Diophantine Tuples and Baker's Theorem

Quincy Nash

July 15, 2025

What is a Diophantine Tuple?

▶ A Diophantine D(1)-tuple is a set of positive integers $\{a_1, a_2, \dots, a_k\}$ such that for all $i \neq j$,

$$a_i a_j + 1$$
 is a perfect square.

- **Example:** $\{1, 3, 8, 120\}$ is a D(1)-quadruple.
- Natural question: can we extend $\{1, 3, 8, 120\}$ to a quintuple?

Our Goal

- Show that if $\{1,3,8,d\}$ is a D(1)-quadruple, then d=120 is the only possibility.
- Approach:
 - Translate to equations involving squares.
 - Use Pell-type equations to parametrize solutions.
 - Apply transcendence theory (Baker's theorem) to bound possible solutions.
 - Final finite check confirms only d = 120.

System of Equations for $\{1, 3, 8, d\}$

We require integers x, y, z, d such that:

$$d+1=x^2$$
, $3d+1=y^2$, $8d+1=z^2$.

From the first two equations:

$$3x^2 - y^2 = 2.$$

From the first and third:

$$z^2 - 8x^2 = -7$$
.

We want to find all integers x, y, z satisfying these simultaneously.

Definition: Pell Equation and Norm

Definition (Pell Equation)

A Pell equation is a Diophantine equation

$$x^2 - D y^2 = N,$$

where D > 0 is a fixed non-square integer and $N \in \mathbb{Z}$.

Definition (Norm)

For $\alpha = x + y\sqrt{D} \in \mathbb{Q}(\sqrt{D})$, the *norm* is

$$Norm(\alpha) = x^2 - D y^2.$$

Fundamental Solution and Generating All Solutions

Definition (Fundamental Solution)

The fundamental solution of

$$x^2 - D y^2 = 1$$

is the least positive integer pair (x_1, y_1) . The element

$$\varepsilon = x_1 + y_1 \sqrt{D}$$

is called the fundamental unit.

Definition (Generating Solutions)

If $\alpha_0 = x_0 + y_0 \sqrt{D}$ satisfies Norm(α_0) = N, then all integer solutions to

$$x^2 - D y^2 = N$$

are given by

$$x_n + y_n \sqrt{D} = \alpha_0 \varepsilon^n, \quad n \in \mathbb{Z}.$$

Pell Equation 1: $3x^2 - y^2 = 2$

- ► Rewrite as $y^2 3x^2 = -2$.
- Fundamental solution: $(y_1, x_1) = (2, 1)$.
- ▶ Fundamental unit in $\mathbb{Q}(\sqrt{3})$:

$$\varepsilon = 2 + \sqrt{3}$$
.

All solutions given by:

$$\alpha_n = y_n + x_n \sqrt{3} = (1 + \sqrt{3})\varepsilon^n.$$

$$x_n = \frac{\alpha_n - \overline{\alpha_n}}{2\sqrt{3}} = \frac{(1 + \sqrt{3})\varepsilon^n - (1 - \sqrt{3})\varepsilon^{-n}}{2\sqrt{3}}$$
$$y_n = \frac{\alpha_n + \overline{\alpha_n}}{2} = \frac{(1 + \sqrt{3})\varepsilon^n + (1 - \sqrt{3})\varepsilon^{-n}}{2}.$$

Pell Equation 2: $z^2 - 8x^2 = -7$

- Fundamental solution: $(z_1, x_1) = (3, 1)$.
- Fundamental unit in $\mathbb{Q}(\sqrt{8})$:

$$\eta = 3 + \sqrt{8}.$$

All solutions given by:

$$\alpha_m = z_m + x_m \sqrt{8} = (1 + \sqrt{8})\eta^m.$$

$$\begin{split} x_m &= \frac{\beta_m - \overline{\beta_m}}{2\sqrt{8}} = \frac{(1 + \sqrt{8})\eta^m - (1 - \sqrt{8})\eta^{-m}}{2\sqrt{8}} \\ z_m &= \frac{\beta_m + \overline{\beta_m}}{2} = \frac{(1 + \sqrt{8})\eta^m + (1 - \sqrt{8})\eta^{-m}}{2} \end{split}$$

Matching the Two Parametrizations

To have a common x, we require:

$$x_n = x_m$$

where

$$x_n = \frac{A\,\varepsilon^n - A'\,\varepsilon^{-n}}{C}, \qquad x_m = \frac{B\,\eta^m - B'\,\eta^{-m}}{D},$$

with

$$A = 1 + \sqrt{3}, \quad A' = 1 - \sqrt{3}, \quad C = 2\sqrt{3},$$
 $B = 1 + \sqrt{8}, \quad B' = 1 - \sqrt{8}, \quad D = 2\sqrt{8}.$

Multiplying both sides by CD gives

$$D(A\varepsilon^{n} - A'\varepsilon^{-n}) = C(B\eta^{m} - B'\eta^{-m}).$$

Matching Dominant Terms in $x_n = x_m$

We begin with:

$$x_n = x_m \implies \frac{A \varepsilon^n - A' \varepsilon^{-n}}{C} = \frac{B \eta^m - B' \eta^{-m}}{D},$$

where

$$arepsilon = 2 + \sqrt{3}, \quad A = 1 + \sqrt{3}, \quad A' = 1 - \sqrt{3}, \quad C = 2\sqrt{3}, \ \eta = 3 + \sqrt{8}, \quad B = 1 + \sqrt{8}, \quad B' = 1 - \sqrt{8}, \quad D = 2\sqrt{8}.$$

