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Abstract. This paper constructs spherical harmonics as eigenfunctions of the Laplace-
Beltrami operator on the sphere. Starting from first principles, we derive their explicit
form and establish orthonormality and completeness in L2(S2). We then prove key struc-
tural results including the Addition Theorem and reproducing kernel formulation, and con-
clude by generalizing to higher-dimensional spheres. Finally, we extend the framework to
higher-dimensional spheres by constructing hyperspherical harmonics and generalizing the
expansion theory to an n-sphere.

1. Introduction

Spherical harmonics arise from the question: how can we describe functions defined on
the surface of a sphere? They thus provide a powerful framework for mathematical physics.
These functions, arising naturally as solutions to Laplace’s equation in spherical coordinates,
generalise the Fourier series to spherical geometries. Their significance lies in their ability
to decompose functions on the sphere into orthogonal components, proving useful across
diverse fields such as physics, geophysics, computer graphics, and quantum mechanics.

Historically we can trace their study to the 18th century, with early contributions from
Pierre-Simon Laplace and Adrien-Marie Legendre. Legendre’s work on polynomial solutions
laid the groundwork for what we now call Legendre polynomials, which form the basis of
spherical harmonics. By the 19th century, these functions were formalized by scientists like
William Thomson (Lord Kelvin) and James Clerk Maxwell, who applied them to problems
in electromagnetism and gravitational potential theory.

Bringing us to the main question, why care about spherical harmonics? They’re a natural
fit for problems with rotational symmetry or angular behavior in 3D space. Formally, they
form a complete orthonormal basis for the space of square-integrable functions on the unit
sphere, L2(S2), meaning any function f(θ, ϕ) on the sphere can be expressed as f(θ, ϕ) =∑∞

l=0

∑l
m=−l clmY

m
l (θ, ϕ), where Y m

l are the spherical harmonics and clm are coefficients.
This property makes them a powerhouse for spectral analysis, especially in today’s world
of big data and computational modeling, from studying Earth’s magnetic field to rendering
realistic lighting in video games.

This paper provides a comprehensive and introductory exposition of spherical harmonics,
beginning with their derivation from the Laplace-Beltrami operator on S2 and their funda-
mental properties, including orthonormality, completeness, and the expansion of functions.
We delve into key results such as Parseval’s identity, the addition theorem, and the role of
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zonal harmonics and reproducing kernels. The discussion then extends to spherical harmon-
ics on Sn, covering their definition, orthonormality, completeness, and expansion properties
in higher dimensions. This paper aims to present these results in a clear and rigorous frame-
work.
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2. Preliminaries: Mathematical Framework

We work in the Euclidean space Rn, the set of all ordered n-tuples of real numbers: Rn =
{(x1, x2, . . . , xn) | xi ∈ R}, equipped with the standard inner product ⟨x,y⟩ =

∑n
i=1 xiyi,

and norm ∥x∥ =
√

⟨x,x⟩. Within R3, the unit 2-sphere is defined as

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.

For functions defined on S2, it is convenient to use spherical coordinates, related to Carte-
sian coordinates by: x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ, where r ≥ 0, θ ∈ [0, π]
is the polar angle, and ϕ ∈ [0, 2π) is the azimuthal angle. Restricting to the unit sphere
r = 1, the coordinate transformation (θ, ϕ) 7→ (x, y, z) has Jacobian determinant equal to
sin θ, which gives rise to the surface element dΩ = sin θ dθ dϕ.
We work in the space L2(S2), consisting of complex-valued measurable functions

f : S2 → C for which

∫
S2
|f(θ, ϕ)|2 dΩ < ∞.

The space L2(S2) consists of all complex-valued measurable functions defined on the unit
sphere S2 such that the square of their absolute value is integrable, and finite, over the
sphere. The spherical harmonics Y m

ℓ (θ, ϕ) form a complete orthonormal basis for L2(S2).

L2(S2) =

{
f : S2 → C

∣∣∣∣ ∫
S2
|f(θ, ϕ)|2 dΩ < ∞

}
.

The inner product on this space is

⟨f, g⟩ =
∫ 2π

0

∫ π

0

f(θ, ϕ)g(θ, ϕ) sin θ dθ dϕ,

with corresponding norm ∥f∥ =
√

⟨f, f⟩. Two functions f , g are orthogonal if ⟨f, g⟩ = 0,
and a set {ϕn} is orthonormal if

⟨ϕn, ϕm⟩ = δnm, where δnm =

{
1 if n = m,

0 if n ̸= m.

The Laplacian in R3 is defined by

(2.1) ∇2f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
.
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In spherical coordinates, this becomes

(2.2) ∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
.

