Hadwiger-Nelson Problem

Qi Huang

July 14, 2025

Table of Contents

1. Problem Statement

- 2. Important Theorem
- 3. Classical Bounds

4. Recent Developments

The Problem

The following question was stated by Edward Nelson in 1950:

Problem (The Hadwiger-Nelson Problem)

How many ways are there to color the plane so that no two points that are unit distance apart have the same color?

Chromatic Number of the Plane

One can use graph theory to look at this problem:

Definition (Chromatic Number of the Plane)

The chromatic number of a graph G, $\chi(G)$, is the minimum number of colors required to color the vertices of G such that no two vertices that share an edge have the same color.

Definition

Let $\Gamma(\mathbb{R}^2)$ be the graph whose set of vertices is the set of all points in 2D space, and whose set of edges is the set of all pairs of points $\{P,Q\}$ that are a distance 1 apart from each other.

Chromatic Number of the Plane

Let's restate the problem using this terminology:

Problem (Hadwiger-Nelson Problem Restatement)

Find the chromatic number $\chi(\Gamma(\mathbb{R}^2))$ of the graph $\Gamma(\mathbb{R}^2)$.

We denote $\chi(\Gamma(\mathbb{R}^2))$ by $\chi(\mathbb{R}^2)$, as it is easier to write.

De Bruijn-Erdös Compactness Theorem

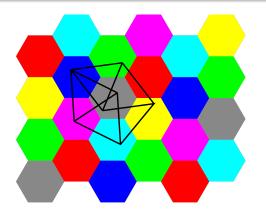
Theorem (De Bruijn-Erdös Compactness)

An infinite graph G is k-colorable if and only if every finite subgraph of G is k-colorable.

Lower Bound

Theorem (Old Lower Bound)

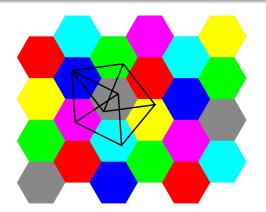
The chromatic number of the plane $\chi(\mathbb{R}^2)$ satisfies $\chi(\mathbb{R}^2) \geq 4$.



Upper Bound

Theorem (Upper Bound)

The chromatic number of the plane is bounded from above, and $\chi(\mathbb{R}^2) \leq 7$.



New Lower Bound

Theorem (2018 New Lower Bound)

The chromatic number of the plane $\chi(\mathbb{R}^2)$ satisfies $\chi(\mathbb{R}^2) \geq 5$.

Aubrey de Grey (an amateur mathematician) constructed a graph with a chromatic number of 5 and proved a new lower bound.

Proof of New 2018 Lower Bound

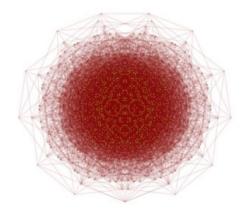


Figure: 1581-vertex graph

This graph can be verified by a computer to have chromatic number 5. There is no human-verifiable proof that this graph has a chromatic number of 5.

Smallest Known Graph

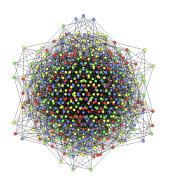


Figure: Jaan Part's 509-vertex graph

6-Coloring of the Plane

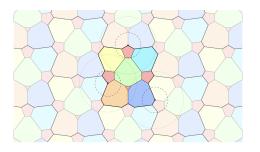


Figure: 6-coloring of a the plane.

There are no line segments unit distance apart for 5 colors and there are no line segments a distance of d apart for the other color.

Extensions of the Problem

We can extend the Hadwiger-Nelson problem to other fields, such as the fields $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3})$, and $\mathbb{Q}(\sqrt{7})$.

Thank you!

