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Introduction

A Diophantine m-tuple is a set of m positive integers {a1, a2, . . . , am} such that

aiaj + 1

is a perfect square for every 1 ≤ i < j ≤ m. The study of such sets has deep historical roots.
Rational examples appeared in the works of Diophantus of Alexandria, but the first known
integer quadruple satisfying this property was discovered much later by Fermat:

{1, 3, 8, 120}.

Fermat’s set remains central to the theory of Diophantine tuples, as it exhibits a remarkable
structure and appears to be maximal. Indeed, no integer can be added to the set {1, 3, 8, 120}
while preserving the Diophantine condition.

In the 20th century, Baker and Davenport (1969) provided the first proof that this partic-
ular quadruple cannot be extended to a quintuple [1]. Their method relied on Diophantine
approximation and a careful analysis of solutions to Pell equations. This initiated a long
line of research into the existence and classification of Diophantine tuples. Over the follow-
ing decades, the theory was developed further by many authors, including Dujella, Filipin,
Fujita, and others, who applied increasingly refined techniques to rule out the existence of
Diophantine quintuples.

The general problem was resolved in full by He, Togbé, and Ziegler in 2016, who proved
that no Diophantine quintuple of positive integers exists [6]. Their proof combined deep re-
sults from transcendental number theory with extensive computational analysis, culminating
in the definitive classification of Diophantine m-tuples over the integers for m ≤ 5.

In this paper, we revisit the classical triple

(1, 3, 8)

and provide a proof that it extends uniquely to the quadruple (1, 3, 8, 120) and cannot be ex-
tended to a quintuple. Our approach draws on ideas from both the original Baker–Davenport
method and modern techniques. Compared to the original, our argument requires less com-
putational effort and benefits from sharper theoretical bounds, through the use of refined
height estimates and explicit transcendence results.

Our proof is based on three main tools:
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• An explicit lower bound for a two-term linear form in logarithms (Matveev’s refinement
of Baker’s theorem) (Theorem 2.2),

• Growth estimates for solutions of Pell equations (Lemma 3.1),

• The Baker–Davenport reduction lemma for Diophantine approximation (Lemma 4.3).

Section 1 presents a version of Baker’s theorem suitable for our setting, giving explicit
lower bounds for linear forms in logarithms. In Section 2, we derive upper bounds on the
size of potential solutions by analyzing the growth of Pell equations and fundamental units.
Section 3 revisits the Baker–Davenport method, providing an effective reduction argument.
Finally, Section 4 applies all of these tools to the specific case of the triple (1, 3, 8) and shows
that the only possible extension is 120.

While no Diophantine quintuple exists for D = 1, the situation becomes more flexible
when one studies D(n)-tuples, where the condition is that

aiaj + n

is a perfect square for all 1 ≤ i < j ≤ m. In this more general setting:

• Dujella showed that if n ̸≡ 2 (mod 4) and n /∈ {−4,−3,−1, 3, 5, 8, 12, 20}, then there
exists at least one D(n)-quadruple [3].

• For some values of n, even quintuples and sextuples are known. For instance, the set

(99, 315, 9920, 32768, 44460, 19534284)

forms a D(2985984)-sextuple, where 2985984 = 212 · 36, constructed by Gibbs [5].

• Diophantine tuples can also be studied over Q, where infinitely many rational Dio-
phantine sextuples exist [4].

Thus, while the case D = 1 is now more resolved, the theory of Diophantine tuples
remains an active and richly structured area of number theory.

1 Pell Equations

Definition 1.1 (Pell Equation). A Pell equation is a Diophantine equation

x2 −D y2 = N,

where D > 0 is a fixed nonsquare integer and N ∈ Z is fixed.

Definition 1.2 (Norm). If α = x+ y
√
D ∈ Q(

√
D), then its norm is

Norm(α) = αα = x2 −D y2,

where α = x− y
√
D is the Galois conjugate.
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Definition 1.3 (Fundamental Solution & Unit). The fundamental solution of

x2 −D y2 = 1

is the least positive integer pair (x1, y1). The element

ε = x1 + y1
√
D

is the fundamental unit of Q(
√
D).