We consider the eigenvalue problem

∆S2f + λf = 0, where λ ∈ R

is the eigenvalue and f ̸≡ 0 is the corresponding eigenfunction. The collection of such eigen-
functions forms a complete orthonormal basis for L2(S2), and the eigenvalues are nonpositive
reals. To solve this problem, we use separation of variables, assuming a product solution
f(θ, ϕ) = Θ(θ)Φ(ϕ). Substituting into the eigenvalue equation separates it into two ODEs.
The azimuthal part yields:

d2Φ

dϕ2
+m2Φ = 0,

whose general solution is Φ(ϕ) = eimϕ = cis(mϕ), m ∈ Z. The polar equation becomes:

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ
Θ+ λΘ = 0.

By substituting x = cos θ, this transforms into the associated Legendre differential equa-
tion:

(2.3) (1− x2)
d2P

dx2
− 2x

dP

dx
+

[
ℓ(ℓ+ 1)− m2

1− x2

]
P = 0.

Solutions to this equation are the associated Legendre functions Pm
ℓ (x), defined for integers

ℓ ≥ 0, |m| ≤ ℓ, by

Pm
ℓ (x) = (1− x2)|m|/2 d|m|

dx|m|Pℓ(x),

where Pℓ(x) are the Legendre polynomials [11](c.4), satisfying

(1− x2)
d2Pℓ

dx2
− 2x

dPℓ

dx
+ ℓ(ℓ+ 1)Pℓ(x) = 0.

The Legendre polynomials are orthogonal on the interval [−1, 1] with respect to the con-
stant weight p(x) = 1: ∫ 1

−1

Pℓ(x)Pk(x) dx = 0 if ℓ ̸= k.

The functions Pm
ℓ (cos θ) and eimϕ combine to form the basis of the spherical harmonics,

which solve the Laplace–Beltrami eigenproblem and span L2(S2). Their construction and
properties will be the subject of the next sections.

3. Deriving the Spherical Harmonics from the Laplace–Beltrami Operator

3.1. Motivation and Setup. The Laplacian is a differential operator that quantifies how
much a function differs from the average of nearby values. It is defined as the divergence
of the gradient: ∆f = ∇ · (∇f) and invariant under rotations and translations. Because
it detects local imbalances, it plays a central role to various branches of physics. However,
on curved surfaces, the standard Laplacian no longer captures these properties correctly, as
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it fails to account for the geometry of the surface. Hence the Laplace-Beltrami operator is
used to make the gradient and divergence intrinsic to the geometry of the surface.

3.2. Laplace-Beltrami Operator. In R3, Laplace’s equation is given by ∇2f = 0. For
problems exhibiting spherical symmetry, we express the Laplacian in spherical coordinates.
By applying the chain rule and expressing partial derivatives with respect to x, y, z in terms
of r, θ, ϕ, one obtains the standard form (2.2):

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
.

A detailed derivation is computational and standard, and can be found in many math ref-
erences. [13]. On the unit sphere r = 1, the radial part drops out, and we define the
Laplace–Beltrami operator on S2 as

(3.1) ∆S2f =
1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂ϕ2
.

3.3. Eigenvalue problem, separation of variables. We now study the eigenvalue prob-
lem for the Laplace-Beltrami operator on the sphere. Given a smooth function f : S2 → C,
we wish to find all solutions to the partial differential equation ∆S2f + λf = 0, where λ ∈ R
is an eigenvalue. To solve this analytically, we assume that the eigenfunctions admit a
separable form:

f(θ, ϕ) = Θ(θ)Φ(ϕ),

where Θ depends only on the polar angle θ, and Φ on the azimuthal angle ϕ. Substituting
into the operator yields:

∆S2f =

(
1

sin θ

d

dθ

(
sin θ

dΘ

dθ

))
Φ(ϕ) +

(
1

sin2 θ

d2Φ

dϕ2

)
Θ(θ).

Substituting into the eigenvalue equation and dividing by Θ(θ)Φ(ϕ), we obtain:

1

Θ

(
1

sin θ

d

dθ

(
sin θ

dΘ

dθ

))
+

1

Φ

(
1

sin2 θ

d2Φ

dϕ2

)
+ λ = 0.

This expression separates variables: the first term depends only on θ, and the second
only on ϕ. As a result, each term must equal a constant. We write 1

Φ
d2Φ
dϕ2 = −m2, for some

separation constant m ∈ R, and thus obtain the two decoupled equations:

• Azimuthal equation:

(3.2)
d2Φ

dϕ2
+m2Φ = 0,

• Polar equation:

(3.3)
1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ
Θ+ λΘ = 0.

To ensure that the solution f(θ, ϕ) is single-valued on the sphere, we impose periodicity
in ϕ: Φ(ϕ+ 2π) = Φ(ϕ), which implies that m ∈ Z. We will analyze each of these ODEs in
the following subsections.
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3.4. Solving the Azimuthal Equation. From separation of variables, the azimuthal com-
ponent Φ(ϕ) satisfies (3.2)

d2Φ

dϕ2
+m2Φ = 0.

