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Abstract. This paper discusses three of the simple finite groups of Lie type: the Pro-
jective Special Linear groups, the Projective Symplectic Groups and the Projective Special
Unitary groups. We construct all of these, and prove the simplicity of the Projective Special
Linear groups, and we discuss other related groups of Lie type, like the General Linear and
Projective General Linear Groups.

1. Introduction

Definition 1.1. A group, (G; ∗) is non-empty a setG with a binary operation, ∗ : G×G→ G
satisfying the following axioms:

G0 Closure: For all a, b ∈ G, a ∗ b ∈ G (this is implied by ∗ : G×G→ G but is included
for clarity).

G1 Associativity : (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G
G2 Identity : There exists an element e ∈ G such that for all a ∈ G, a ∗ e = e ∗ a = a

(sometimes we denote the identiy with 1 or 0 instead of e.)
G3 Inverses : For all a ∈ G, there exists some a−1 ∈ G called the inverse of a such that

a ∗ a−1 = a−1 ∗ a = e.

We often abbreviate (G; ∗) as G, and write the group operation as multiplication, so g ∗ h
where g, h ∈ G becomes gh.

Some examples of groups include:

(1) The integers, Z under addition.
(2) The rationals excluding 0, Q× under multiplication.
(3) The integers modulo some natural number n, Z/nZ under addition. 1

(4) The integers modulo some prime p and excluding 0, Z/pZ×, under multiplication.
(5) The complex numbers with magnitude 1 under multiplication.
(6) The symmetric groups, Sn, which contains all permutations of n elements, and the

group operation is composition of those permutations.
(7) The alternating groups, An, which consists of all even permutations of n elements,

and the group operation is composition of those permutations.

Definition 1.2. We call a group, (G; ∗) abelian if ∗ is commutative. That is for all a, b ∈ G,
a ∗ b = b ∗ a.

A finite group is a group with a finite number of elements, and we call the number of
elements in a finite group the order of a group denoted by |G|. Also, the subset Q ⊂ R is
still a group under the same operation as R. Similarly, An ⊂ Sn and is a group under the
same operation as An. This motivates:

Date: June 2025.
1Notice that this notation looks like we are dividing the set of integers by the integers times some number,

n, keep this in mind when we deal with quotient groups; it has a meaningful interpretation.
1
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Definition 1.3. Let (G; ∗) be a group, and H a nonempty subset of G. Then H is a
subgroup of G if and only if (H; ∗) is also a group.

Definition 1.4. A subgroup, H ≤ G is a normal subgroup if for all g ∈ G and h ∈ H,
ghg−1 ∈ H.

When we have ghg−1, we say that h is conjugated by g. If gh2g
−1 = h2, we say h1 and

h2 are conjugate. As an example, similar matrices, A and B are conjugate, since there
exists some S such that SAS−1 = B. Any subgroup of an abelian group is normal, since
ghg−1 = gg−1h = h ∈ H. Normal subgroups can be thought of as a generalization of
commutativity; instead of having gh = hg, we get gh = h′g, where h′ ∈ H, and if we take
gH to be the set {gh : h ∈ H}, and Hg to be {hg : h ∈ H, then gH = Hg.
We can learn more about groups and their relations to each other by studying structure

preserving maps between groups. For example, notice that the function f : Z → Z/3Z
such that f(n) 7→ n (mod 3) seems to preserve some of the relations set by addition on Z;
f(a + b) = f(a) + f(b). for all a, b ∈ Z. In number theory, we regularly use functions like
this, taking the integers modulo some integer to study properties of the integers.

We call a function like this a homomorphism, or more formally:

Definition 1.5. A homomorphism is a function f : G → H where G and H are groups,
such that for all a, b ∈ G, f(ab) = f(a)f(b).

Definition 1.6. Similarly, an isomorphism is a bijective homomorphism.

If there exists an isomorphism between two groups, G and H, then we say G ∼= H, or G
is isomorphic to H. An isomorphism from a group to itself is called an automorphism. For
example, ϕ : Z → Z defined by ϕ(n) = −n is an automorphism.

Given a subset S of a group G, we call the smallest subgroup H containing S the subgroup
generated by G. We say that S generates H or H is generated by S, or write this as G = ⟨s⟩.
This smallest subgroup must contain all elements of G that are a product of elements of S
and their inverses by closure, and no others in order to stay the smallest. We say that S
generates H or H is generated by S, or write this as H = ⟨S⟩. Knowing generators for a
group makes working with the group easier, since we can write all the elements of the group
in terms of the generators.

Example. The symmetric groups are generated by transpositions, and the alternating groups
are generated by 3-cycles.

Definition 1.7. We call a group cyclic if it can be generated by one element.

Both Z and Z/nZ are generated by 1, and therefore cyclic.
We can combine two groups to get a new one by taking the direct product of the groups.

Definition 1.8. The direct product of two groups, (G; ∗) and (H; +) is a group, where the
underlying set is G×H with and the binary operation is defined component wise:

(g1, h1) · (g2, h2) = (g1 ∗ g2, h1 + h2).

A group is simple if it does not contain any proper normal subgroups (we exclude the
group itself and the subgroup consisting of the identity).

