Rayhaan Patel

Laboratory Com-

Linear Groups

Simplicity of

Simple Finite Groups of Lie Type

Rayhaan Patel

Euler Circle

July 11, 2025

Rayhaan Patel

Introduction

Linear Groups

Simplicity of $PSL_n(q)$

Introduction

Definition 1

A group G is a set paired with a binary operation on its elements, \cdot that satisfies the following axioms:

- 1 Closure: for all $a, b \in G$, $a \cdot b \in G$.
- 2 Associativity: for all $a, b, c \in G$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- **3** Existence of Identity: There exists some $1 \in G$ such that for all $a \in G$, $1 \cdot a = a \cdot 1 = a$.
- 4 Existence of Inverses: For all $a \in G$, there exists some $a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$.

Definition 2

If G has a subset, S, which is also a group under the same operation as G, we call S a subgroup, $S \leq G$.

Definition 3

We call a subgroup N of a group G normal if for all $g \in G$ and all $n \in N$, $gng^{-1} \in N$.

Definition 4

We call a group G simple if the whole group G and the trivial subgroup $\{1\}$ are the only normal subgroups of G.

The Hölder Program is a program to classify all finite groups, which involves classifying all simple finite groups (completed in the Enormous Theorem), then finding all ways of "putting simple groups together."

Theorem 5 (The Enormous Theorem)

Every simple finite group G can be classified as

- **1** A cyclic group of prime order.
- 2 An alternating group of order greater than 5.
- 3 A group of Lie type. These are further broken down into 16 infinite families.
- 4 One of 26 Sporadic groups.

Rayhaan Patel

Introduction

Linear Groups

Simplicity of $PSL_n(q)$

Whenever we have a subset S of a group G, where all elements of G are a product of elements of S and their inverses, this is called a set of *generators* of G.

Theorem 6

All simple finite groups are generated by 2 of their elements.

Definition 7

A *field* is a set \mathbb{F} with two binary operations, addition and multiplication defined on all elements satisfying the following axioms:

- \blacksquare F is an abelian group under addition with identity 0.
- 2 $\mathbb{F}\setminus\{0\}$ also written as \mathbb{F}^{\times} is an abelian group under multiplication with identity 1.
- Multiplication distributes over addition: for all $a, b, c \in \mathbb{F}$, a(b+c)=ab+ac. This also implies that 0a=0 for all $a\in \mathbb{F}$.

We say \mathbb{F}_q is the unique field with q elements.

Rayhaan Patel

Introduction

Linear Groups

Simplicity of $PSL_n(a)$

Linear Groups

Rayhaan Patel

Introduction

Linear Groups

Simplicity of $PSL_n(q)$

Lie groups are groups that are also manifolds, and the group operation and taking inverses correspond to smooth maps of the manifold.

Example

 $GL_n(\mathbb{R})$ is a submanifold of \mathbb{R}^{n^2} , and also a group.

The classical groups are finite groups of lie type related to subgroups of $GL_n(q)$ when \mathbb{F} is a finite field.

Theorem 8

$$|GL_n(q)| = (q^n - 1)(q^n - q) \dots (q^n - q^{n-1}).$$

Proof.

For a matrix to be in $GL_n(q)$ it must have nonzero determinant, so its columns must be linearly independent. There are q^n possible values for the first column, and we subtract 1 to avoid the case where all entries are 0. The second column cannot be one of the q multiples of the first so there are $q^n - q$ possibilities and so on.

Linear Groups

Simplicity of $PSL_n(a)$

Definition 9

Given a group G, its center, Z(G) is the subgroup such that for all $a \in Z(G)$ and $b \in G$, $a \cdot b = b \cdot a$.

The center of $GL_n(q)$ is the set of scalar matrices λI_n such that $\lambda \in \mathbb{F}_q$ We can quotient $GL_n(q)$ by its center to get $PGL_n(q)$. Since there are q-1 possibilities for λ , $|Z(GL_n(q))=q-1|$ and $|PGL_n(q)|=\frac{1}{q-1}|GL_n(q)|$.

Definition 10

We define the special linear group, $SL_n(q) \leq GL_n(q)$ to be the subgroup of matrices with determinant 1.

Its center also consists of scalar matrices, and since $\det(\lambda I_n) = \lambda^n$, $\lambda^n = 1$. We can take the quotient of $SL_n(q)$ by its center to get $PSL_n(q)$, which is one of the 16 infinite families of Lie groups in the classification theorem.

Rayhaan Patel

Introduction

Linear Groups

Simplicity of $PSL_n(q)$

Simplicity of $PSL_n(q)$

Definition 11

A transvection in a vector space, V is a linear transformation that fixes a hyperplane H and has determinant 1.

Transvections are shear transformations of vector spaces. Given a transvection, T, then we can choose a basis such that T has a matrix of the following from:

$$\begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots & 0 \\ \vdots & \vdots & \cdots & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Rayhaan Patel

Introduction

Linear Groups

Simplicity of $PSL_n(q)$

Lemma 12

 $SL_n(q)$ is generated by transvections.

Lemma 13

If N is a normal subgroup of $SL_n(q)$, and $A \in N$ but $A \notin Z(SL_n(q)$, then there exists some transvection $T \in N$.

Theorem 14

The groups $PSL_n(q)$ when $n \geq 3$ are simple.

Proof.

We show that $PSL_n(q)$ is simple by showing that if a normal subgroup N of $SL_n(q)$ contains some $A \notin Z(SL_n(q))$ then $N = SL_n(q)$ If N contains a transvection T, then for all transvections $t \in SL_n(q)$ there exists $g \in SL_n(q)$ such that $gTg^{-1}=t$ since all transvections are similar. Thus, $t \in N$, and since $SL_n(q)$ is generated by transvections, and N contains all transvections, $SL_n(q) = N$. Therefore $PSL_n(q)$ is simple.