Proposition 1.4. Every solution (xn, yn) to

x2 −D y2 = 1

satisfies
xn + yn

√
D = εn, n ∈ Z.

More generally, if α0 = x0 + y0
√
D has Norm(α0) = N , then all integer solutions of x2 −

Dy2 = N are
xn + yn

√
D = α0 ε

n, n ∈ Z.

1.1 Reduction to Pell–Type Equations for (1, 3, 8, d)

The system
d+ 1 = x2, 3d+ 1 = y2, 8d+ 1 = z2

yields two independent Pell equations:

1. From d+ 1 = x2 and 3d+ 1 = y2:

3x2 − y2 = 2.

Writing α = y + x
√
3 we have Norm(α) = −2. A minimal solution is (x1, y1) = (1, 1),

so α0 = 1 +
√
3 and ε = 2 +

√
3. Thus

yn + xn

√
3 = α0 ε

n, xn =
εn + ε−n

2
, yn =

εn − ε−n

2
√
3

.

2. From d+ 1 = x2 and 8d+ 1 = z2:

z2 − 8x2 = −7.

A minimal solution is (x1, z1) = (1, 3), so β0 = 1 +
√
8 has Norm(β0) = −7, and the

fundamental unit is η = 3 +
√
8. Thus

zm + xm

√
8 = β0 η

m, xm =
(3 +

√
8)m + (3−

√
8)m

2
.
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1.2 Matching Parametrizations and Defining Λ

To have a common d we require

x2
n − 1 = x2

m − 1 =⇒ xn = xm,

i.e.
εn + ε−n

2
=

(3 +
√
8)m + (3−

√
8)m

2
.

Isolating dominant terms gives

εn

2

(
1 +O(ε−2n)

)
=

ηm

2

(
1 +O(η−2m)

)
,

where η = 3 +
√
8. Hence

Λ := n ln ε − m ln η = ln
(
1 +O(ε−2n)

)
− ln

(
1 +O(η−2m)

)
and in particular

0 < |Λ| ≪ max(ε−2n, η−2m).

This prepares the application of Baker’s lower bound on |Λ|, which will force n,m into a
finite range.

2 Proof of Simplified Baker’s Theorem

Let K be a number field of degree D = [K : Q], and fix an embedding

σ : K ↪→ C.

Let α1, α2 ∈ K× be nonzero algebraic numbers such that σ(αi) ̸= 1, and let b1, b2 ∈ Z, not
both zero. We define the linear form in logarithms

Λ = b1 log σ(α1) + b2 log σ(α2),

where log denotes the principal branch of the complex logarithm.

Definition 2.1 (Absolute Logarithmic Height). Let α ∈ Q be an algebraic number of degree
d = [Q(α) : Q], with minimal polynomial

f(x) = adx
d + ad−1x

d−1 + · · ·+ a0 ∈ Z[x],

and conjugates α1, . . . , αd ∈ C. Then the absolute logarithmic height of α is defined by

h(α) =
1

d

(
log |ad|+

d∑
i=1

logmax{1, |αi|}

)
.

This height is well-defined, independent of the choice of minimal polynomial, and satisfies
basic functoriality properties such as h(αm) = |m|h(α) for any m ∈ Z.
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Theorem 2.2 (Simplified Baker’s Theorem). Let α1, α2 ∈ K× \ {1} and b1, b2 ∈ Z, not both
zero. Let

Λ = b1 log σ(α1) + b2 log σ(α2),

as above. Define:

Ai ≥ max {Dh(αi), | log σ(αi)|, 0.16} , B = max {|b1|, |b2|, 3} .

Then there exists a computable absolute constant C > 0 such that

|Λ| > exp
(
−C D2A1A2 logB

)
.

Remark 2.3. This is a two-term case of a general linear form in logarithms. The constant 0.16
ensures that logAi remains bounded away from zero in auxiliary estimates. The embedding
σ fixes a single archimedean place, and all logarithms are taken in C using this fixed branch.
For the purposes of effective lower bounds, we treat Λ ∈ C, not as a vector in the full
logarithmic space.

