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What is a Diophantine Tuple?

▶ A Diophantine D(1)-tuple is a set of positive integers
{a1, a2, . . . , ak} such that for all i ̸= j ,

aiaj + 1 is a perfect square.

▶ Example: {1, 3, 8, 120} is a D(1)-quadruple.

▶ Natural question: can we extend {1, 3, 8, 120} to a quintuple?



Our Goal

▶ Show that if {1, 3, 8, d} is a D(1)-quadruple, then d = 120 is
the only possibility.

▶ Approach:
▶ Translate to equations involving squares.
▶ Use Pell-type equations to parametrize solutions.
▶ Apply transcendence theory (Baker’s theorem) to bound

possible solutions.
▶ Final finite check confirms only d = 120.



System of Equations for {1, 3, 8, d}

We require integers x , y , z , d such that:

d + 1 = x2, 3d + 1 = y2, 8d + 1 = z2.

From the first two equations:

3x2 − y2 = 2.

From the first and third:

z2 − 8x2 = −7.

We want to find all integers x , y , z satisfying these simultaneously.



Definition: Pell Equation and Norm

Definition (Pell Equation)

A Pell equation is a Diophantine equation

x2 − D y2 = N,

where D > 0 is a fixed non-square integer and N ∈ Z.

Definition (Norm)

For α = x + y
√
D ∈ Q(

√
D), the norm is

Norm(α) = x2 − D y2.



Fundamental Solution and Generating All Solutions

Definition (Fundamental Solution)

The fundamental solution of

x2 − D y2 = 1

is the least positive integer pair (x1, y1). The element

ε = x1 + y1
√
D

is called the fundamental unit.

Definition (Generating Solutions)

If α0 = x0 + y0
√
D satisfies Norm(α0) = N, then all integer

solutions to
x2 − D y2 = N

are given by
xn + yn

√
D = α0 ε

n, n ∈ Z.



Pell Equation 1: 3x2 − y 2 = 2

▶ Rewrite as y2 − 3x2 = −2.

▶ Fundamental solution: (y1, x1) = (2, 1).

▶ Fundamental unit in Q(
√
3):

ε = 2 +
√
3.

▶ All solutions given by:

αn = yn + xn
√
3 = (1 +

√
3)εn.

xn =
αn − αn

2
√
3

=
(1 +

√
3)εn − (1−

√
3)ε−n

2
√
3

yn =
αn + αn

2
=

(1 +
√
3)εn + (1−

√
3)ε−n

2
.



Pell Equation 2: z2 − 8x2 = −7

▶ Fundamental solution: (z1, x1) = (3, 1).

▶ Fundamental unit in Q(
√
8):

η = 3 +
√
8.

▶ All solutions given by:

αm = zm + xm
√
8 = (1 +

√
8)ηm.

xm =
βm − βm

2
√
8

=
(1 +

√
8)ηm − (1−

√
8)η−m

2
√
8

zm =
βm + βm

2
=

(1 +
√
8)ηm + (1−

√
8)η−m

2



Matching the Two Parametrizations

To have a common x , we require:

xn = xm,

where

xn =
A εn − A′ ε−n

C
, xm =

B ηm − B ′ η−m

D
,

with
A = 1 +

√
3, A′ = 1−

√
3, C = 2

√
3,

B = 1 +
√
8, B ′ = 1−

√
8, D = 2

√
8.

Multiplying both sides by CD gives

D
(
A εn − A′ ε−n

)
= C

(
B ηm − B ′ η−m

)
.



Matching Dominant Terms in xn = xm
We begin with:

xn = xm =⇒ A εn − A′ ε−n

C
=

B ηm − B ′ η−m

D
,

where

ε = 2 +
√
3, A = 1 +

√
3, A′ = 1−

√
3, C = 2

√
3,

η = 3 +
√
8, B = 1 +

√
8, B ′ = 1−

√
8, D = 2

√
8.

Multiply both sides by CD and isolate dominant terms:

D A εn = C B ηm + D A′ ε−n − C B ′ η−m︸ ︷︷ ︸
small error

.