In the context of finite group theory, simple groups behave somewhat like prime numbers,
in the sense that a simple group G cannot be “factored” into a normal subgroup N and the
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quotient group (covered in the next section) G/N . Because of this, we can classify all finite
groups, by classifying all simple finite groups, then finding all possible ways of combining
them to form the finite groups. One such way of combining simple groups is through the
direct product, however, it is far from the only way and does not allow us to produce all
finite groups from the simple groups. These two problems form the Hölder Program, and are
central problems in finite group theory.

The classification of simple finite groups, sometimes called the Enormous Theorem, was
finished in 1983 2 by over 100 mathematicians across around 10, 000 pages across dozens
of papers. However, the second part, called the Extension Problem, remains open. The
classification of simple finite groups is as follows:

Theorem 1.9 (The Enormous Theorem). Every simple finite group G is isomorphic to
either

(1) A cyclic group of prime order (G ∼= Zp for prime p).
(2) An alternating group (G ∼= An for n ≥ 5).
(3) A group of Lie type.
(4) One of 26 Sporadic groups.

There is one edge case, called the Tits group that is almost, but not strictly a group of Lie
type, so some consider it to be the 27th sporadic group.

Theorem 1.10. All simple finite groups are generated by 2 of their elements.

This result follows from the classification theorem, as it was proven case wise on each
family of simple finite group. The proof is too technical for this paper, so see [DMT91],
which discusses this in-depth.

2. Quotient groups

Quotient groups are a way to decompose a group into smaller groups, that share some
properties with the original. We can decompose groups into their simple factors by taking
successive quotients of groups, and they are an important tool in constructing the simple
finite groups of Lie type. The prototypical example of quotient groups is Z/nZ; in taking
the integers modulo n, we “divide out” by nZ, setting any element of nZ to the identity,
and partition the other elements of Z into translates of nZ by adding some constant to nZ.
First, we cover some information about homomorphisms that we then use to define quotient
groups.

Let ϕ : G→ H be a homomorphism of groups.

Definition 2.1. The kernel of a homomorphism, ϕ is defined to be

kerϕ = {g ∈ G : ϕ(g) = eh}

Proposition 2.2. The kernel of ϕ is a normal subgroup of G.

Proof. First, we show that kerϕ is a subgroup of G.

Closure: For all k1, k2 ∈ kerϕ, ϕ(k1k2) = ϕ(k1)ϕ(k2) = eH .
Inverses: For all k ∈ kerϕ, ϕ(k) = ϕ(k−1)
Identity: For all g ∈ G, ϕ(g)ϕ(eG)ϕ(geG) = ϕ(g), so ϕ(eG) ∈ kerϕ.

2There were some minor gaps in the proof that were filled in by Ashbacher and Smith in 2004, and Harada
and Solomon in 2008.
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Thus kerϕ is a subgroup of G. Now, we show that kerϕ is a normal subgroup. For all
k ∈ kerϕ, we need to show that gkg−1 ∈ kerϕ for all g ∈ G. We have that

ϕ(gkg−1) = ϕ(g)ϕ(k)ϕ(g−1) = ϕ(g)ϕ(g−1) = eH ,

so gkg−1 ∈ kerϕ as desired.

Definition 2.3. The image of a homomorphism, ϕ is defined to be

Im(ϕ) = {ϕ(g) : g ∈ G}

Proposition 2.4. The image of a homomorphism is a subgroup of H.

Proof.

Closure: For all g1, g2 ∈ G, f(g1)f(g2) = f(g1g2) = f(g3) where g3 ∈ G, so f(g3) ∈ H.
Inverses: For all g ∈ G, f(g)f(g−1) = f(gg−1) = f(eG) = eH (the same applies to
f(g−1)f(g)).

Identity: f(eG) = eH .

Definition 2.5. A fiber of ϕ over some h ∈ H is defined to be the set

{g ∈ G : ϕ(g) = a}.

The kernel of ϕ is the fiber over eH . We can multiply any elements in the image of ϕ using
the group operation on H, which gives us a natural way to multiply fibers above points in
the image of H. Suppose Xa is the fiber of a, and Xb is the fiber above b, then XaXb = Xab.
This multiplication is the same as the multiplication in Imϕ.

Definition 2.6. Let ϕ : G → H be a homomorphism with kernel K. The quotient group
G/K or G modulo K, is the group containing the fibers of ϕ and has the operation as
described above.

From this definition, G/K ∼= Imϕ. Note that the kernel K is a single element, the identity
in G/K. We can think of G/K as taking elements of the group modulo K, analogous to
how Z/nZ is defined, as it is a quotient group. Our definition of G/K requires the map ϕ,
however, we can instead define multiplication of fibers by using representatives of the fibers,
similarly to how a ∈ Z/nZ represents all integers of the form a+ 3n.

Proposition 2.7. Given a homomorphism ϕ : G→ H with kernel K, let X be the fiber above
a, then we can choose any x ∈ X and we have X = {xk|k ∈ kerϕ} and X = {kx|k ∈ kerϕ}.