The general solution is Φ(ϕ) = Ceimϕ +De−imϕ, m ∈ R.To ensure f(θ, ϕ) = Θ(θ)Φ(ϕ) is
single-valued and continuous on the sphere, we impose Φ(ϕ+2π) = Φ(ϕ), which holds if and
only if m ∈ Z.
We define the normalized azimuthal basis functions

Φm(ϕ) =
1√
2π

eimϕ, m ∈ Z, which satisfy

∫ 2π

0

Φm(ϕ)Φn(ϕ) dϕ = δmn.

These will serve as the azimuthal factors in the spherical harmonics.

3.5. Solving the Polar Equation: Associated Legendre Functions. After separating
the azimuthal variable, the remaining ODE for the polar component Θ(θ) becomes (3.3):

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ
Θ+ λΘ = 0.

This is a second-order linear ODE with singularities at θ = 0 and θ = π, corresponding (un-
surprisingly!) to the poles of the sphere. To simplify the analysis, we perform a change in
variables by letting x = cos θ, so that x ∈ [−1, 1]. Using the chain rule:

dΘ

dθ
= − sin θ

dΘ

dx
,

d2Θ

dθ2
= − cos θ

dΘ

dx
+ sin2 θ

d2Θ

dx2
.

Substituting into the equation transforms it into:

(1− x2)
d2Θ

dx2
− 2x

dΘ

dx
+

[
λ− m2

1− x2

]
Θ = 0.

This is the associated Legendre differential equation, and we denote its solutions by Pm
ℓ (x),

where ℓ ≥ |m| is an integer and λ = ℓ(ℓ+ 1). These conditions arise from requiring:

• Finite behavior at the endpoints x = ±1,
• Polynomial solutions to ensure regularity at the poles,
• Orthogonality under a suitable weight function p(x) = 1:∫ 1

−1

Pm
ℓ (x)Pm

k (x) dx = 0 if ℓ ̸= k.

The general solution is (Rodrigues’ formula):

Pm
ℓ (x) = (1− x2)|m|/2 d|m|

dx|m|Pℓ(x),

where Pℓ(x) is the Legendre polynomial of degree ℓ, satisfying:

(1− x2)
d2Pℓ

dx2
− 2x

dPℓ

dx
+ ℓ(ℓ+ 1)Pℓ(x) = 0.

By solving the polar equation, we obtain the complete set of angular functions needed for
constructing spherical harmonics, which take the form

(3.4) Y m
ℓ (θ, ϕ) = Nm

ℓ Pm
ℓ (cos θ)eimϕ,
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Figure 1. Visualisations of Y real
ℓm

where Nm
ℓ is a normalization constant. More specifically,

(3.5) Nm
ℓ =

√
2ℓ+ 1

4π
· (ℓ−m)!

(ℓ+m)!

We will derive this result in subsequent sections.

3.6. Visualisations [14]. To develop an intuitive understanding of spherical harmonics,
Fig 1 presents the first few real-valued spherical harmonic functions up to degree ℓ = 3. The
real-valued spherical harmonics are defined as:

Y real
ℓm (θ, ϕ) =


√
2Nℓm Pm

ℓ (cos θ) cos(mϕ), m > 0,

Nℓ0 P
0
ℓ (cos θ), m = 0,

√
2Nℓ|m| P

|m|
ℓ (cos θ) sin(|m|ϕ), m < 0,

where Pm
ℓ denotes the associated Legendre function and Nℓm is a normalization constant

that ensures orthonormality on the sphere.
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ℓ m Y real
ℓm (θ, ϕ)

0 0
√

1
4π

1

−1
√

3
4π

sin θ sinϕ

0
√

3
4π

cos θ

1
√

3
4π

sin θ cosϕ

2

−2
√

15
4π

sin2 θ sin(2ϕ)

−1
√

15
4π

sin θ cos θ sinϕ

0
√

5
16π

(3S2θ − 1)

1
√

15
4π

sin θ cos θ cosϕ

2
√

15
4π

sin2 θ cos(2ϕ)

3

−3
√

35
2π

sin3 θ sin(3ϕ)

−2
√

105
4π

sin2 θ cos θ sin(2ϕ)

−1
√

21
64π

sin θ(5S2θ − 1) sinϕ

0
√

7
16π

cos θ(5S2θ − 3)

1
√

21
64π

sin θ(5S2θ − 1) cosϕ

2
√

105
4π

sin2 θ cos θ cos(2ϕ)

3
√

35
2π

sin3 θ cos(3ϕ)

Table 1. Real spherical harmonics Y real
ℓm (θ, ϕ) for degrees ℓ = 0 to 3

To visualize these functions in Fig 1 , we can represent the value of the function as the radius.
Each spherical harmonic’s nodal structure and symmetry become apparent in these plots.
For example, functions with |m| > 0 display azimuthal variation (variation in longitude-
azimuthal angle ϕ), while m = 0 modes are zonal (variation in latitude- polar angle θ) and
symmetric around the z-axis.