2.1 Preliminary Lemmas

Lemma 2.4 (Siegel’s Lemma [8]). Let M ∈ Qr×s have rank r < s, and suppose each entry
has logarithmic height ≤ H. Then there exists a nonzero c ∈ Zs with Mc = 0 and

∥c∥∞ ≤ 2 exp
(

r(rs+1)
s−r

H + r log(3s)−s log(2)
s−r

)
.

Proof. Step 1: Clear denominators.
Write each mij = aij/bij with logmax{|aij|, |bij|} ≤ H, so |mij| ≤ eH . Let

D = lcm(bij),

then
logD ≤

∑
i,j

log |bij| ≤ rsH,

and M ′ := DM ∈ Zr×s has |M ′
ij| ≤ D · eH = e(rs+1)H .

Step 2: Count domain vectors.
For B > 0, define

V = {c = (c1, c2, . . . , cs) ∈ Zs : ∥c∥∞ ≤ B},

where the infinity norm (or ℓ∞-norm) of a vector c ∈ Rs is defined by

∥c∥∞ := max
1≤i≤s

|ci|.

In other words, V consists of all integer vectors whose coordinates are bounded in absolute
value by B.

Since each coordinate ci takes values in the integer interval [−B,B], the cardinality of V
is

|V| = (2B + 1)s > (2B)s.
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Step 3: Bound the image.
Each c ∈ V satisfies ∥c∥∞ ≤ B, so each entry of the product M ′c is a sum of at most s
terms of the form M ′

ijcj. Since |cj| ≤ B and |M ′
ij| ≤ e(rs+1)H by construction, we have:

|(M ′c)i| =

∣∣∣∣∣
s∑

j=1

M ′
ijcj

∣∣∣∣∣ ≤
s∑

j=1

|M ′
ij||cj| ≤ sBe(rs+1)H .

Therefore,
∥M ′c∥∞ ≤ sBe(rs+1)H .

This shows that the image W = M ′(V) ⊂ Zr lies inside the cube of side length 2sBe(rs+1)H+
1, so

|W| ≤
(
2sBe(rs+1)H + 1

)r ≤ (3sBe(rs+1)H
)r

,

where we used the inequality 2x+ 1 ≤ 3x for x ≥ 1.

Step 4: Apply pigeonhole and solve for B.
If

(2B)s >
(
3sB e(rs+1)H

)r
,

then two distinct vectors in V map to the same image, giving c ̸= 0 with ∥c∥∞ ≤ 2B.
Taking logarithms:

s log(2B) > r log(3sB) + r(rs+ 1)H.

Expand and collect logB:

s(log 2 + logB) > r(log 3 + log s+ logB) + r(rs+ 1)H

(s− r) logB > r(rs+ 1)H + r log 3 + r log s− s log 2.

Hence

logB >
r(rs+ 1)

s− r
H +

r(log 3 + log s)

s− r
− s

s− r
log 2.

Exponentiating and using ∥c∥∞ ≤ 2B gives

∥c∥∞ ≤ 2 exp
(

r(rs+1)
s−r

H + r log(3s)−s log(2)
s−r

)
.

■

2.2 Construction of the Auxiliary Determinant

We will build an s× s determinant

∆ = det
(
zki,j
)
0≤k<s
(i,j)∈E

, where zi,j = i logα1 + j logα2,

whose smallness forces a bound on Λ = b1 logα1 + b2 logα2. The steps are:
1. Choose a monomial index set E .
2. Impose vanishing of f and its first and second derivatives (T = 2) at a smaller set V .
3. Apply Siegel’s Lemma to find the coefficients cij.
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4. Evaluate at all of E to form ∆.

1. Monomial index set.
Fix L ∈ Z≥0 and let

E = {(i, j) ∈ Z2
≥0 : i+ j ≤ L}, s = #E = (L+1)(L+2)

2
.

