q) If N contains a transvection T , then for all
transvections t ∈ SLn(q) there exists g ∈ SLn(q) such that
gTg−1 = t since all transvections are similar. Thus, t ∈ N, and
since SLn(q) is generated by transvections, and N contains all
transvections, SLn(q) = N. Therefore PSLn(q) is simple. ■
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