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1. Abstract

This paper surveys classical and extended results on vertex coloring in planar and nearly
planar graphs. We begin with constructive proofs of the 6-color and 5-color theorems, then
explore how these results extend to graphs of higher thickness—the minimum number of
planar subgraphs into which a graph can be decomposed. We also introduce the concept of
skewness, defined as the minimum number of edges whose removal yields a planar graph,
and examine its effect on the chromatic number. We explore various types of graphs such
as k−degenerate graphs and also edge colorings.

2. Introduction

The study of graph coloring originated from a simple question: how many colors are needed
to color a map so that no two adjacent regions share the same color? In 1852, Francis Guthrie
posed this question while trying to color a map of the counties of England. This led to the
famous Four Color Problem, which conjectured that four colors are always sufficient to color
any map.

A proposed proof by Alfred Kempe in 1879 was widely accepted for over a decade until
a flaw was discovered in 1890. The problem remained unsolved for nearly a century, until
Kenneth Appel and Wolfgang Haken finally proved the Four Color Theorem in 1976 using
extensive computer assistance making it the first major theorem to be proven in such a way.

In graph theory, a vertex coloring is an assignment of colors to the vertices of a graph
such that no two adjacent vertices share the same color. The chromatic number of a graph
is the minimum number of colors needed for such a coloring. A graph is said to be planar if
it can be drawn on the plane without any edges crossing.

3. Background

Definition 1. A graph G = (V,E) is an ordered pair of two sets. The elements of the edge
set are two-element subsets of the vertex set.

For this paper we will be coloring the vertices of the graph and not the edges.

Definition 2. A valid vertex coloring of a graph is an assignment of colors to each vertex
such that any adjacent vertices are different colors.

Definition 3. A vertex v is a neighbor of v′ if there is an edge between v and v′.

Definition 4. The chromatic number of a graph is denoted by χ(G) and is the minimum
number of colors needed to color G.

Definition 5. The degree of a vertex is the number of neighbors it has.
1
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Definition 6. A graph is regular if every vertex has the same degree.

Definition 7. A graph is bi-partite if the vertices can be separated into 2 disjoint sets X
and Y such that every edge connects a vertex in X to a vertex in Y.

Definition 8. The bi-partite graph Kx,y is the complete bi-partite graph where the vertex
set is divided into two disjoint sets X and Y such that every vertex in X is adjacent to every
vertex in Y . The sets X and Y have x and y vertices respectively.

4. Theorems

4.1. Planar Graphs. We let v be the number of vertices, f be the number of faces and e
be the number of edges in a graph G.

Theorem 4.1 (Euler’s formula). For every planar graph G, v − e+ f = 2.

Definition 9. We denote the graph with n vertices which is a cycle with Cn. We denote Kn

to be the complete graph with n vertices.

Theorem 4.2. For all even n, χ(Cn) = 2.

Here is one way to color Cn with 2 colors when n is even. We color vk red if k is odd and vk
blue if k is even.

v1

v2

v3

v4

Theorem 4.3. For all odd n, χ(Cn) = 3.

Here is one way to color Cn with 3 colors when n is odd. We color vk red if k is odd and vk
blue if k is even. However, since v1 and vn are adjacent we have to change the color of vn.
So we can color it green.

v1

v2

v3 v4

v5

Theorem 4.4. If G is a planar graph then e ≤ 3v − 6.
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Proof. By Euler’s formula we know that e− f = v − 2. Since each face has at least 3 edges
and each edge is counted in 2 faces we know that 2e ≤ 3f. Plugging this into Euler’s formula
we get e ≤ 3v − 6 as desired. ■

Theorem 4.5. The graph Kn is planar if and only if n ≤ 4.

Proof. First we will show that for n ≤ 4 the graph Kn is planar.