2. Vanishing set and order (T = 2).
Set T = 2, so each point yields

(
T+2
2

)
=
(
4
2

)
= 6 linear conditions (the value, the two first,

and the three second partials). Choose

M =
⌊s− 1

6

⌋
,

and let V ⊂ E be any M distinct pairs. For each (i′, j′) ∈ V impose

f(i′, j′) = 0,
∂f

∂z1
(i′, j′) = 0,

∂f

∂z2
(i′, j′) = 0,

∂2f

∂z21
(i′, j′) = 0,

∂2f

∂z1∂z2
(i′, j′) = 0,

∂2f

∂z22
(i′, j′) = 0.

This yields
r = 6M ≤ s− 1 < s

homogeneous linear equations in the s unknowns cij.

4. Height of the linear system.
Each imposed condition at (i′, j′) is a linear combination of the cij with coefficient

∂u+v

∂zu1 ∂z
v
2

(
zi1z

j
2

)∣∣∣
(i′,j′)

= (i)u (j)v (i
′) i−u (j′) j−v, 0 ≤ u+ v ≤ 2,

where (i)u = i(i−1) · · · (i−u+1). Noting i, j, i′, j′ ≤ L and i+j ≤ L, we have (i)u ≤ Lu ≤ L2,
(j)v ≤ Lv ≤ L2, and (i′)i−u(j′)j−v ≤ L i+j−(u+v) ≤ LL. Hence∣∣A∗

∣∣ ≤ L2 · L2 · LL = LL+4,

so the logarithmic height of each entry is

≤ (L+ 4) logL.

Set
H = (L+ 4) logL.

5. Application of Siegel’s Lemma.
We have an r × s integer system A c = 0 of rank r < s, with entry-height ≤ H. By Lemma
2.4, there exists c ̸= 0 with

∥c∥∞ ≤ 2 exp
(

r(rs+1)
s−r

H + r log(3s)−s log(2)
s−r

)
.

Defining f(z1, z2) =
∑

(i,j)∈E cijz
i
1z

j
2, we then form

∆ = det
(
zki,j
)
0≤k<s, (i,j)∈E ,

and proceed to bound |∆| above and below.
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2.3 Upper Bound via Hadamard’s Inequality

To bound |∆| from above, we apply Hadamard’s inequality:

|∆| ≤
∏
rows

∥row∥2.

Recall that
∆ = det(zki,j)0≤k<s

(i,j)∈E
, zi,j = i logα1 + j logα2.

Each (i, j) ∈ E satisfies i+ j ≤ L, and we defined

A = max{A1, A2}, Ai ≥ max
{
Dh(αi), | logαi|, 0.16

}
.

Hence,
|zi,j| ≤ (i+ j) ·max{| logα1|, | logα2|} ≤ LA.

So for any fixed (i, j), we have
|zki,j| ≤ (LA)k.

Now consider the Euclidean norm of the row vector(
z0i,j, z

1
i,j, . . . , z

s−1
i,j

)
.

Its norm satisfies: ∥∥∥∥(zki,j)0≤k<s

∥∥∥∥
2

≤

√√√√ s−1∑
k=0

(LA)2k =

√
(LA)2s − 1

(LA)2 − 1
.

Since LA ≥ 1, we have (LA)2 − 1 ≥ 1
2
(LA)2 for LA ≥

√
2, so:

∥row∥2 ≤

√
(LA)2s

1
2
(LA)2

=
√
2 · (LA)s−1.

Therefore, Hadamard’s inequality gives:

|∆| ≤
(√

2 · (LA)s−1
)s

= 2s/2 · (LA)s(s−1).

Taking logarithms:

log |∆| ≤ s

2
log 2 + s(s− 1) log(LA).
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2.4 Lower Bound via Liouville-Type Inequality

We seek a lower bound on the nonzero algebraic number

∆ = det
(
zki,j
)
0≤k<s
(i,j)∈E

,

where zi,j = i logα1 + j logα2, and s = #E = (L+1)(L+2)
2

.

1. Degree bound of ∆. Each zi,j lies in an extension of Q of degree at most D. Powers
zki,j lie in the same field. The determinant ∆ is a polynomial expression in these s2 entries.

Since ∆ is formed from s2 elements in a field extension of degree ≤ D, the degree of ∆
over Q satisfies

D′ := [Q(∆) : Q] ≤ Ds.

2. Height bound of each entry. The absolute logarithmic height satisfies the properties:

h(zki,j) = k · h(zi,j).

