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Motivation and Setup

The Laplacian is a second-order differential operator
@ Measures how a function differs from its average value nearby
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@ In (ﬂat)3D space: V f = ax2 + 87)/2 =+ 92"
On curved surfaces we must account for the geometry of space and
hence use the Laplace-Beltrami operator.



Laplace-Beltrami Operator

On the 2-sphere S? it is defined as
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It's eigenfunctions are spherical harmonics, and these form a
complete basis for square-integrable functions ( [, |f(x)|? dx < co).

We seek all functions Y(6, ¢) satisfying: AgY = —AY



Formal Definition

Formal definition of Spherical Harmonics

Spherical harmonics Y : S? — C are defined by
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@ 0 € [0, 7] is the polar angle

e and ¢ € [0,2r) is the azimuthal angle
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@ PJ’(x) is the associated Legendre function

e N is the normalization constant



Orthonormality Theorem

Theorem (Orthonormality of Spherical Harmonics)

The spherical harmonics Y;"(0, ¢) are orthonormal in L2(S?), ie.,
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where dQ) = sin0 df d¢.

@ This means they form an orthonormal basis on the space of
square-integrable functions over the sphere.

@ Proven using properties of associated Legendre polynomials
and orthogonality of complex exponentials.



Proof- (1)

We evaluate the inner product:
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Substitute definitions:
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The first integral is:
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Now use the change of variable x = cosf = dx = —sinf d#f in the
second integral.



Proof- (2)
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Using the orthogonality of associated Legendre functions:
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Putting everything together:
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This evaluates to 1 by the definition of the normalization constant.



Completeness Theorem

Theorem (Completeness of Spherical Harmonics)

Any square-integrable function f € L?(S?) can be expanded as
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with convergence in the L?>-norm.

@ This shows that the {Y;"} form a complete orthonormal basis.

o Coefficients are computed by projection:
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Expansion Theorem

Theorem (Spherical Harmonic Expansion)

If f € L%(S?), then
o L
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@ Spherical harmonics act as Fourier modes on the sphere.

@ This expansion is used in physics, signal processing, and
solving PDEs on the sphere.



Hyperspherical Harmonics

@ On S”, we define harmonics as eigenfunctions of the
Laplace—Beltrami operator on the n-sphere:

AgnY = =AY

Eigenvalues: A =¢({ 4+ n—1)

Dimension of eigenspace:

dim(H,(S")) = ("—f) - ("ZSQ>

These generalize the classical Y;” and appear in quantum
mechanics and higher-dimensional PDEs.



Generalized Expansion

o Any function f € L?(S") can be written as:
f=2 > av a=(Y)

where Y/ runs over an orthonormal basis for #,(S").

@ Parseval’s still holds:
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@ These expansions are used in machine learning on manifolds,
cosmology, and mathematical physics.



Conclusion

Spherical harmonics arise as eigenfunctions of the
Laplace—Beltrami operator on S?

They form a complete orthonormal basis for L2(S?)
Enable spectral decompositions and solve PDEs on the sphere
Generalize beautifully to higher-dimensional spheres S”

Underlie many applications across physics, geometry, and
signal processing

Thank you!, Questions?