K1 K2

K3 K4

Next we will show that for n > 4 the graph Kn is not planar. Notice that in Kn there

are n(n−1)
2

edges and n vertices. So in order for our graph to be planar it must satisfy
(n−1)n

2
≤ 3n − 6. So this means that 12 ≤ 7n − n2. However, this is not satisfied for n > 4.

Thus, Kn is planar if and only if n ≤ 4. ■

Theorem 4.6. Every bi-partite graph can be colored with 2 colors.

Proof. Since we can split a bi-partite graph into sets X and Y we can just color the vertices
in X blue and the vertices in Y red. ■

Theorem 4.7. The graph K3,3 is not planar.

Proof. First notice that by Euler’s formula we get 6− 9 + f = 2 so f = 5. This means that
there are 5 faces. Since there cannot exist a triangle in a bi-partite graph it must be that
each face has at least 4 edges. Since each edge is counted in exactly 2 faces, we need at
least 5·4

2
= 10 edges. However, we only have 10 edges. Therefore, K3,3 is not planar since it

doesn’t satisfy Euler’s formula.

u1

u2

u3

v1

v2

v3

■

Theorem 4.8 (6-color theorem). Every planar graph G satisfies χ(G) ≤ 6.

Proof. First notice that the sum of the degrees of all the vertices in any graph is 2e because
each edge gets counted twice (once from each vertex). So, the average degree is 2e

v
. Since

e ≤ 3v − 6 we get 2e
v
≤ 6 − 12

v
. This means that the average degree is less than 6 so there

exists a vertex with degree 5. We use induction on the number of vertices in our graph.
Base Case: v ≤ 6. When there are fewer than 7 vertices we can color each vertex a different
color so χ(G) ≤ 6.
Induction Hypothesis: v = k. We assume that any planar graph with k vertices can be
colored with 6 or fewer colors.
Induction Step: v = k + 1. We need to show that any planar graph with k + 1 vertices
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has chromatic number less than 7. From earlier we know that there exists a vertex such that
the degree is less than 6. Let this vertex be v′. We know that we can 6-color a graph with
k vertices so we can color every other vertex with 6 or fewer colors. Then since v′ has fewer
than 6 neighbors it can be colored with the 6th color.
Therefore, every planar graph G satisfies χ(G) ≤ 6. ■

Next we will show a stronger version of the 6−color theorem. To show this we first define a
Kempe Chain.

Definition 10. A Kempe chain is a maximally connected subgraph of a colored graph such
that each node in the subgraph only uses one of 2 colors.

We can swap the colors in a Kempe chain and it will still be a valid coloring of the graph.
One example of a Kempe chain is shown below.

A

B C

D

E

Theorem 4.9 (5-color theorem). Every planar graph G satisfies χ(G) ≤ 5.

Proof. We can use induction on the number of vertices.
Base Case: v ≤ 5. We can color each vertex a different color so when v ≤ 5 we can color
the graph with 5 colors.
Induction Hypothesis: v = k. We assume that we can color any graph with k vertices
using 5 colors.
Induction Step: v = k + 1. We aim to show that we can color any graph with k + 1
vertices. Let v′ be the vertex with degree at most 5. We know that we can color all other
vertices with 5 colors. If deg(v′) < 5 then we can color v′ with the 5th color. If deg(v′) = 5
but two neighboring vertices have the same color then we can still color v′ with a 5th color.
If deg(v′) = 5 and all the neighboring vertices are different colors then we need to free up a
color. Label the neighbors v1, v2, v3, v4, v5 and colors 1, 2, 3, 4, 5. Let vn be colored with the
nth color.

Consider the Kempe chain with colors 1 and 3 containing v1. If this Kempe chain does
not contain v3 then we can swap the colors in the Kempe chain and free up a color. Now
consider the Kempe chain with colors 2 and 4 containing v4. If this Kempe chain does not
contain v4 then we can swap the colors in the Kempe chain and free up a color. Notice that
we can free up one of the colors because otherwise that would contradict the planarity of
the graph. So every planar graph is 5−colorable.
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v′

v1

v2

v3 v4

v5

■

Theorem 4.10 (4-color theorem). Every planar graph can be colored with 4 colors.

