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What is a Diophantine Tuple?

» A Diophantine D(1)-tuple is a set of positive integers
{a1,a2,...,ak} such that for all i # j,

ajaj +1 s a perfect square.

» Example: {1,3,8,120} is a D(1)-quadruple.
» Natural question: can we extend {1,3,8,120} to a quintuple?



Our Goal

» Show that if {1,3,8,d} is a D(1)-quadruple, then d =120 is
the only possibility.
» Approach:
» Translate to equations involving squares.
» Use Pell-type equations to parametrize solutions.
> Apply transcendence theory (Baker's theorem) to bound
possible solutions.
» Final finite check confirms only d = 120.



System of Equations for {1,3,8,d}

We require integers x, y, z, d such that:
d+1=x% 3d+1=y% 8d+1=2z°
From the first two equations:
3x2 —y? =2.
From the first and third:
22 —8x% = —7.

We want to find all integers x, y, z satisfying these simultaneously.



Definition: Pell Equation and Norm

Definition (Pell Equation)

A Pell equation is a Diophantine equation
x> —Dy? =N,
where D > 0 is a fixed non-square integer and N € Z.

Definition (Norm)
For a = x+ yvD € Q(\m) the norm is

Norm(a) = x% — D y2.



Fundamental Solution and Generating All Solutions

Definition (Fundamental Solution)
The fundamental solution of

x>—Dy*=1

is the least positive integer pair (x1,y1). The element
E=x1+ ylxﬁD

is called the fundamental unit.

Definition (Generating Solutions)

If g = xo0 + yoV/D satisfies Norm(cag) = N, then all integer
solutions to
x>—Dy*>=N

are given by
Xn+ ynV'D = age", ne.



Pell Equation 1: 3x% — y? = 2

> Rewrite as y? — 3x% = —2.
» Fundamental solution: (y1,x1) = (2,1).
> Fundamental unit in Q(v/3):

6:2+\/§.

» All solutions given by:

op = _yn + Xn\/g — (1 + \/g)En.

an—a, (1+v3)e"—(1—-+3)e"

Xn: =

2V3 2V3

an+ta@n  (1+V3)e"+(1—+3)e"
Yn = 5 = 5 .




Pell Equation 2: z> — 8x?> = —7
» Fundamental solution: (z1,x1) = (3,1).
» Fundamental unit in Q(+/8):
n=3+8.
> All solutions given by:

Qm = Zm + xm\/§ = (1 + \/g)nm'

=T _ (14 VB = (= By

Xm =

238 /8
_ B+ B _ (L VBT + (1 VB

Zm > .



Matching the Two Parametrizations

To have a common x, we require:
Xp = Xm,

where
« _Agn_Alg—n _ Bnm_B/n—m
n — C )
with
A=1++V3, A=1-V3, (=23
B=1+v8, B =1-+8, D=2/8.

Multiplying both sides by CD gives

D(Ae" — A'e™™) = C(Bn™— B'n~™).



Matching Dominant Terms in x, = x,
We begin with:
A6n—A,5_n _ Bnm_ B/n—m
C N D ’

Xn = Xm

where

e=2++V3, A=1++3, A=1-V3 C=2/3,
n=3+v8, B=1++8 B =1-+8, D=2V8.

Multiply both sides by CD and isolate dominant terms:

DAe"=CBn™ + DA " — CB' 'y~ ™.

small error

Divide by CBn™:

DA e"
— — =146, 0 M,
CB 77 + o, <K& n



Defining the Key Linear Form A

Taking logarithms:

DA
A := nloge — mlogn + log (CB> = log(1 + ¢).

Since 6 < 7" —n~™, and log(1 + J) =~ 0 for small §, we have:

A = 0] < max(e™",n~™).

Why define A?
» We will apply Baker's theorem to get a lower bound on |A]
that depends only on n, m.

» Combined with the above upper bound, this forces (n, m) into
a finite range.



Degree and Absolute Logarithmic Height

Definition (Degree)
Let o be an algebraic number. Its degree d is the degree of its
minimal polynomial over Q.

Definition (Absolute Logarithmic Height)

Let « be an algebraic number of degree d with conjugates
a1,...,aq and minimal polynomial agx? 4 - -- 4 ag € Z[x]. Then:

d
h(a) = % (Iog lag| + Z log max{1, ]a,-|}> :

i=1



Baker's Theorem (Matveev's Version for Two Logarithms)

» Let A = by loga; + by logas # 0, where:
» 1, are nonzero algebraic numbers in a number field of

degree D.
» by, by € Z, not both zero.

» Define:
Ai > max{D - h(«j), |loga;|, 0.16}, B = max{|b1], |b2],3}.

» Then:
N > exp(—Co-D?- Ay Ay -log B),

where Gy = 1.13 x 109 is an explicit constant.



Applying Baker's Theorem to the Linear Form A

» Recall the linear form:

A :=nlo mlogn + lo DA
= ge gn g B’
where
e=2+V3, n=3+8,

and
A=14++V3, C=2/3,

B=1++8, D=2V8.
> By Baker's theorem:
|A] > exp(—C* log max{n, m}).

» From the Diophantine equation and the small error term, we
also have
Al < max (e7",n~"™).
» Combining bounds on |A| yields an explicit finite bound on
n,m < 1010



Refinement: Baker—Davenport Lemma

| 2
| 2

Baker's theorem shows too many (n, m) to check
Baker—Davenport lemma refines this using continued fractions
to reduce the search drastically.

Let 0 = I'ggf? and let 25 be the k-th convergent in the

continued fraction expansion of 6.

If there is a rational approximation g with

and the denominator g > 6qx, then g must be equal to either
Qk+41 OF Qk4-2-

Thus, to find all good approximations with denominator up to
some bound, it suffices to check only convergents and their
immediate successors.

This drastically reduces the candidates for (n, m).



Final Check

» Exhaust all small n, m and check convergents near 6.

» Only solution satisfying both parametrizations:
x=11 = d=x*-1=120.

» Therefore, the only extension of {1,3,8} to a
Diophantine quadruple is with d = 120.



Extensions to D(n) and Known Results

Definition (D(n)-tuple)

A set of distinct positive integers {ai, az,...,ax} is called a
D(n)-tuple if

ajaj + n is a perfect square for all i # j.

» D(1)-quintuples do not exist (He, Togbé, Ziegler, 2019).
» For general n, the situation is more flexible:
» (Dujella) If n#£ 2 (mod 4) and
n¢ {—4,-3,-1,3,5,8,12,20}, then there exists at least one
D(n)-quadruple.
» For some n, D(n)-quintuples and even sextuples are known
such as (99, 315, 9920, 32768, 44460, 10534284) is a
D(2985984 = 2123%)-sextuple (Gibbs)

» Diophantine tuples can also be studied over Q