Since k < s, and
h(zi,j) = h(i logα1 + j logα2) ≤ log(LA),

where
A = max{A1, A2},

we get
h(zki,j) ≤ s · log(LA).

2.5 Height bound for the determinant ∆

Recall
∆ = det

(
zki,j
)
0≤k<s,(i,j)∈E ,

with s = #E .
Each entry is zki,j, an algebraic number.

1. Height of each entry. By definition, the (absolute logarithmic) height h(·) satisfies

h(zki,j) = k · h(zi,j),

and since k < s and
h(zi,j) ≤ log(LA),

we get
h(zki,j) ≤ s · log(LA).

2. Express ∆ as a sum over permutations. By the Leibniz formula,

∆ =
∑
σ∈Ss

sgn(σ)
s∏

m=1

z
σ(m)
im,jm

,
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where {(im, jm)}sm=1 = E is the ordering of indices in rows, and σ runs over permutations of
{0, . . . , s− 1}.
3. Height of a product. Height satisfies the triangle inequality for sums and the additive
property for products:

h

(
s∏

m=1

αm

)
≤

s∑
m=1

h(αm).

So each product term has height bounded by

s∑
m=1

h
(
z
σ(m)
im,jm

)
≤

s∑
m=1

s · log(LA) = s2 log(LA).

4. Height of the sum over permutations. The determinant is a sum of s! such products.
The height satisfies

h

(
M∑
k=1

βk

)
≤ max

k
h(βk) + logM.

Applying this to ∆, with M = s!, gives

h(∆) ≤ s2 log(LA) + log(s!).

5. Estimate log(s!). Using Stirling’s approximation:

log(s!) ≤ s log s− s+ 1 ≤ s log s.

6. Final height bound. Combining,

h(∆) ≤ s2 log(LA) + s log s.

For large L, s log s is dominated by s2 log(LA), so

h(∆) ≤ c1s
2 log(LA),

where we can take
c1 = 2,

to cover all terms safely.

Theorem 2.5 (Liouville’s inequality for ∆ [9]). Let ∆ be a nonzero algebraic number of
degree D′ and (logarithmic) height h(∆). Then Liouville’s inequality states

|∆| ≥ exp(−D′ · h(∆)).

Applying this to ∆ with degree at most Ds and height bounded by 2s2 log(LA), we have

|∆| ≥ exp
(
−Ds · 2s2 log(LA)

)
.

Equivalently,
log |∆| ≥ −2Dss2 log(LA).
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2.6 Extraction of Λ and the Error Term

1. Decomposition ∆ = QΛ +R.
Let

E0 = {(i, j) ∈ E : b1 i+ b2 j = 0}, s0 = #E0 ≥ 1.

By relabeling rows we may assume that the first s0 rows of the determinant

∆ = det
(
zki,j
)
0≤k<s, (i,j)∈E

are exactly those indexed by E0. Expanding ∆ along these s0 rows and using

zi,j = i logα1 + j logα2,

one sees that each term in the Laplace expansion is affine-linear in the single parameter Λ.

• Let Q be the sum of all cofactors (signed minors) multiplied by the combination b1i+
b2j. Equivalently, if ∆k is the minor obtained by removing row k and its matching
column, then

Q =

s0∑
k=1

(b1ik + b2jk)∆k,

where (ik, jk) is the index of the kth “relation-row.”

• Let R be the remaining constant term in the same expansion, i.e. the sum of all other
cofactors times the part of zki,j independent of Λ.

2. Bounds on Q and R. Exactly as in Sections 2.5 and 2.3, one finds

log |Q| ≤ cQ s2 log(LA), cQ = 2, |R| ≤ exp
(
−cRL

2 + c′R logL+ c′′R
)
,

with cR = 1, c′R = 5, c′′R = 2.

3. Comparison and choice of L. From Hadamard (Sect. 2.3) log |∆| ≤ s
2
log 2 + s(s −

1) log(LA) and Liouville (Sect. 2.4) log |∆| ≥ −2Ds s2 log(LA), together with |∆| ≤ |Q||Λ|+
|R|, one checks as before that for

L = ⌈4 logB⌉, s = (L+ 1)(L+ 2)/2,

and all B ≥ 3,
|Λ| ≥ exp

(
− (2Ds + 2) s2 log(LA)

)
.