4. Orthonormality, Completeness and Basic Properties

4.1. Formal definition of Spherical Harmonics. Let ℓ ∈ Z≥0, and m ∈ {−ℓ,−ℓ +
1, . . . , ℓ}. Spherical harmonics Y m

ℓ : S2 → C are defined by (3.4):

Y m
ℓ (θ, ϕ) = Nm

ℓ Pm
ℓ (cos θ) eimϕ,

where:

• θ ∈ [0, π] is the polar angle,
• ϕ ∈ [0, 2π) is the azimuthal angle,
• Pm

ℓ (x) is the associated Legendre function of degree ℓ and order m,
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• Nm
ℓ is the normalization constant given by (3.5)

Nm
ℓ =

√
2ℓ+ 1

4π
· (ℓ− |m|)!
(ℓ+ |m|)!

.

4.2. Orthonormality and Derivation of the Normalization Constant.

Theorem 4.1. [Orthonormality of Spherical Harmonics] The spherical harmonics Y m
ℓ (θ, ϕ) =

Nm
ℓ Pm

ℓ (cos θ) eimϕ are orthonormal in L2(S2) with respect to the inner product

⟨f, g⟩ =
∫ 2π

0

∫ π

0

f(θ, ϕ) g(θ, ϕ) sin θ dθ dϕ,

provided that the normalization constant Nm
ℓ is chosen as Nm

ℓ =
√

2ℓ+1
4π

· (ℓ−m)!
(ℓ+m)!

.

Proof. We compute the inner product of two spherical harmonics:

⟨Y m
ℓ , Y n

k ⟩ =
∫ 2π

0

∫ π

0

Y m
ℓ (θ, ϕ)Y n

k (θ, ϕ) sin θ dθ dϕ.

Substituting the definitions:

= Nm
ℓ Nn

k

∫ 2π

0

ei(m−n)ϕ dϕ ·
∫ π

0

Pm
ℓ (cos θ)P n

k (cos θ) sin θ dθ.

Make the substitution x = cos θ, dx = − sin θ dθ, so the second integral becomes:∫ 1

−1

Pm
ℓ (x)P n

k (x) dx.

Now apply orthogonality of exponentials and associated Legendre functions:∫ 2π

0

ei(m−n)ϕ dϕ = 2πδmn,∫ 1

−1

Pm
ℓ (x)Pm

k (x) dx =
2(ℓ+m)!

(2ℓ+ 1)(ℓ−m)!
δℓk.

Combining both:

⟨Y m
ℓ , Y n

k ⟩ = |Nm
ℓ |2 · 2π · 2(ℓ+m)!

(2ℓ+ 1)(ℓ−m)!
δℓkδmn.

To ensure orthonormality, we require: ⟨Y m
ℓ , Y n

k ⟩ = δℓkδmn.
Thus, we solve for the modulus squared of the normalization constant:

|Nm
ℓ |2 = (2ℓ+ 1)

4π
· (ℓ−m)!

(ℓ+m)!
,

and take the positive square root:

Nm
ℓ =

√
2ℓ+ 1

4π
· (ℓ−m)!

(ℓ+m)!
.

Remark 4.2. Once the correct normalization is known, orthonormality may alternatively be
verified directly by substituting into the integral form, the statement and proof of which
follows in 4.3
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Theorem 4.3. The complex spherical harmonics {Y m
ℓ }ℓ≥0, −ℓ≤m≤ℓ satisfy the orthonormality

relation

(4.1)

∫ 2π

0

∫ π

0

Y m
ℓ (θ, ϕ)Y m′

ℓ′ (θ, ϕ) sin θ dθ dϕ = δℓℓ′ δmm′

Proof. We compute:

⟨Y m
ℓ , Y m′

ℓ′ ⟩ =
∫ 2π

0

∫ π

0

Y m
ℓ (θ, ϕ)Y m′

ℓ′ (θ, ϕ) sin θ dθ dϕ.

Substituting the definitions, Y m
ℓ (θ, ϕ) = Nm

ℓ P
|m|
ℓ (cos θ)eimϕ, Y m′

ℓ′ (θ, ϕ) = Nm′

ℓ′ P
|m′|
ℓ′ (cos θ)e−im′ϕ,

so the product becomes:

⟨Y m
ℓ , Y m′

ℓ′ ⟩ = Nm
ℓ Nm′

ℓ′

∫ 2π

0

ei(m−m′)ϕ dϕ

∫ π

0

P
|m|
ℓ (cos θ)P

|m′|
ℓ′ (cos θ) sin θ dθ.

From standard orthogonality relations:∫ 2π

0

ei(m−m′)ϕ dϕ = 2π δmm′ and

∫ π

0

P
|m|
ℓ (cos θ)P

|m|
ℓ′ (cos θ) sin θ dθ =

2

2ℓ+ 1
·(ℓ+ |m|)!
(ℓ− |m|)!