Proof. Let x ∈ X, so ϕ(x) = a, and let xK = {xk|k ∈ K}. We will prove that xK ⊆ X,
then X ⊆ xk. First, for all k ∈ K,

ϕ(xk) = ϕ(x)ϕ(k) = ϕ(x) = a,

so xk ∈ X, meaning xK ⊆ X. Now, suppose g ∈ X and we let k = x−1g, so

ϕ(k) = ϕ(x−1)ϕ(g) = ϕ(x)−1ϕ(g) = aa−1 = eH

The proof for X = {kx|k ∈ kerϕ} is nearly identical.
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Now we can describe a quotient group without having an explicit homomorphism; we
can set a normal subgroup, K of G to be the kernel and construct the cosets of K; sets
of the form xK as we have seen before. We then define the group operation on G/K by
xK · yK = (xy)K.
This proof has an interesting consequence:

Corollary 2.8. |G/K| = |G|
|K| .

Proof. From the group axioms, the function A : G → G defined by A(g) = ag must be a
bijection since it has an inverse A−1 : G→ G defined by A−1(g) = a−1g, therefore |xK| = |K|
since multiplication by x is bijective. Since |xK| = |K| and X = xK, we have |X| = |K|
for all fibers X! We have |G/K||k| = |G| since we subdivide G into |G/K| fibers with |K|
elements each, giving us |G/K| = |G|

|K| as desired.

3. Vector Spaces

The groups of Lie type we will be exploring involve linear algebra, so we will cover the
basics here.

Definition 3.1. A field is a set F with two binary operations, addition and multiplication,
that satisfies the following axioms:

Addition Axioms:

A0 Closure: For all a, b ∈ F, a+ b ∈ F.
A1 Associativity: (a+ b) + c = a+ (b+ c) for all a, b, c ∈ F.
A2 Commutativity: For all a, b ∈ F, a+ b = b+ a
A3 Identity: There exists an element 0 ∈ F such that for all a ∈ F, a+ 0 = 0 + a = a.
A4 Inverses: For all a ∈ F there exists some −a called the additive inverse of a such

that a+−a = −a+ a = 0

Multiplication Axioms:

M0 Closure: For all a, b ∈ F, ab ∈ F.
M1 Associativity: (ab)c = a(bc) for all a, b, c ∈ F.
M2 Commutativity: For all a, b ∈ F, ab = ba
M3 Identity: There exists an element 1 ∈ F such that for all a ∈ F, a1 = 1a = a.
M4 Inverses: For all a ∈ F there exists some a−1 called the multiplicative inverse of a

such that aa−1 = a−1a = 1.

Distributivity:

D1 Distributivity: For all a, b, c ∈ F, a(b+ c) = ab+ ac.

A finite field is a field with a finite number of elements We write F× when we refer to just
the multiplicative group of F (which does not contain 0).

Definition 3.2. The smallest natural number n such that n times the multiplicative identity
is 0 is called the characteristic of a finite field. For an infinite field, like Q, there may be no
such n, in which case we say it has characteristic 0.

Example. In Z/pZ, the characteristic is p; 1p = 0, while Q,R and C are all characteristic 0.

Definition 3.3. A vector space is an abelian group (V ; +) under vector addition. Elements
of the vector space are called vectors. Vector spaces are also paired with a field F and have a
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binary operation from · : F× V → V called scalar multiplication. We say that V is a vector
space over F when it is paired with F. These satisfy the following axioms:

(1) 1 · v = v for all v ∈ V .
(2) For all a, b ∈ F, a · (b · v) = (ab) · v.
(3) For all a ∈ F, a · (u+ v) = a · u+ a · v.
(4) For all a, b ∈ F, (a+ b) · v = a · v + b · v.

Definition 3.4. A subspace is a subset of a vector space that is also a vector space under
the same vector addition and scalar multiplication.

Definition 3.5. A linear combination of vectors in a subset W of a vector space V is an
expression written in the form ∑

λw

for scalars λ and w ∈ W .

Definition 3.6. The span of a subset W of V is the subspace of all vectors that can be
written as a linear combination of elements of W . If the span of W is V , we say W spans V
If a vector v is in the span of W , then v is spanned by W .

Definition 3.7. A set of vectors, W = {v1, . . . , vn} in V is linearly independent if each vi is
not spanned by W\vi.

This also means a1v1 + · · ·+ anvn = 0 if and only if all ai = 0, where v1, . . . , vn is linearly
independent. Otherwise, suppose a1v1 + · · · + anvn = 0 and there are nonzero ai, then
a1
an
v1 + · · · + an−1

an
vn−1 = vn. Also, if v1, . . . , vn are not linearly independent, which means

there exists ai such that a1v1 + · · ·+ an−1vn−1 = vn, then a1v1 + · · ·+ an−1vn−1 − vn = 0.

Definition 3.8. We call a subset W ⊆ V a basis if it spans V and is linearly independent.

A basis gives us a sort of coordinate system of the vector space in terms of its elements, and
since all bases of a vector space have the same number of elements as shown in [DF04, Chapter
11] we have:

Definition 3.9. The unique number of elements of a basis in a vector space V is called the
dimension of V , also written as dim(V ) or dimV .

Definition 3.10. A linear transformation is a function T : V → W where V and W are
vector spaces over the same field F that satisfies the following properties:

(1) Additivity: For all u, v ∈ V , T (u+ v) = T (u) + T (v).
(2) Homogeneity: For all λ ∈ F and v ∈ V , T (λv) = λT (v).

Linear transformations are the analogue of a homomorphism for groups; they are group
homomorphisms that also satisfy homogeneity.

Proposition 3.11. Let T : V → W be a linear transformation, and let B be a basis of V .
Then T (B) spans T (V ) and if T is injective, then T (B) is a basis of T (V ).