Modern proofs of the 4−color check if certain un-avoidable configurations can be colored
with 4 colors. The original proof by Kenneth Appel and Wolfgang Haken had checked 1482
configurations. Today this number has been further reduced to 633.

Definition 11. The skewness of a graph is the minimum amount of edges that need to be
removed such that the graph is planar. We let µ(G) be the skewness of a graph G.

Theorem 4.11. Let G be a graph such that µ(G) ≤ 2. Then χ(G) ≤ 5.

Proof. First notice that e−2 ≤ 3v−6 since removing 2 edges will keep the graph planar. This
means that e ≤ 3v− 4. Next define vi to be the number of vertices in our graph with degree
i. Then by minimality, vi = 0 for i < 5. We also know that

∑
i vi = v and

∑
i vi · i = 2e. So

we get 2e ≤ 6v−8 which is equivalent to 8 ≤
∑

i(6− i)vi = v5−v7−2v8 . . . . This means that
v5 ≥ 8 so at least 8 vertices have degree 5. Now consider a graph G such that the removal
of edges e and e′ will result in the graph being planar. We can pick a vertex v′ with degree
5 or less such that v′ is not incident with the edges e or e′. If we delete and contract edges
that are incident to v′ we will get a new graph G which has skewness at most 2. Therefore,
if µ(G) ≤ 2 then χ(G) ≤ 5. ■

Theorem 4.12. Let G be a graph such that µ(G) ≤ 5. Then χ(G) ≤ 6.

Proof. First notice that e ≤ 3v− 1. So letting vi be the number of vertices in our graph with
degree i we can find again that there exists at least one vertex with degree at most 5. We
can let this degree be v. So µ(G− v) ≤ µ(G) ≤ 5 so there exists a valid 6-coloring of G− v
that extends to the graph G. ■

4.2. Bi-planar Graphs. We call a graph bi-planar if it can be decomposed into 2 planar
graphs. The Earth-Moon problem (unsolved) asks how many colors are needed to color all
bi-planar graphs. We will prove the lower bound and upper bound for the number of colors
needed to color all bi-planar graph.

Theorem 4.13. K5 is bi-planar.
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Proof. Notice that K5 has 10 edges and 5 vertices so it doesn’t satisfy e ≤ 3v−6. This means
it is not planar. Next notice that it is bi-planar because we can write it as the union of the
following graphs.

1

2

3 4

5

1

2

3 4

5

Planar Subgraph with 8 Edges Planar Subgraph with Remaining 2 Edges

■

Theorem 4.14. If G is bi-planar then e ≤ 6v − 12.

Proof. By theorem 3.1 we know that e ≤ 3v − 6 for all planar graphs. Since a bi-planar
graph can be decomposed into 2 planar graphs it as at most twice as many edges has a
planar graph. So for bi-planar graphs we know that e ≤ 6v − 12. ■

Using this we can find an upper bound for the chromatic number of a bi-planar graph.

Theorem 4.15. If G is bi-planar then χ(G) ≤ 12.

Proof. Using theorem 3.5 we can find the average degree of our bi-planar graph. We get
2e
v
≤ 12 − 24

v
< 12. So the average degree is less than 12. This means there exists a vertex

with degree 11 or less. Let this vertex be v′. Next we use induction on the number of ver-
tices.
Base Case: v ≤ 12. When there are fewer than 13 vertices we can color each vertex a
different color so χ(G) ≤ 12.
Induction Hypothesis: v = k. We assume that any bi-planar graph with k vertices can
be colored with 12 or fewer colors.
Induction Step: v = k + 1. We need to show that any graph with k + 1 vertices has
chromatic number less than 13. We know that we can 12-color a graph with k vertices so we
can color every vertex other than v′ with 12 or fewer colors. Then since v′ has fewer than
12 neighbors it can be colored with the 12th color.