δℓℓ′ .

Thus,

⟨Y m
ℓ , Y m′

ℓ′ ⟩ = Nm
ℓ Nm′

ℓ′ · 2π · δmm′ · 2

2ℓ+ 1
· (ℓ+ |m|)!
(ℓ− |m|)!

· δℓℓ′ .

When ℓ = ℓ′ and m = m′, we substitute (Nm
ℓ )2:

(Nm
ℓ )2 =

2ℓ+ 1

4π
· (ℓ− |m|)!
(ℓ+ |m|)!

,

so

⟨Y m
ℓ , Y m

ℓ ⟩ =
(
2ℓ+ 1

4π
· (ℓ− |m|)!
(ℓ+ |m|)!

)
· 2π · 2

2ℓ+ 1
· (ℓ+ |m|)!
(ℓ− |m|)!

= 1.

Therefore, ⟨Y m
ℓ , Y m′

ℓ′ ⟩ = δℓℓ′δmm′ .

4.3. Completeness of Y m
ℓ . Further, we state that the spherical harmonics {Y m

ℓ (θ, ϕ)}, for
ℓ ≥ 0 and −ℓ ≤ m ≤ ℓ, form a complete orthonormal system in L2(S2).

Theorem 4.4. [Completeness theorem] The set of spherical harmonics {Y m
ℓ : ℓ ≥ 0,−ℓ ≤

m ≤ ℓ} forms a complete orthonormal system in L2(S2).

Lemma 4.5. Let f ∈ L2(S2), and suppose that

⟨f, Y m
ℓ ⟩ =

∫
S2
f(θ, ϕ)Y m

ℓ (θ, ϕ) dΩ = 0, {∀ℓ ≥ 0,−ℓ ≤ m ≤ ℓ}.

Then f = 0 in L2(S2).

Proof. Let V ⊂ L2(S2) be the subspace of finite linear combinations of spherical harmonics:
V = span{Y m

ℓ }. If ⟨f, Y m
ℓ ⟩ = 0 for all ℓ,m, then f ∈ V ⊥, the orthogonal complement of

V . Since the spherical harmonics are eigenfunctions of the Laplace-Beltrami operator and
form a countable orthonormal set, the set V is dense in L2(S2). Therefore, the only function

orthogonal to all of V is the zero function, and hence f = 0 in L2.
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Proof of Theorem 4.4. We have already shown that the spherical harmonics form an or-
thonormal set in L2(S2). By the lemma above, the only function orthogonal to all of them
is the zero function. This means the orthogonal complement of their span is trivial, so
their span is dense in L2(S2). Hence, the spherical harmonics form a complete orthonormal

system.

4.4. Basic Properties.

Claim 4.6. The spherical harmonics Y m
ℓ satisfy ∆S2Y

m
ℓ = −ℓ(ℓ+ 1)Y m

ℓ .

Proof. We write the spherical harmonic (3.4) as Y m
ℓ (θ, ϕ) = Pm

ℓ (cos θ) · eimϕ. Applying the
Laplace-Beltrami operator (3.1) gives:

∆S2Y
m
ℓ =

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ
Pm
ℓ (cos θ)

)
+

1

sin2 θ
· ∂2

∂ϕ2

]
· eimϕ.

Since ∂2

∂ϕ2 e
imϕ = −m2eimϕ, the second term becomes:

− m2

sin2 θ
Pm
ℓ (cos θ) · eimϕ.

For the first term, we use the identity for associated Legendre functions (2.3):

1

sin θ

d

dθ

(
sin θ

d

dθ
Pm
ℓ (cos θ)

)
= −ℓ(ℓ+ 1)Pm

ℓ (cos θ) +
m2

sin2 θ
Pm
ℓ (cos θ).

Multiplying by eimϕ, the first term becomes:(
−ℓ(ℓ+ 1)Pm

ℓ +
m2

sin2 θ
Pm
ℓ

)
eimϕ.

Adding both parts, we obtain:

∆S2Y
m
ℓ =

[
−ℓ(ℓ+ 1)Pm

ℓ +
m2

sin2 θ
Pm
ℓ

]
eimϕ − m2

sin2 θ
Pm
ℓ eimϕ.

The m2

sin2 θ
terms cancel, yielding: ∆S2Y

m
ℓ = −ℓ(ℓ+1)Pm

ℓ (cos θ)eimϕ = −ℓ(ℓ+1)Y m
ℓ (θ, ϕ).

Remark 4.7. Note that Y m
ℓ is an eigenfunction to the laplace-beltrami operator ∆S2 with the

corresponding eigenvalue ℓ(ℓ+ 1).

Claim 4.8. The spherical harmonics satisfy Y m
ℓ (θ, ϕ) = (−1)mY −m

ℓ (θ, ϕ).