Proof. We assume T does not map everything to 0, as this becomes trivial otherwise. Let
w ∈ L(V ) where w ̸= 0, then there exists some v ∈ V such that L(v) = w. We now write
v as a1v1 + · · · + anvn where v1, . . . , vn is a basis of V and a1, . . . , an ∈ F. This gives us
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w = a1T (v1) + · · · + anT (vn), which means T (v1), . . . , T (vn) spans T (V ) as desired. If T is
injective, kerT = {0}, so

a1T (v1) + · · ·+ anT (vn) = T (a1v1 + · · ·+ anvn) = 0

implies that a1v1 + · · · + anvn = 0, which means each ai = 0 since vi form a basis. This

implies that T (vi) forms a basis as well.

Because of this, once we specify the image of a basis of V , we define the entire linear
transformation.

Definition 3.12. Let V and W be vector spaces of dimensions m and n respectively, and
let T be a linear transformation T : V → W . Let v1, . . . , vn and w1, . . . , wm be bases of V
and W respectively. the matrix corresponding to T is an n×m array, where we write aij for
the entry in the ith row and jth column, defined by: T (vj) = a1jw1 + · · ·+ anjwn.

Definition 3.13. Let V be an n-dimensional vector space, and consider the identity map,
1 : V → V defined by 1v = 1 for all v ∈ V . The matrix corresponding to this transformation,
In, is called the n× n idenity matrix, which is a matrix of the form:

In =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 .
We will only work with linear transformations from a vector space to itself. Given two

matrices, A and B, their product, AB is the matrix corresponding to the composition of
their corresponding linear transformations.

4. Linear Groups

4.1. Lie Groups. The groups of Lie type were originally constructed from Lie groups and
their closely related Lie algebras, so we will give a brief intuition for what a Lie group and
Lie algebra is. A more detailed discussion can be found in [Kir17] Lie theory was initially
developed by Sophus Lie in an attempt to use group theory to solve differential equations
by studying groups on continuous surfaces after he saw Galois’ success with proving the
unsolvablity of the quintic. This did not work out, though it still produced a valuable
theory. Informally, manifolds are like curves or surfaces, though they can be of higher
dimension. An n-dimensional manifold locally resembles n-dimensional real space. As an
example, 1-dimensional manifolds are curves and lines, like the real line, a circle or a helix.
Two-dimensional manifolds are surfaces, like a sphere (mathematicians consider spheres to
be spherical surfaces rather than a solid ball or a torus. The formal definition of a manifold
is too technical to include here, though interested readers can refer to [Lee11].

Definition 4.1. A Lie group is a manifold where the points on the manifold also form
a group, and applying the group operation and taking inverses are smooth maps of the
manifold.

As an example, consider the complex unit circle, T. It is a 1-dimensional manifold The
group operation is complex multiplication, and for all z, x ∈ T, the maps from T → T,
ϕ : x 7→ zx and ψ : x 7→ x−1, which correspond to multiplication by z and taking inverses
respectively, are smooth maps.
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Complex Lie groups have corresponding Lie algebras over C, and if the Lie group is simple,
then so is the Lie algebra. Simple Lie algebras were classified about 100 years ago, and in
1955 Chevalley constructed analogues of the simple Lie algebras over C for all finite fields
and then constructed simple finite groups from them. These are called the Chevalley groups
and account for 9 of the 18 infinite families. Unfortunately this construction is too involved
to include here, though [Gec24] covers the construction and the prerequisite Lie theory.

Definition 4.2. The General Linear Group, denoted GLn(F) is the group of n×n matrices
of nonzero determinant over the field F.

For F = R, this forms a Lie group that is a submanifold of Rn2
, since we can interpret each

matrix as a strange way to write the coordinates for a point in Rn2
space. To get a very rough

idea of why matrix multiplication and inversion results in smooth maps, the transformations
of two nearby matrices on the manifold would be very similar (here, very similar means
“they would look about the same”), so their inversions or result when multiplied by another
matrix would again be very similar and therefore nearby. When F is a finite field, we write
GLn(q) where q = |F|.

Definition 4.3. The center of a group G is the subgroup such that for all z in the center,
gz = zg for all g ∈ G. The center of a group is a normal subgroup, since gzg−1 = gg−1z = z.

Let the center of GLn(q) be Z, which consists of all scalar matrices, which are of the form
λIn where λ ∈ F×

q and In is the n× n identity matrix.

Proposition 4.4. Given that Z consists of scalar matricies, Z is a cyclic group of order
q − 1.

Proof. Consider the isomorphism ϕ : Z → F×
q defined by λIn 7→ λ. It has inverse ϕ−1 : F×

q →
Z defined by λ 7→ λIn, so it is a bijection. Given any λ1, λ2 ∈ F×

q , we have that

ϕ(λ1Inλ2In) = ϕ(λ1λ2In) = λ1λ2.

We also have

ϕ(λ1Inλ2In) = ϕ(λ1In)ϕ(λ2In) = λ1λ2.

Thus ϕ is an isomorphism. Since F×
q is cyclic and of order q − 1, so is Z.

If we take the quotient GLn(q)/Z, we get the Projective General Linear group, PGLn(q).
We can get another important group by constructing a homomorphism ϕ : GLn(q) → F×

q by
ϕ(A) 7→ det(A), since det(AB) = det(A) det(B).