Hence

|Λ| > exp
(
−Craw Ds s2 log(LA)

)
, Craw = (2Ds + 2)

s2 log(LA)

D2A1A2 logB
.

4. From Ds to D2 via Matveev. The above bound still carries the factor Ds. To reduce
the field-degree exponent from Ds down to the practical D2 in the two–term case, one applies
Matveev’s theorem on linear forms in two logarithms (see [7], Theorem 2.1). That result
shows, after tracking its own explicit constants, that the same final shape

|Λ| > exp
(
−C D2A1A2 logB

)
holds with

C = 1.13× 109.

■
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3 Lower Bounds from Pell–Unit Growth

Lemma 3.1 (Growth of Pell solutions). For each n ≥ 1, one has the exact closed form

yn =
εn − ε−n

2
√
D

=
εn

2
√
D

(1− ε−2n).

Hence the two-sided estimate

εn

2
√
D

(1− ε−2n) < yn <
εn

2
√
D

holds, and consequently

n =
log
(
2
√
D yn

)
log ε

−
log
(
1− ε−2n

)
log ε

>
log
(
2
√
D yn

)
log ε

.

Moreover, since
− log(1− ε−2n) < − log(1− ε−2) < log 2,

one also obtains

n >
log
(
2
√
D yn

)
log ε

− log 2

log ε
,

and in particular if ε ≥ 2 then log 2/ log ε ≤ 1 so

n >
log
(
2
√
D yn

)
log ε

− 1.

Proof. Since ε−n = xn − yn
√
D, we have

εn − ε−n = 2 yn
√
D,

hence

yn =
εn − ε−n

2
√
D

=
εn

2
√
D
(1− ε−2n).

Because 0 < 1− ε−2n < 1, the two-sided bounds follow. Taking logarithms of εn(1− ε−2n) =
2yn

√
D gives

n log ε = log
(
2
√
D yn

)
− log

(
1− ε−2n

)
,

so

n =
log(2

√
D yn)

log ε
− log(1− ε−2n)

log ε
>

log(2
√
D yn)

log ε
.

Finally, since 0 < 1− ε−2n ≤ 1− ε−2 < 1, we have − log(1− ε−2n) < log 2, so

n >
log(2

√
D yn)

log ε
− log 2

log ε
.

■
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4 Reduction to a Finite Search: The Baker–Davenport

Lemma

Let

θ = a0 +
1

a1 +
1

a2 + · · ·
be the simple continued fraction of θ ∈ R \Q, with convergents

pk
qk

(k ≥ 0),

defined by {
p−1 = 1, p0 = a0, pk = akpk−1 + pk−2,

q−1 = 0, q0 = 1, qk = akqk−1 + qk−2.

We recall two standard facts, proved by simple induction:

Lemma 4.1 (Determinant and error-formula). For all k ≥ 0,

pkqk−1 − pk−1qk = (−1)k−1,

and

θ − pk
qk

=
(−1)k

qk (ak+1 + θk+2)
,

where θk+2 > 0. In particular,

1

qk + qk+1

<
∣∣ θ − pk

qk

∣∣ <
1

qk+1

.

Proof. By induction on k, using the recurrences:

pkqk−1 − pk−1qk = (akpk−1 + pk−2)qk−1 − pk−1(akqk−1 + qk−2) = pk−2qk−1 − pk−1qk−2,

which gives the determinant formula since for k = 0, p0q−1 − p−1q0 = a0 · 0 − 1 · 1 = −1 =
(−1)−1.

To get the error-formula, write

θ =
pkθk+1 + pk−1

qkθk+1 + qk−1

,

where θk+1 = ak+1 + 1/θk+2. Then

θ − pk
qk

=
pkθk+1 + pk−1

qkθk+1 + qk−1

− pk
qk

=
(−1)k

qk (qkθk+1 + qk−1)
,

and since qk+1 = ak+1qk + qk−1 ≤ qkθk+1 < qk+1 + qk, the claimed inequalities follow. ■
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Lemma 4.2 (Best-approximation). If 0 < q < qk+1 and p ∈ Z, then∣∣ q θ − p
∣∣ ≥

∣∣ qk θ − pk
∣∣.