Proof. Using the definition Y m
ℓ (θ, ϕ) = Nm

ℓ Pm
ℓ (cos θ)eimϕ, we compute

the complex conjugate: Y m
ℓ (θ, ϕ) = Nm

ℓ Pm
ℓ (cos θ)e−imϕ.

From the identity N−m
ℓ = (−1)mNm

ℓ , it follows that Y m
ℓ (θ, ϕ) = (−1)mY −m

ℓ (θ, ϕ).

Theorem 4.9. For all integers ℓ ≥ 0 and −ℓ ≤ m ≤ ℓ, the spherical harmonic Y m
ℓ (θ, ϕ)

satisfies the identity:

(4.2) Y m
ℓ (π − θ, ϕ+ π) = (−1)ℓY m

ℓ (θ, ϕ).

Proof. We use the explicit expression for spherical harmonics (3.4): Y m
ℓ (θ, ϕ) = NℓmP

m
ℓ (cos θ) eimϕ,

Under the transformation (θ, ϕ) 7→ (π − θ, ϕ+ π), we have:

cos(π − θ) = − cos θ, eim(ϕ+π) = (−1)meimϕ.

Also, associated Legendre functions satisfy: Pm
ℓ (−x) = (−1)ℓ+mPm

ℓ (x).
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Substituting into the expression:

Y m
ℓ (π − θ, ϕ+ π) = NℓmP

m
ℓ (− cos θ) (−1)meimϕ

= (−1)ℓ+m(−1)mNℓmP
m
ℓ (cos θ) eimϕ

= (−1)ℓY m
ℓ (θ, ϕ).

4.5. Spherical harmonics expansion.

Theorem 4.10. The Laplace spherical harmonics Y m
ℓ : S2 → C form a complete orthonor-

mal system in the Hilbert space L2(S2) of square-integrable complex-valued functions on the
unit sphere. As such, any function f ∈ L2(S2) can be expressed as:

f(θ, ϕ) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

fm
ℓ Y m

ℓ (θ, ϕ),

where the coefficients are given by

fm
ℓ =

∫
S2
f(θ, ϕ)Y m∗

ℓ (θ, ϕ) dΩ =

∫ 2π

0

∫ π

0

f(θ, ϕ)Y m∗
ℓ (θ, ϕ) sin θ dθ dϕ.

This expansion converges in the L2-norm:

lim
N→∞

∫ 2π

0

∫ π

0

∣∣∣∣∣f(θ, ϕ)−
N∑
ℓ=0

ℓ∑
m=−ℓ

fm
ℓ Y m

ℓ (θ, ϕ)

∣∣∣∣∣
2

sin θ dθ dϕ = 0.

Proof. Let {Y m
ℓ } denote the full system of spherical harmonics. These functions satisfy the

orthonormality relation 4.3:∫
S2
Y m
ℓ (θ, ϕ)Y m′∗

ℓ′ (θ, ϕ) dΩ = δℓℓ′δmm′ .

Given f ∈ L2(S2), we define its projection onto the basis function Y m
ℓ as:

(4.3) ⟨f, Y m
ℓ ⟩ =

∫
S2
f(θ, ϕ)Y m∗

ℓ (θ, ϕ) dΩ.

Define the partial sum of the expansion:

(4.4) SN(θ, ϕ) =
N∑
ℓ=0

ℓ∑
m=−ℓ

fm
ℓ Y m

ℓ (θ, ϕ).

We now consider the error:

∥f − SN∥2L2(S2) =

∫
S2
|f(θ, ϕ)− SN(θ, ϕ)|2 dΩ.

By the Pythagorean identity in Hilbert spaces, and the fact that SN is the orthogonal
projection of f onto the finite-dimensional subspace spanned by {Y m

ℓ : ℓ ≤ N}, this error is
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minimized. Since {Y m
ℓ } is a complete orthonormal basis, we have: limN→∞ ∥f − SN∥2L2(SS) =

0, which yields the convergence result:

(4.5) lim
N→∞

∫ 2π

0

∫ π

0

∣∣∣∣∣f(θ, ϕ)−
N∑
ℓ=0

ℓ∑
m=−ℓ

fm
ℓ Y m

ℓ (θ, ϕ)

∣∣∣∣∣
2

sin θ dθ dϕ = 0.

Remark 4.11. The appearance of the complex conjugate arises from the definition of the
inner product in complex Hilbert spaces, where ⟨f, g⟩ =

∫
S2 f(θ, ϕ) g(θ, ϕ) dΩ.

Corollary 4.12. A square-integrable function f : S2 → R can also be expanded in terms of
the real harmonics Yℓm : S2 → R as a sum

f(θ, ϕ) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

fℓm Yℓm(θ, ϕ).

Theorem 4.13 (Parseval’s Identity). Let f ∈ L2(S2) have the spherical harmonic expansion

f(θ, ϕ) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

amℓ Y
m
ℓ (θ, ϕ), where amℓ =

∫
S2

f(θ, ϕ)Y m
ℓ (θ, ϕ) dΩ,

Then, ∫
S2

|f(θ, ϕ)|2 dΩ =
∞∑
ℓ=0

ℓ∑
m=−ℓ

|amℓ |2.