Definition 4.5. The kernel of ϕ as described above, which consists of matrices with deter-
minant 1, is called the Special Linear Group SLn(q).

The center of SLn(q), which we will call SZ3, also consists of scalar matrices. However,
λn = 1 so that det(λIn) = 1.

Definition 4.6. Similar to GLn(q), we take the quotient SLn(q)/SZ to get the Projective
Special Linear group, PSLn(q). As we will prove later, PSLn(q) is simple and is one of the
16 infinite families of simple finite groups of Lie Type.

3This notation is often used for the Suzuki groups rather than the center of SLn(q).
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4.2. Orders of the Linear Groups. Knowing the orders of groups is important for under-
standing their structure; Lagrange’s theorem and the Sylow theorems provide us information
about subgroups of a group based on just the factorization of a group’s order. In the case
of the linear groups we discussed above, we can write the orders with nice formulas with
combinatorial proofs.

Theorem 4.7. The order of GLn(q) is as follows:

|GLn(q)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1).

Proof. Since the matrix is invertible, its columns must be linearly independent (which re-
quires all columns to have at least 1 nonzero entry). We have n entries in the first column,
so there are qn total possibilities, but we must subtract 1 to avoid the case where all entries
are 0. The second column cannot be one of the q multiples of the first, so there are qn − q
possibilities. In general, the first i (linearly independent) columns form the basis of an i-
dimensional subspace, which contains qi elements, so we must subtract these from our qn

possibility for the i+ 1th column, resulting in the above formula.

Corollary 4.8. The order of PGLn(q) follows easily as |PGLn(q)| = 1
q−1

|GLn(q)|.

Proof. Since PGLn(q) = GLn(q)/Z, we have |PGLn(q)| = 1
|Z| |GLn(q)| by Corollary 2.8,

which is equal to | 1
q−1

||GLn(q)|, as desired.

Theorem 4.9. The order of SLn(q) is as follows:

|SLn(q)| =
1

q
|GLn(q)|.

Proof. To show this, we show that each set

Gm = {A ∈ GLn(q) : det(A) = m}
has the same order for all m ∈ F×

q . Note that G1 = SLn(q). We create a bijection

ϕm : SLn(q) → Gm

where ϕm(A) multiplies the first column of A by m, so that ϕm(A) has determinant m. We
have

ϕ−1
m : Gm → SLn(q)

where ϕ−1
m (A) multiplies the first column of A by m−1 so ϕ is invertable and therefore a

bijection. We simultaneously bijected SLn(q) = G1 to all q − 1 sets Gm, which partition
GLn(q). Thus,

|SLn(q)| =
1

q
|GLn(q)|.

We can also define analogues of the linear groups that contain linear transformations as
elements rather than matrices.

Definition 4.10. Given a vector space V , we define:

(1) GL(V ) is the group of all linear transformations of V with nonzero determainant.
(2) PGL(V ) is GL(V )/Z(GL(V ).
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(3) SL(V ) is the group of all linear transformations with determainant 1, and can also
be defined as the kernel of the linear functional det : GL(V ) → F×, where F is the
base field of V .

(4) PSL(V ) is SL(v)/SZ(V ), where SZ(V ) is the center of SL(V ).

All of these are isomorphic to their matrix analogues; we can define the isomorphism
by choosing a basis of V and writing each linear transformation as a matrix relative to
this basis. This allows us to work directly with linear transformations to prove properties
about the linear groups; we can (and we will) prove that PSL(V ) is simple, and since
PSLn(q) ∼= PSL(V ), PSLn(q) is simple.

4.3. Simplicity of PSLn(q).

Definition 4.11. A hyperplane H of an n-dimensional vector space is an n− 1 dimensional
subspace.

Definition 4.12. Given two subspaces G,H of a vector space V , H+G is the span of G∪H.

Lemma 4.13. Given two hyperplanes, H1, H2 of a vector space V of dimension n where
n ≥ 3, H1 ∩H2 ̸= {0}.
Proof. We prove this by showing that dim(H1 ∩ H2) = n − 2, which is not {0} as long as
n ≥ 3. First, let K = {h1, . . . , hk} be a basis of H1 ∩ H2 (we leave this basis empty if
H ∩ G = {0}. We can extend this basis to bases of H1 and H2, respectively by adjoining
n− 1− dim(H1 ∩H2) (non-arbitrary) vectors to K. Call these bases K1 and K2, where Ki

is a basis of Hi. If we take {v ∈ K1 : v ̸∈ K} ∪ {v ∈ K2 : v ̸∈ K} ∪ K, we get a basis of
H1 +H2 = V , which must have n elements. This gives us

n = 2(n− 1− dim(H1 ∩H2)) + dim(H1 ∩H2)

n = 2n− 2− dim(H1 ∩H2)

dim(H1 ∩H2) = n− 2,

as desired.

Definition 4.14. A transvection T is a linear transformation of a vector space V that fixes
a hyperplane H of V , has determinant 1 and is not the identity. A transvection matrix is a
matrix that corresponds to some transvection.

Lemma 4.15. Any transvection T of an n ≥ 2-dimensional vector space V can be written
as a matrix of the following form:

Jn =


1 0 0 · · · 0
1 1 0 · · · 0

0 0
. . .

... 0
...