Divide by CB ηm:

DA

CB

εn

ηm
= 1 + δ, δ ≪ ε−n − η−m.



Defining the Key Linear Form Λ

Taking logarithms:

Λ := n log ε−m log η + log

(
DA

CB

)
= log(1 + δ).

Since δ ≪ ε−n − η−m, and log(1 + δ) ≈ δ for small δ, we have:

|Λ| ≈ |δ| ≪ max(ε−n, η−m).

Why define Λ?

▶ We will apply Baker’s theorem to get a lower bound on |Λ|
that depends only on n,m.

▶ Combined with the above upper bound, this forces (n,m) into
a finite range.



Degree and Absolute Logarithmic Height

Definition (Degree)

Let α be an algebraic number. Its degree d is the degree of its
minimal polynomial over Q.

Definition (Absolute Logarithmic Height)

Let α be an algebraic number of degree d with conjugates
α1, . . . , αd and minimal polynomial adx

d + · · ·+ a0 ∈ Z[x ]. Then:

h(α) =
1

d

(
log |ad |+

d∑
i=1

logmax{1, |αi |}

)
.



Baker’s Theorem (Matveev’s Version for Two Logarithms)

▶ Let Λ = b1 logα1 + b2 logα2 ̸= 0, where:
▶ α1, α2 are nonzero algebraic numbers in a number field of

degree D.
▶ b1, b2 ∈ Z, not both zero.

▶ Define:

Ai ≥ max {D · h(αi ), | logαi |, 0.16} , B = max{|b1|, |b2|, 3}.

▶ Then:
|Λ | > exp

(
−C0 · D2 · A1 · A2 · logB

)
,

where C0 = 1.13× 109 is an explicit constant.



Applying Baker’s Theorem to the Linear Form Λ
▶ Recall the linear form:

Λ := n log ε−m log η + log

(
DA

CB

)
,

where
ε = 2 +

√
3, η = 3 +

√
8,

and
A = 1 +

√
3, C = 2

√
3,

B = 1 +
√
8, D = 2

√
8.

▶ By Baker’s theorem:

|Λ| > exp(−C ⋆ logmax{n,m}).

▶ From the Diophantine equation and the small error term, we
also have

|Λ| ≪ max
(
ε−n, η−m

)
.

▶ Combining bounds on |Λ| yields an explicit finite bound on
n,m ≤ 1010



Refinement: Baker–Davenport Lemma

▶ Baker’s theorem shows too many (n,m) to check

▶ Baker–Davenport lemma refines this using continued fractions
to reduce the search drastically.

▶ Let θ = log ε
log η , and let pk

qk
be the k-th convergent in the

continued fraction expansion of θ.

▶ If there is a rational approximation p
q with∣∣∣∣θ − p

q

∣∣∣∣ < 1

2q2

and the denominator q > 6qk , then q must be equal to either
qk+1 or qk+2.

▶ Thus, to find all good approximations with denominator up to
some bound, it suffices to check only convergents and their
immediate successors.

▶ This drastically reduces the candidates for (n,m).



Final Check

▶ Exhaust all small n,m and check convergents near θ.

▶ Only solution satisfying both parametrizations:

x = 11 ⇒ d = x2 − 1 = 120.

▶ Therefore, the only extension of {1, 3, 8} to a
Diophantine quadruple is with d = 120.



Extensions to D(n) and Known Results

Definition (D(n)-tuple)

A set of distinct positive integers {a1, a2, . . . , ak} is called a
D(n)-tuple if

aiaj + n is a perfect square for all i ̸= j .

▶ D(1)-quintuples do not exist (He, Togbé, Ziegler, 2019).
▶ For general n, the situation is more flexible:

▶ (Dujella) If n ̸≡ 2 (mod 4) and
n /∈ {−4,−3,−1, 3, 5, 8, 12, 20}, then there exists at least one
D(n)-quadruple.

▶ For some n, D(n)-quintuples and even sextuples are known
such as (99, 315, 9920, 32768, 44460, 19534284) is a
D(2985984 = 21236)-sextuple (Gibbs)

▶ Diophantine tuples can also be studied over Q