Proof. We compute:∫
S2

|f(θ, ϕ)|2 dΩ =

∫
S2

∣∣∣∣∣∑
ℓ,m

amℓ Y
m
ℓ (θ, ϕ)

∣∣∣∣∣
2

dΩ =

∫
S2

(∑
ℓ,m

amℓ Y
m
ℓ

)(∑
ℓ′,m′

am
′

ℓ′ Y
m′
ℓ′

)
dΩ.

Expansion of the product gives us:

=
∑
ℓ,m

∑
ℓ′,m′

amℓ a
m′
ℓ′

∫
S2

Y m
ℓ Y m′

ℓ′ dΩ.

By orthonormality (4.3), all terms with (ℓ,m) ̸= (ℓ′,m′) are zero, and only the diagonal
terms (ℓ,m) = (ℓ′,m′) remain. Hence,∫

S2

|f(θ, ϕ)|2 dΩ =
∞∑
ℓ=0

ℓ∑
m=−ℓ

|amℓ |2.

5. Further Results on Spherical Harmonics

5.1. Addition Theorem. [1, p.797-800]

Lemma 5.1. Two angles (θ1, ϕ1) and (θ2, ϕ2) in the spherical co-ordinate system, are sepa-
rated by an angle γ, and the satisfy the identity

cos(γ) = cos(θ1) cos(θ2) + sin(θ1) sin(θ2) cos(ϕ1 − ϕ2)
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Proof. The Cartesian position vector r1 is given byr1 = ⟨sin θ1 cosϕ1, sin θ1 sinϕ1, cos θ1⟩,
and the Cartesian position vector r2, by r2 = ⟨sin θ2 cosϕ2, sin θ2 sinϕ2, cos θ2⟩. Recall
that the dot product of two vectors gives the cosine of the angle between them: r1 · r2 =
|r1||r2| cos γ. Since both are unit vectors, |r1| = |r2| = 1, so cos γ = r1 · r2. Computing the
dot product:

r1 · r2 = (sin θ1 cosϕ1)(sin θ2 cosϕ2) + (sin θ1 sinϕ1)(sin θ2 sinϕ2) + (cos θ1)(cos θ2)

= sin θ1 sin θ2[cosϕ1 cosϕ2 + sinϕ1 sinϕ2] + cos θ1 cos θ2

= sin θ1 sin θ2 cos(ϕ1 − ϕ2) + cos θ1 cos θ2.

Hence,

(5.1) cos γ = cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2).

Theorem 5.2. Let r, r′ ∈ S2, and let γ (5.1) denote the angle between them, cos γ = r · r′.
Then, for each n ∈ N0, the following identity holds:

Pn(cos γ) =
4π

2n+ 1

n∑
m=−n

Y m
n (θ, ϕ)Y m

n (θ′, ϕ′),

Proof. We follow the inductive approach of outlined in [12], which rewrites both sides in terms
of trigonometric expansions and proves equality of coefficients. Let the spherical coordinates
of r, r′ ∈ S2 be r = (θ, ϕ), r′ = (θ′, ϕ′). Define t = θ, T = θ′, and let Φ = ϕ− ϕ′. Then, the
spherical angle γ between r and r′ satisfies (5.1):

cos γ = cos t cosT + sin t sinT cosΦ.

Base cases: For n = 0, we have P0(x) = 1, and the RHS becomes:

4π

1
· Y 0

0 (θ, ϕ)Y
0
0 (θ

′, ϕ′) = 4π · 1

4π
= 1.

For n = 1, P1(x) = x, and using equation (5.1), we have:

P1(cos γ) = cos γ = cos t cosT + sin t sinT cosΦ,

which matches the sum over Y m
1 Y m

1 .
Inductive hypothesis: Suppose the theorem holds for degrees n− 1 and n, i.e.,

Pn(cos γ) =
n∑

k=0

Ak cos(kΦ), Pn−1(cos γ) =
n−1∑
k=0

Bk cos(kΦ),

where Ak, Bk depend on t and T .
Recurrence: Use the Legendre polynomial recurrence:

(5.2) (n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x).

Substituting x = cos γ in (5.2) and using (5.1), we get:

(5.3) Pn+1(cos γ) =
1

n+ 1
[(2n+ 1) cos γ · Pn(cos γ)− nPn−1(cos γ)] .

We expand Pn(cos γ) and Pn−1(cos γ) into trigonometric polynomials in cos(kΦ), and observe
that multiplying cos γ (which contains cosΦ) with cos(kΦ) yields terms of the form
cos((k ± 1)Φ) via:
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(5.4) cosΦ · cos(kΦ) = 1

2
[cos((k + 1)Φ) + cos((k − 1)Φ)] .