... . . . 1 0
0 0 0 0 1

 .
Proof. Since T is a transvection, some hyperplane, H must be fixed. For any w ̸∈ H, we can
write Tw as µw+h, where h ∈ H and µ ∈ F×

q , since we can create a basis of V by adding w
to a basis of H. We then write Tw as a linear combination of this basis, which gives us µw
plus some linear combination of a basis of H, which must be an element of H. Now, consider
the matrix of T over the ordered basis (w, h, h3, h4, . . . , hn) where h = Tw − µw. Only the
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first column would differ from the identity matrix, since w is the only basis element that is
not preserved by T , and since Tw = µw + h, the first row would contain µ and the second
row would contain 1. We know that T has determinant 1, so µ must be 1.

Since our proof used arbitrary w ̸∈ H, we have that for all w ̸∈ H, Tw = w + h for some
h ∈ H, since µ = det(T ) = 1.

Let T be a transvection that fixes the hyperplane H in the vector space V , then for all
w ̸∈ H, T (w) = w+ h for some h ∈ H. For all v ∈ V , then v = λw+ h′ for some λ ∈ Fq and
h′ ∈ H, since H ∪ {w} spans V . Since T fixes H

T (v) = λT (w) + T (h′) = λ(w + h) + h′ = λw + h′ + λh = v + λh.

The function ϕ : V → Fq defined by ϕ(v) = ϕ(λw + h) = λ is a linear functional.

Definition 4.16. A linear functional is a function f : V → F that satisfies the following
properties:

(1) f(v + w) = f(v) + f(w) for all v, w ∈ V , and
(2) f(αv) = αf(v) for all v ∈ V and all α ∈ F

The function ϕ is a linear functional since

ϕ(µ(λw + h)) = ϕ(µλw + µh) = µλ

since µh ∈ H, and

ϕ(λw + h+ µw + h′) = ϕ((µ+ λ)w + h′′) = µ+ λ.

We can construct such a linear functional ϕ and find a vector h ∈ kerϕ = H for all transvec-
tions T , allowing us to write T (v) = v + ϕ(v)h for all v ∈ V .
This gives us an alternate way to write transvections; we can write them as as {ϕ, h} :

V → V defined by
{ϕ, h} : v 7→ v + ϕ(v)h.

Corollary 4.17. All transvection matrices in GLn(q) are conjugate, or equivalently, all
transvection matrices are similar.

Proof. Since all transvections can be written as some Jn, all transvection matrices must be

similar to some Jn, and therefore all transvection matrices are conjugate in GLn(q).

Lemma 4.18. All transvections in SL(V ) are conjugate if the n ≥ 3.

Proof. We start by proving the equivalent statement for linear transformations rather than
matrices, then choosing a basis of V to convert back to matrices. Let TH = {ϕ, h} and
TL = {ψ, l} be transvections that fix the hyperplanes H = kerϕ and L = kerψ, respectively.
Now, we can choose vectors v, u ∈ V where ϕ(v) = 1 and ψ(u) = 1 (so v ̸∈ H and u ̸∈ L).
We can create the bases

{h, h2, . . . , hn−1}
of H, and

{l, l2, . . . , ln−1}
for L, then adjoin v and u to create the bases of V :

{v, h, h2, . . . , hn−1}
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and

{u, l, l2, . . . , ln−1}
We define S to be a linear transformation that maps the first of these ordered bases of V to
the second, which means S(v) = u, S(H) = L and S(h) = l.

We call the determinate of S d, and we now will create a new matrix S1 that has determi-
nant 1 and shares other properties with S. Our first basis of V has some vector, say hn−1,
that is not v or h, since n ≥ 3. We construct S1 the same we we construct S, except we have
S1(hn−1) = d−1ln−1. If we consider the matrices of S1 and S relative to {v, h, h2, . . . , hn−1},
we obtain S1 by multiplying the last column of S by d−1, which means det(S1) = 1.

Now, consider the linear transformation S1THS
−1
1 on the basis {u, l, l2, . . . , ln−1}. First

applying S−1
1 , we get the basis {v, h, h2, . . . , dhn−1}. Applying TH to this result preserves all

elements of the basis except for v, and we know

TH(v) = v + ϕ(v)h = v + h,

so

S(TH(v)) = S1(v) + ϕ(v)S1(h) = S1(v) + S1(h) = u+ l.

Taking S1 of {h, h2, . . . , dhn−1} results in {l, l2, . . . , ln−1}, so S1THS
−1
1 preserves L and maps

u to u+ l. Now, we apply TL to the basis {u, l, l2, . . . , ln−1}, which also preserves L, and we
know ψ(u) = 1 so TL(u) = u+ψ(u)l = u+ l. The result of applying S1THS

−1
1 is identical to

T2 on the basis {u, l, l2, . . . , ln−1}, so, they must be equal.
Now, we consider these transformations as matrices relative to an arbitrary basis of V ;

since S1 as a transformation has determinant 1, the matrix corresponding to S1 is in SLn(q)
(the same is true for S−1

1 ). Thus, the transvection matrices corresponding to T1 and T2
relative to a (fixed) arbitrary basis are conjugate in SLn(q), so all transvection matrices are

conjugate in SLn(q).

Lemma 4.19. The group SLn(q) is generated by transvection matrices.

