Spherical Harmonics as Eigenfunctions of the Laplace-Beltrami Operator

Palaash Gang

Euler Circle, Mountain View, CA 94040

July 4, 2025

Motivation and Setup

The Laplacian is a second-order differential operator

- Measures how a function differs from its average value nearby
- In (flat)3D space: $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$.

On curved surfaces we must account for the geometry of space and hence use the Laplace-Beltrami operator.

Laplace-Beltrami Operator

On the 2-sphere \mathbb{S}^2 it is defined as

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}$$

It's eigenfunctions are spherical harmonics, and these form a complete basis for square-integrable functions $(\int_D |f(x)|^2 dx < \infty)$.

We seek all functions $Y(\theta,\phi)$ satisfying: $\Delta_{\mathbb{S}^2}Y=-\lambda Y$

Formal Definition

Formal definition of Spherical Harmonics

Spherical harmonics $Y_{\ell}^m:\mathbb{S}^2\to\mathbb{C}$ are defined by

$$Y_{\ell}^{m}(\theta,\phi) = N_{\ell}^{m} P_{\ell}^{m}(\cos\theta) e^{im\phi}, \quad N_{\ell}^{m} = \sqrt{\frac{2\ell+1}{4\pi} \cdot \frac{(\ell-|m|)!}{(\ell+|m|)!}}$$

- $\theta \in [0, \pi]$ is the polar angle
- and $\phi \in [0, 2\pi)$ is the azimuthal angle
- $\ell \in \mathbb{Z}_{>0}$, and $m \in \{-\ell, -\ell+1, \dots, \ell\}$
- $P_{\ell}^{m}(x)$ is the associated Legendre function
- N_{ℓ}^{m} is the normalization constant

Orthonormality Theorem

Theorem (Orthonormality of Spherical Harmonics)

The spherical harmonics $Y_{\ell}^{m}(\theta,\phi)$ are orthonormal in $L^{2}(\mathbb{S}^{2})$, i.e.,

$$\int_{\mathbb{S}^2} Y_{\ell}^{m}(\theta,\phi) \, \overline{Y_{\ell'}^{m'}(\theta,\phi)} \, d\Omega = \delta_{\ell\ell'} \delta_{mm'}$$

where $d\Omega = \sin \theta \, d\theta \, d\phi$.

- This means they form an orthonormal basis on the space of square-integrable functions over the sphere.
- Proven using properties of associated Legendre polynomials and orthogonality of complex exponentials.

Proof- (1)

We evaluate the inner product:

$$\langle Y_{\ell}^{m}, Y_{\ell'}^{m'} \rangle = \int_{0}^{2\pi} \int_{0}^{\pi} Y_{\ell}^{m}(\theta, \phi) \overline{Y_{\ell'}^{m'}(\theta, \phi)} \sin \theta \, d\theta \, d\phi$$

Substitute definitions:

$$=N_{\ell}^{m}N_{\ell'}^{m'}\int_{0}^{2\pi}e^{i(m-m')\phi}\,d\phi\cdot\int_{0}^{\pi}P_{\ell}^{m}(\cos\theta)P_{\ell'}^{m'}(\cos\theta)\sin\theta\,d\theta$$

The first integral is:

$$\int_0^{2\pi} e^{i(m-m')\phi} d\phi = 2\pi \delta_{mm'}$$

Now use the change of variable $x = \cos \theta \Rightarrow dx = -\sin \theta \ d\theta$ in the second integral.

Proof- (2)

$$\int_0^{\pi} P_{\ell}^m(\cos\theta) P_{\ell'}^m(\cos\theta) \sin\theta \, d\theta = \int_{-1}^1 P_{\ell}^m(x) P_{\ell'}^m(x) \, dx$$

Using the orthogonality of associated Legendre functions:

$$\int_{-1}^{1} P_{\ell}^{m}(x) P_{\ell'}^{m}(x) dx = \frac{2}{2\ell+1} \frac{(\ell+m)!}{(\ell-m)!} \delta_{\ell\ell'}$$

Putting everything together:

$$\langle Y_{\ell}^{m}, Y_{\ell'}^{m'} \rangle = 2\pi N_{\ell}^{m} N_{\ell'}^{m'} \cdot \frac{2}{2\ell+1} \cdot \frac{(\ell+m)!}{(\ell-m)!} \cdot \delta_{mm'} \delta_{\ell\ell'}$$

This evaluates to 1 by the definition of the normalization constant.

Completeness Theorem

Theorem (Completeness of Spherical Harmonics)

Any square-integrable function $f \in L^2(\mathbb{S}^2)$ can be expanded as

$$f(\theta,\phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell}^{m} Y_{\ell}^{m}(\theta,\phi)$$

with convergence in the L^2 -norm.

- This shows that the $\{Y_{\ell}^m\}$ form a complete orthonormal basis.
- Coefficients are computed by projection:

$$a_{\ell}^{m} = \int_{\mathbb{S}^{2}} f(\theta, \phi) \, \overline{Y_{\ell}^{m}(\theta, \phi)} \, d\Omega$$

Expansion Theorem

Theorem (Spherical Harmonic Expansion)

If $f \in L^2(\mathbb{S}^2)$, then

$$f(\theta,\phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell}^m Y_{\ell}^m(\theta,\phi), \quad \text{where} \quad a_{\ell}^m = \langle f, Y_{\ell}^m \rangle$$

and

$$||f||^2 = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} |a_{\ell}^m|^2$$
 (Parseval's Identity).

- Spherical harmonics act as Fourier modes on the sphere.
- This expansion is used in physics, signal processing, and solving PDEs on the sphere.

Hyperspherical Harmonics

• On \mathbb{S}^n , we define harmonics as eigenfunctions of the Laplace–Beltrami operator on the *n*-sphere:

$$\Delta_{\mathbb{S}^n} Y = -\lambda Y$$

- Eigenvalues: $\lambda = \ell(\ell + n 1)$
- Dimension of eigenspace:

$$\dim(\mathcal{H}_{\ell}(\mathbb{S}^n)) = \binom{n+\ell}{\ell} - \binom{n+\ell-2}{\ell-2}$$

• These generalize the classical Y_{ℓ}^{m} and appear in quantum mechanics and higher-dimensional PDEs.

Generalized Expansion

• Any function $f \in L^2(\mathbb{S}^n)$ can be written as:

$$f = \sum_{\ell=0}^{\infty} \sum_{j=1}^{d_\ell} a^j_\ell Y^j_\ell, \quad a^j_\ell = \langle f, Y^j_\ell \rangle$$

where Y^j_ℓ runs over an orthonormal basis for $\mathcal{H}_\ell(\mathbb{S}^n)$.

Parseval's still holds:

$$||f||^2 = \sum_{\ell=0}^{\infty} \sum_{j=1}^{d_{\ell}} |a_{\ell}^j|^2$$

 These expansions are used in machine learning on manifolds, cosmology, and mathematical physics.

Conclusion

- Spherical harmonics arise as eigenfunctions of the Laplace–Beltrami operator on \mathbb{S}^2
- They form a complete orthonormal basis for $L^2(\mathbb{S}^2)$
- Enable spectral decompositions and solve PDEs on the sphere
- Generalize beautifully to higher-dimensional spheres \mathbb{S}^n
- Underlie many applications across physics, geometry, and signal processing

Thank you!, Questions?