Therefore, every planar graph G satisfies χ(G) ≤ 12. ■

Definition 12. A join of two graphs G and H is represented by G +H. The vertex set in
the join is VG ∪ VH and an edge (a, b) is in the edge set of the join if and only if any of the
following are satisfied

• The edge (a, b) ∈ EG

• The edge (a, b) ∈ EH

• The vertex a ∈ VG and b ∈ VH .
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Theorem 4.16. In order to color all bi-planar graphs at least 9 colors are needed.

Proof. In order to show this we need to find an example of a bi-planar graph with chromatic
number 9. One example K6+C5. This has chromatic number 9 because K6 requires 6 colors
and C5 requires 3 different colors. ■

Definition 13. The strong product of two graphs G and H is written like G ⊠ H. The
vertex set of G⊠H is VG×VH . Two vertices (g1, h1) and (g2, h2) are in the edge set of G⊠H
if one of the following conditions is satisfied.

• g1 = g2 and (h1, h2) ∈ EH

• h1 = h2 and (g1, g2) ∈ EG

• (g1, g2) ∈ EG and (h1, h2) ∈ EH

Researchers are working on shrinking the bounds for this problem. To increase the upper
bound researchers are running programs to find bi-planar graphs that have chromatic number
10. To lower the upper bound researchers are using methods such as contraction and Kempe
chains. One candidate for this problem is K4 ⊠ C5. Researches have proved this graph has
chromatic number 10. However, we can see that it is not bi-planar because it doesn’t satisfy
e ≤ 6v − 12. For this graph removing a vertex keeps the chromatic number 10 so researches
are trying to show whether or not the graph K4 ⊠C5 minus 1 vertex is bi-planar or not. We
know that this graph has 19 edges and 99 vertices. However, since checking if a graph is bi-
planar or not is NP-complete and the run time to check if a graph is bi-planar is O(2e(v+e))
it is very hard to tell if this graph is bi-planar or not with brute force methods.

4.3. Graphs of higher thickness. A graph has thickness n if it can be decomposed into
n planar graphs and cannot be decomposed into n+ 1 planar graphs. So a bi-planar graph
has thickness 2. We aim to find the number of colors needed to color a graph with thickness
n.

Theorem 4.17. If G has thickness n then e ≤ 3vn− 6n

Proof. By theorem 3.1 we know that e ≤ 3v − 6 for all planar graphs. Since a graph with
thickness n can be decomposed into n planar graphs it has at most n times as many edges
as a planar graph. So for bi-planar graphs we know that e ≤ 3vn− 6n. ■

Theorem 4.18. If G has thickness n then χ(G) ≤ 6n.

Proof. Using theorem 3.7 we can find the average degree of our bi-planar graph. We get
2e
v
≤ 6n− 12n

v
< 6n. So the average degree is less than 6n. This means there exists a vertex

with degree 6n − 1 or less. Let this vertex be v′. Next we use induction on the number of
vertices.
Base Case: v ≤ 6n. When there are fewer than 6n+ 1 vertices we can color each vertex a
different color so χ(G) ≤ 6n.
Induction Hypothesis: v = k. We assume that any graph with k vertices can be colored
with 6n or fewer colors.
Induction Step: v = k + 1. We need to show that any graph with k + 1 vertices has
chromatic number less than 6n + 1. From earlier we know that there exists a vertex such
that the degree is less than 6n. Let this vertex be v′. We know that we can 6 color a graph
with k vertices so we can color every other vertex with 6n or fewer colors. Then since v′ has
fewer than 6n neighbors it can be colored with the 6nth color.
Therefore, every planar graph G satisfies χ(G) ≤ 6n. ■
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Theorem 4.19. If G has thickness n ≥ 3 then χ(G) ≥ 6n− 2.