Proof. We show that all matrices generated by taking the identity matrix, and replacing
one of the zero entries with some non-zero entry λ ∈ F×

q are transvection matrices, then
show that these generate SLn(q). Suppose λ is in row r, column c of the matrix. Then,
we can modify the construction in the proof of lemma 4.15. Take the basis we constructed,
(w, h, h3, h4, . . . , hn), and replace h with h′ = h/λ. We get Tw = w + h = w + λh′, so
instead of a 1 in the second row of the first column, we have a λ. Now, we reorder this
basis so that w is in the cth position and h′ is in the rth position, which moves λ to column
c, row r, as desired. We call a matrix of this form an elementary transvection matrix.
Multiplying some A ∈ GLn(q) by an elementary transvection matrix with λ in column c and
row r Multiplication by each elementary transvection matrix corresponds to taking some
row ri and adding λrj to it, where rj is another row. This means we can decompose a
matrix A ∈ SLn(q) into elementary transvections by reducing it to the identity and using
the row operations needed to do so to construct a product of transvections. Gauss - Jordan
Elimination states that all invertible matrices of determinant 1 can be reduced only using
these operations, and invertible matrices of determinant ̸= 1 require a row scaling operation
as well. For the proof of Gauss-Jordan Elimination, see [Rot95, Lemmas 8.7 and 8.8]. Since
all A ∈ SLn(q) can be reduced, we can write each A as a product of elementary transvection

matrices, as desired.
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Definition 4.20. Let H be a hyperplane of the vector space V , then

T (H) = {all transvections fixing H} ∪ {IV }.

Lemma 4.21. The set of transformations in SL(V ) that commute with all elements of T (H)
is {sT : s ∈ SZ(V ), T ∈ T (H)}.

The proof of this can be found in [Rot95, Lemma 8.22]

Theorem 4.22 (Jordan-Dickson). If V is vector space of dimension n ≥ 3 over a field F ,
then PSL(V ) is simple.

Proof. SupposeN is a normal subgroup of SL(V ) that contains a transformation A ̸∈ SZ(V ),
then we will show that N = SL(V ). This implies that there are no normal subgroups of
SL(V ) that are not contained in SZ(V ), or is SL(V ) itself, which by the fourth isomorphism
theorem implies that PSL(V ) is simple. A proof of the fourth isomorphism theorem can be
found in [DF04].

Since all transvections are conjugate in SL(V ), any normal subgroup of SL(V ) containing
a transvection must contain all transvections. Transvections generate SL(V ), so the only
normal subgroup of SL(V ) that contains a transvection is SL(V ). This means we only need
to show that N containing A ̸∈ SZ(V ) implies N contains a transvection.
We claim there must be a transvection T that does not commute with A. Suppose all

transvections commuted with A, then given any g ∈ SL(V ), we can decompose g into
a product of transvections t1t2 . . . tx and get that t1t2 . . . txA = t1t2 . . . tx−1At1. We can
continue this process to commute each ti getting that t1t2 . . . txA = At1t2 . . . tx. This implies
A ∈ SZ(V ), which is a contradiction.

Therefore, we have that
B = T−1A−1TA ̸= 1,

and since
BA−1 = T−1A−1T ∈ N,

B ∈ N given that N is a normal subgroup of SL(V ). Also,

B = T−1(A−1TA) = T1T2,

where each Ti is a transvection. Let Ti = {ϕi, hi}, where hi ∈ Hi = kerϕi for i = 1, 2, so

Ti(v) = v + ϕi(v)hi

for all v ∈ V .
Let W = ⟨h1, h2⟩ ≤ V , so the dimension of dimW ≤ 2. There must be a hyperplane, L of

V that contains W since dimV ≥ 3. Now, we will show that B(L) is a subspace of L. Let
l ∈ L, then

B(l) = T1T1(l) = T2(l) + ϕ1(T2(l))h2

= l + ϕ2(l)h2 + ϕ1(T2(l))h1 = l + λ1h2 + λ2h2 ∈ L

where λ1, λ2 ∈ F×, so we have a linear combination of elements of L, which must be in L.
Now, we show that H1∩H2 ̸= 0. By lemma 4.13, dim(H1∩H2) = n−2 ≥ 1. Let z ∈ H1∩H2

such that z ̸= 0, then we have
B(z) = T1T2(z) = z.

We assume B is not a transvection (otherwise we would be done), so B ̸∈ T (L), which
contains only transvections and the identity. Suppose B = αS where α is a scalar and
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S ∈ T (L). We have that αSz = Bz = z, so Sz = α−1z, and since Sz = z + ϕS(z)l = α−1z
for some l ∈ L, ϕS(z)l and therefore l must be a multiple of z or ϕS(z) = 0. Both cases
imply z ∈ L, which means α = 1 so S = B, which is a contradiction.
By lemma 4.21, there exists some element U ∈ T (L) that does not commute with B. Let

C = UBU−1B−1 ̸= 1.

Then UBU−1 ∈ N , so
C = (UBU−1)B−1 ∈ N.

Now, we show that C is a transvection. Let l ∈ L be arbitrary, then

C(l) = UBU−1B(l) = UBB−1(l) = l,

since B−1(l) ∈ L, and U−1 fixes L, which means C fixes L. Since B,U ∈ SL(V ), det(C) =
det(UBU−1B) = 1, so C is a transvection. Therefore N = SL(V ), which completes our

proof.