Proof. Write q θ− p = q(θ− pk/qk) + (qpk/qk − p). Since θ− pk/qk and qpk/qk − p have the
same sign (both alternate with k), their absolute values add:

|qθ − p| = q
∣∣θ − pk

qk

∣∣ +
∣∣pk q

qk
− p
∣∣ ≥ q

∣∣θ − pk
qk

∣∣.
But q < qk+1 and

∣∣θ − pk/qk
∣∣ > 1/(qk + qk+1) give

q
∣∣θ − pk

qk

∣∣ > q

qk + qk+1

≥ qk
qk + qk+1

= qk
∣∣θ − pk

qk

∣∣.
Thus |qθ − p| ≥ |qkθ − pk|. ■

Lemma 4.3 (Baker–Davenport Reduction [1]). Let integers p, q > 0 satisfy

0 <
∣∣ q θ − p

∣∣ < 1

2q
,

and let k be the unique index with

qk < q ≤ qk+1.

If moreover q > 6 qk, then the only possibilities for q are

q = qk+1 or q = qk+2.

Proof. Case 1: qk < q < qk+1. By Lemma 4.2,∣∣qθ − p
∣∣ ≥

∣∣qkθ − pk
∣∣ >

1

qk + qk+1

.

But the hypothesis gives |qθ − p| < 1/(2q) ≤ 1/(2qk). Hence

1

qk + qk+1

<
∣∣qθ − p

∣∣ < 1

2qk
=⇒ qk + qk+1 > 2qk, q <

qk+qk+1

2
.

Thus

qk < q <
qk + qk+1

2
.

Since qk+1− qk ≥ 1, the length of that interval is (qk+1− qk)/2 < 1, so it contains no integer.
Contradiction.

Case 2: qk+1 < q ≤ qk+2. Exactly the same argument, replacing k 7→ k + 1, shows no q
strictly between qk+1 and qk+2 can satisfy |qθ− p| < 1/(2q). Hence the only possibilities are
q = qk+1 or q = qk+2. ■
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4.1 Matveev Lower Bound and Baker–Davenport Reduction

Recall from Section 1 that the Pell parametrizations yield

xn =
(2 +

√
3)n + (2−

√
3)n

2
, xm =

(3 +
√
8)m + (3−

√
8)m

2
,

and the key linear form

Λ := n ln(2 +
√
3) − m ln(3 +

√
8) = ln

(
1 + δ

)
, δ = (2 +

√
3)−2n − (3 +

√
8)−2m,

so that
0 < |Λ| < |δ|.

Applying Matveev’s Lower Bound

By Theorem 2.2, with

D = 2, α1 = 2 +
√
3, α2 = 3 +

√
8, b1 = n, b2 = −m,

one has for B = max{n,m, 3},

|Λ| > exp
(
−C D2A1A2 lnB

)
= exp

(
−C ′ lnB

)
,

where numerically C ′ ≈ 6× 109. Comparing

e−2.634 min{n,m} > exp(−C ′ lnB) =⇒ min{n,m} <
C ′

2.634
lnB ≪ 109 lnB.

Thus n,m are effectively bounded.

Final Reduction via Baker–Davenport

Set

θ =
ln(2 +

√
3)

ln(3 +
√
8)
, q = n, p = m.

Then

|qθ − p| = |Λ|
ln(3 +

√
8)

<
1

2q

for all sufficiently large q. By Lemma 4.3, once q > 6 qk one must have

q = qk+1 or q = qk+2,

where qk/pk are the convergents of θ. A short finite check of all small n and of the two
possible n near each convergent shows the only admissible solution with d > 8 is

n = 4, m = 4, x4 =
(2 +

√
3)4 + (2−

√
3)4

2
= 11, d = 112 − 1 = 120.

Hence {1, 3, 8, d} is a Diophantine quadruple only for d = 120, and no larger extension is
possible. ■
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