4.4. Degenerate Graphs.

Definition 14. A subgraph of a graph is formed by selecting a subset of the vertex set and
edge set of the original graph.

Definition 15. A k−degenerate graph is a graph such that every subgraph has a vertex of
degree at most k.

Here is an example of a 3−degenerate graph.

A B C

D

E F

Theorem 4.20. Every k−degenerate graph can be colored with k + 1 colors.

Proof. First we can remove a vertex in our graph G such that the vertex has degree at most
k. Then since our new graph is a subgraph of G we can again remove a vertex with degree
at most k. We can repeat this process until there are no vertices left. Then we can track the
order in which we removed each vertex. We can color our vertices in reverse order. The last
vertex we removed will be the first vertex we color and so on. Since every vertex has degree
at most k at the time of its’ removal we can assign it a k + 1th color due to the amount of
neighbors it has. Therefore, we can color each vertex such that we only use k + 1 colors. So
every k−degenerate graph has chromatic number at most k + 1. ■

This proof not only shows that we can color all k−degenerate graphs with k + 1 colors but
also gives an algorithm to color each vertex. Here is a 4 coloring of the 3−degenerate graph
from earlier.

A B C

D

E F

Theorem 4.21. Planar graphs are 5−degenerate.

Proof. Notice that the average degree of a graph is less than 6 by Euler’s inequality for planar
graphs. This means that the graph has a vertex of degree at most 5. Since every subgraph
of a planar graph is planar then every subgraph must have a vertex of degree at most 5. So
all planar graphs as 5−degenerate. ■

We use this theorem to again prove the 6−color theorem

Theorem 4.22 (6-color theorem). Every planar graph can be colored with 6 colors.

Proof. Since all planar graphs are 5−degenerate and any k−degenerate graph can be colored
with k + 1 colors, we can color any planar graph with 6 colors. ■
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Next we will find an upper bound for the number of edges in a k−degenerate graph.

Theorem 4.23. For every k−degenerate graph with v vertices, there is at most kv edges.

Proof. Notice that we can always take out a vertex with degree at most k at any point.
Every time we remove a vertex with degree at most k we are removing at most k edges. So
we can keep removing vertices until there are none left and we removed v vertices and at
most kv edges. So there are at most kv edges in the original graph. ■

4.5. Edge colorings.

Definition 16. An edge coloring of a graph is an assignment of colors to edges such that
any edges that share a vertex are different colors.

Theorem 4.24 (Vizing’s Theorem). If the maximum degree of a graph is ∆ then the graph
can be colored with either ∆+ 1 or ∆ colors.

Definition 17. If a graph requires ∆ + 1 vertices to be edge colored then we say it is class
2 otherwise it is class 1.

Definition 18. χ′(G) denotes the number of colors needed to color the edges of a graph G.

We will show an example of a class 1 and class 2 graph.

A1

A2

A3

B1

B2

B3

(a) Class 1: χ′(G) = ∆ = 3

1

2 3

(b) Class 2: χ′(G) = ∆+ 1 = 3

Theorem 4.25. All bi-partite graphs are class 1.

4.6. Trees.

Definition 19. A graph is maximally acyclic if adding a edge would make it not acyclic.

Definition 20. A graph is minimally connected if removing a edge would make it not
connected.

Definition 21. A tree is a graph that is maximally acyclic and minimally connected.

Here is an example of a tree.

A

B C

D E F G

Theorem 4.26. Every tree G has chromatic number at most 2

Proof. Since every tree has no cycles, it has no cycles of odd length. Therefore every tree is
bi-partite. So we can color our graph with 2 colors. ■



10 PURANJAY MADUPU

4.7. Graphs with max degree ∆.

Definition 22. Define the maximum degree of a graph with degree ∆

Theorem 4.27 (Brooks’ Theorem). For a connected graph G that isn’t complete and isn’t
an odd cycle it can always be colored with ∆ colors.