5. Other Classical Groups

We will briefly construct two other families of groups of lie type; the Symplectic and
Unitary groups, however we will not go over their simplicity proofs. For more details, about
the classical groups, see [Rot95, Chapter 8].

Definition 5.1. Let V be a vector space over F, then we call a function f : V × V → F a
bilinear form if it satisfies the following properties:

(1) f(u+ v, w) = f(u,w) + f(v, w)
(2) f(u, v + w) = f(u, v) + f(u,w)
(3) f(αu, v) = f(u, αv) = αf(u, v).

An equivalent definition is that f(v, ) : V → F and f( , v) : V → F are both linear
functionals. We call a bilinear form f symmetric if f(v, u) = f(u, v) for all u, v ∈ V , and we
call it alternating if f(v, v) = 0 for all v ∈ V .
The vector dot product defined on Rn is a symmetric form. Let f be an alternating bilinear

form and u, v ∈ V , then

0 = f(u+ v, u+ v)

= f(u, u) + f(u, v) + f(v, u) + f(v, v)

= f(u, v) + f(v, u)

f(u, v) = −f(v, u).
If f is a bilinear form such that f(v, u) = −f(u, v), then if F has characteristic 2, f is
symmetric, since a + a = 2a = 0, so a = −a for all a ∈ F. If F has characteristic ̸= 2, then
F is alternating. In both cases, 2f(v, v) = 0.

Definition 5.2. Suppose F has an automorphism σ (denoted by σ : α 7→ ασ) of order 2,
that is σ = σ−1. A hermitian form (sometimes called a sesquilinear form) on a vector space
V over F is a function h : V × V → F that has the following properties for all u, v ∈ V and
all α ∈ F.

(1) h(u, v) = h(v, u)σ

(2) h(αu, v) = αh(u, v)
(3) h(u+ v, w) = h(u,w) + h(v, w).
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If h is hermitian, then

h(u, αu) = h(αv, u)σ = (αh(v, u))σ = ασh(v, u)σ = ασh(u, v),

since σ is its own inverse. Also,

h(u, v + w) = h(v + w, u)σ = (h(v, u) + h(w, u))σ = h(v, u)σ + h(w, u)σ = h(u, v) + h(u,w),

so h satisfies additivity with its second variable.

Definition 5.3. An inner product space (V, f) is a vector space V paired with a function
f : V × V → F that is either a symmetric, alternating or hermitian form.

Definition 5.4. Let (V, f) be an inner product space, and let {v1, . . . , vn} be a basis of V ,
then inner product matrix of f with respect to this basis is the matrix where the entry on
the ith row and jth column is f(vi, vj).

Inner product matrices uniquely determine f with a given basis. We call an inner product
space nondegenerate if its the inner product matrices for that space have nonzero determi-
nant.

Definition 5.5. We call a linear transformation T : V → V of a nondegenerate space (V, f)
an isometry if it preserves the form f , that is for all u, v ∈ V ,

f(Tu, Tv) = f(u, v).

Proposition 5.6. All the isometries of the nondegenerate space (V, f) form a group, Isom(V, f),
which is a subgroup of GL(V ).

Proof. First, we show that all elements of Isom(V, f) have nonzero determinant. Let T be
an isometry; if Tu = 0, then we have that f(u, v) = f(Tu, Tv) = f(0, T v) = 0 for all v ∈ V .
Now, suppose u is nonzero and we construct a basis of V with u as the first element of
it. From the definition of an inner product matrix, the entire first row and first column
would be zero, which results in a matrix of determinant 0. This contradicts (V, f) being
nondegenerate, so u = 0, and therefore kerT = 0, which means V ∼= V/{0} ∼= ImV if we
consider V as an abelian group. The isomorphism would be T , and therefore T is a bijection,
which means its invertible and has nonzero determinant.

To check closure, let T and M be isometries, then f(u, v) = f(Tu, Tv) = f(MTu,MTv)
for all u, v ∈ V , so MT is an isometry. The identity is clearly an isometry, and if f(u, v) =
f(Tu, Tv) for all u, v ∈ V , f(T−1u, T−1v) must equal f(u, v) since we can take f(TT−1u, TT−1v) =

f(u, v) and applying T preserves f .

We can obtain more classical groups, and then construct more simple finite groups of Lie
type from isometry groups.

Definition 5.7. Given a nondegenerate space (V, f), there is one isometry group up to
isomorphism Isom(V, f) for all alternating forms f , and we call this the symplectic group
Sp(V ) or Spn(q).

Definition 5.8. Similarly, the isometry groups for all hermitian forms are isomorphic, and
we call Isom(V, f) when f is hermitian the unitary group, U(V ) or Un(q

2) (since hermitian
forms are only defined on fields where the order is a perfect square).
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Each of these classical groups allows us to construct a family of simple groups. We can
define

PSp2l(q) = Sp2l(q)/Z(Sp2l(q))

where Z(Sp2l(q)) is the center of Sp2l(q). These are simple with the exceptions: (2l, q) =
(2, 2), (2, 3), (4, 2). For the unitary groups, we take SUn(q

2), which is the subgroup of ele-
ments of the unitary group that has determinant 1, and we quotient by its center to get

SUn(q
2)/Z(SUn(q

2)) = PSUn(q
2),

which are simple groups unless (n, q2) = (2, 4), (2, 9), (3, 4)
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