Multiply both sides by CD and isolate dominant terms:

$$D A \varepsilon^{n} = C B \eta^{m} + \underbrace{D A' \varepsilon^{-n} - C B' \eta^{-m}}_{\text{small error}}.$$

Divide by $CB \eta^m$:

$$\frac{DA}{CR} \frac{\varepsilon^n}{n^m} = 1 + \delta, \quad \delta \ll \varepsilon^{-n} - \eta^{-m}.$$

Defining the Key Linear Form Λ

Taking logarithms:

$$\Lambda := n \log \varepsilon - m \log \eta + \log \left(\frac{DA}{CB} \right) = \log(1 + \delta).$$

Since $\delta \ll \varepsilon^{-n} - \eta^{-m}$, and $\log(1+\delta) \approx \delta$ for small δ , we have:

$$|\Lambda| \approx |\delta| \ll \max(\varepsilon^{-n}, \eta^{-m}).$$

Why define Λ ?

- ▶ We will apply Baker's theorem to get a lower bound on $|\Lambda|$ that depends only on n, m.
- ▶ Combined with the above upper bound, this forces (n, m) into a finite range.

Degree and Absolute Logarithmic Height

Definition (Degree)

Let α be an algebraic number. Its *degree* d is the degree of its minimal polynomial over \mathbb{Q} .

Definition (Absolute Logarithmic Height)

Let α be an algebraic number of degree d with conjugates $\alpha_1, \ldots, \alpha_d$ and minimal polynomial $a_d x^d + \cdots + a_0 \in \mathbb{Z}[x]$. Then:

$$h(\alpha) = \frac{1}{d} \left(\log |a_d| + \sum_{i=1}^d \log \max\{1, |\alpha_i|\} \right).$$

Baker's Theorem (Matveev's Version for Two Logarithms)

- ▶ Let $\Lambda = b_1 \log \alpha_1 + b_2 \log \alpha_2 \neq 0$, where:
 - $ightharpoonup lpha_1, lpha_2$ are nonzero algebraic numbers in a number field of degree D.
 - ▶ $b_1, b_2 \in \mathbb{Z}$, not both zero.
- ► Define:

$$A_i \geq \max\{D \cdot h(\alpha_i), |\log \alpha_i|, 0.16\}, \quad B = \max\{|b_1|, |b_2|, 3\}.$$

Then:

$$|\Lambda| > \exp(-C_0 \cdot D^2 \cdot A_1 \cdot A_2 \cdot \log B),$$

where $C_0 = 1.13 \times 10^9$ is an explicit constant.

Applying Baker's Theorem to the Linear Form Λ

Recall the linear form:

$$\Lambda := n \log \varepsilon - m \log \eta + \log \left(\frac{DA}{CB}\right),\,$$

where

$$\varepsilon = 2 + \sqrt{3}, \quad \eta = 3 + \sqrt{8},$$

and

$$A = 1 + \sqrt{3}, \quad C = 2\sqrt{3},$$

 $B = 1 + \sqrt{8}, \quad D = 2\sqrt{8}.$

By Baker's theorem:

$$|\Lambda| > \exp(-C^* \log \max\{n, m\}).$$

► From the Diophantine equation and the small error term, we also have

$$|\Lambda| \ll \max\left(\varepsilon^{-n}, \eta^{-m}\right)$$
.

Combining bounds on $|\Lambda|$ yields an explicit finite bound on $n, m < 10^{10}$

Refinement: Baker-Davenport Lemma

- ▶ Baker's theorem shows too many (n, m) to check
- ▶ Baker–Davenport lemma refines this using continued fractions to reduce the search drastically.
- Let $\theta = \frac{\log \varepsilon}{\log \eta}$, and let $\frac{p_k}{q_k}$ be the *k*-th convergent in the continued fraction expansion of θ .
- ▶ If there is a rational approximation $\frac{p}{q}$ with

$$\left|\theta - \frac{p}{q}\right| < \frac{1}{2q^2}$$

and the denominator $q > 6q_k$, then q must be equal to either q_{k+1} or q_{k+2} .

- Thus, to find all good approximations with denominator up to some bound, it suffices to check only convergents and their immediate successors.
- ▶ This drastically reduces the candidates for (n, m).

Final Check

- \triangleright Exhaust all small n, m and check convergents near θ .
- Only solution satisfying both parametrizations:

$$x = 11 \implies d = x^2 - 1 = 120.$$

► Therefore, the only extension of $\{1,3,8\}$ to a Diophantine quadruple is with d=120.

Extensions to D(n) and Known Results

Definition (D(n)-tuple)

A set of distinct positive integers $\{a_1, a_2, \dots, a_k\}$ is called a D(n)-tuple if

 $a_i a_j + n$ is a perfect square for all $i \neq j$.

- D(1)-quintuples do not exist (He, Togbé, Ziegler, 2019).
- For general *n*, the situation is more flexible:
 - ▶ (Dujella) If $n \not\equiv 2 \pmod{4}$ and $n \not\in \{-4, -3, -1, 3, 5, 8, 12, 20\}$, then there exists at least one D(n)-quadruple.
 - For some n, D(n)-quintuples and even sextuples are known such as (99, 315, 9920, 32768, 44460, 19534284) is a $D(2985984 = 2^{12}3^6)$ -sextuple (Gibbs)
- lacktriangle Diophantine tuples can also be studied over $\mathbb Q$