Before we look at the proof we first need to understand how the breadth-first search algorithm
works.

Definition 23. The distance between two vertices v and v′ is the number of edges in the
shortest path between them.

Definition 24. Breadth-First Search (BFS) is a graph traversal algorithm that explores
vertices in order of their distance from a chosen starting vertex. It begins at a root vertex v,
visits all vertices at distance 1, then all vertices at distance 2, and so on, until every vertex
has been visited.

Here is an example of BFS. If we start at the vertex A then we will visit vertices B and C.
After that we visit vertices D, E, and F . Finally we visit vertex G.

A

B

D

C

E

G

F

Proof of Brooks’ Theorem. To prove this we will use casework based on if G is regular or
not.
Case 1: Not Regular
If our graph is not regular then there exists a vertex with degree less than ∆. Let this vertex
be v. Then we can apply a BFS starting at v. We can list the vertices in the order we visit
each vertex. We color all the vertices in the reverse order of our list. Every time we try to
color a vertex it will have less than ∆ colored neighbors so we can assign it a color. So we
can color a graph with ∆ colors if it isn’t regular and isn’t complete and isn’t an odd cycle.
Case 2: Regular
If our graph is regular we use induction on the number of vertices. Let n be the number of
vertices in our graph. When n ≤ ∆ we can color each vertex a different color. Let x and y
be neighbors of a vertex v such that x and y aren’t neighbors. Then let P be a path starting
with vertices x, v, and y in that order. We can extend this path by adding a vertex v′ to the
path if all of it’s neighbors are in the path already. We can extend this path until we cannot
add any more vertices. Let’s say we have all the vertices in our path at the end. Then we
color x and y the same color. Now we pick a vertex which is adjacent to v′ that isn’t x or
y. Let this vertex be vi. We can color the vertices in the path starting at the vertex after
y in order until vi. Then we can color the remaining vertices in our path in reverse order.
Finally we can color v′. If we P doesn’t have all n vertices then let vl be the last vertex in P.
We know that all of the neighbors of vl are in P. Let ve be the neighbor of vl that appears
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the earliest in P. Then we know that all the vertices between ve and vl inclusive form a
cycle C. Next, we can consider the subgraph G′ = G−C. We can color G′ with ∆ colors by
induction. Since our graph is connected we know that C and G′ are connected. Let vc be
the vertex with latest index in our path such that it is connected to some u in G′. Then we
know that vl ̸= vc because vl has all its’ neighbors in C. We know that vc+1 cannot be con-
nected to u so we can assign it the same color as u. Then we can color the vertices vc+2 to vl
and then ve to vc−1 and then finally color vl.We can always color these vertices with ∆ colors.

Therefore, every graph that isn’t complete nor is an odd cycle is ∆−colorable ■

Here is an example of a coloring of a regular graph with ∆ colors.

A B

CD

E F

GH

Definition 25. An equitable coloring is an assignment of colors to vertices such that every
pair of color sets differs in size by at least one.

4.8. Unsolved Problems. Several open problems remain in the field of graph coloring:

• Equitable Coloring Conjecture: Is it true that every graph with maximum degree
∆ ≥ 2 has an equitable coloring using ∆ colors, except for Kn with odd n and ∆+1
colors?

• Total Coloring Conjecture: Can every graph be colored using at most ∆ + 2
colors such that no adjacent or incident elements (vertices or edges) share a color?

• Earth–Moon Problem: What is the exact chromatic number of the union of two
planar graphs?

4.9. Real-world Applications. Graph coloring has many practical uses:

• Scheduling: Assigning time slots to exams or tasks without conflicts. Equitable
coloring ensures balanced workloads.

• Frequency Assignment: Allocating frequencies to transmitters to avoid interfer-
ence. Equitable coloring balances frequency use.

• Register Allocation: Assigning variables to limited CPU registers in compilers,
modeled by graph coloring.
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