Thus, cos γ ·Pn(cos γ) produces a trigonometric polynomial of degree n+1, and so does the
recurrence (5.3). We write:

Pn+1(cos γ) =
n+1∑
k=0

A
(n+1)
k cos(kΦ),

and compute each A
(n+1)
k explicitly by collecting coefficients in the expansion from (5.3),

using the identities above. In particular:

• A
(n+1)
0 arises from the constant terms.

• A
(n+1)
k for 1 ≤ k ≤ n arise from two contributions via (5.4).

• A
(n+1)
n+1 arises only from the highest-degree term in the expansion.

Algebraic manipulation (as done in [12], Section 4) shows that each A
(n+1)
k matches the

expected coefficient in the Fourier representation of:

Pn+1 cos(γ) =
4π

2n+ 3

n+1∑
m=−n−1

Y m
n+1(θ, ϕ)Y

m
n+1(θ

′, ϕ′).

Conclusion: Since the expansion for Pn+1(cos γ) matches the spherical harmonics sum, the
theorem holds for n+ 1. By induction,

Pn(cos γ) =
4π

2n+ 1

n∑
m=−n

Y m
n (θ, ϕ)Y m

n (θ′, ϕ′), ∀n ∈ N0

.

5.2. Zonal Harmonics and Kernel Representations. [3] Let Hℓ denote the space of
spherical harmonics of fixed degree ℓ on S2, of dimension 2ℓ + 1. For any function f ∈ Hℓ,
we can express f in terms of an integral against a kernel:

(5.5) f(x) =

∫
S2
Kℓ(x,x

′)f(x′) dΩ′.

This equation defines the reproducing kernel property, and Kℓ(x,x
′) is called a kernel—a

function of two points on the sphere that acts as a symmetric ”interpolator” across the
space.

5.2.1. Zonal Harmonics. A zonal harmonic is a spherical harmonic symmetric about an axis,
typically taken as the z-axis. These correspond to the m = 0 harmonics:

(5.6) Zℓ(θ) := Y 0
ℓ (θ, ϕ) =

√
2ℓ+ 1

4π
Pℓ(cos θ),

where Pℓ is the Legendre polynomial of degree ℓ. Zonal harmonics depend only on θ, the
angle from the z-axis, and are independent of ϕ, making them axisymmetric.
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The significance of zonal harmonics increases when they are rotated so that their axis of
symmetry points through an arbitrary point x′ ∈ S2. The rotated version defines a function
of a second point x, depending only on the angle γ = ∠(x,x′). The result is the kernel:

(5.7) Kℓ(x,x
′) :=

ℓ∑
m=−ℓ

Y m
ℓ (x)Y m

ℓ (x′) =
2ℓ+ 1

4π
Pℓ(cos γ).

This is a zonal kernel centered at x′ and evaluated at x, and is itself a zonal harmonic in x
around x′. The right-hand side depends only on γ and not on any azimuthal component.

5.2.2. Reproducing Property. Let f ∈ Hℓ be expanded as:

f(x′) =
ℓ∑

m=−ℓ

amY
m
ℓ (x′).

Then: ∫
S2
Kℓ(x,x

′)f(x′) dΩ′ =
ℓ∑

m=−ℓ

Y m
ℓ (x)

∫
S2
Y m
ℓ (x′)f(x′) dΩ′

=
ℓ∑

m=−ℓ

amY
m
ℓ (x) = f(x).

This confirms that Kℓ is a reproducing kernel for Hℓ. This property expresses f(x) as a
weighted average of zonal harmonics centered at all x′, and the weight at each x′ is given by
the value f(x′).

5.2.3. Projection via Kernel. The kernel Kℓ defines a projection operator Pℓ : L
2(S2) → Hℓ

given by:

(Pℓf)(x) :=

∫
S2
Kℓ(x,x

′)f(x′) dΩ′.

This operator projects any square-integrable function onto its degree-ℓ component.
Let g ∈ Hℓ. Then for any f ∈ L2(S2),

⟨Pℓf, g⟩ =
∫
S2

(∫
S2
Kℓ(x,x

′)f(x′) dΩ′
)
g(x) dΩ

=

∫
S2
f(x′)

(∫
S2
Kℓ(x,x

′)g(x) dΩ

)
dΩ′

=

∫
S2
f(x′)g(x′) dΩ′ = ⟨f, g⟩.

So Pℓ is an orthogonal projection onto Hℓ, and again this is achieved using only zonal kernels.

5.2.4. Generalization. Given any f ∈ L2(S2), the projection Pℓf is the best degree-ℓ approx-
imation to f in the L2 norm, and is given by integration against the zonal kernel Kℓ. That
is, every f can be expressed as:

f(x) =
∞∑
ℓ=0

∫
S2
Kℓ(x,x

′)f(x′) dΩ′,
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where each term in the sum is a zonal harmonic (via Kℓ) integrated against f . This rep-
resentation shows that arbitrary functions on the sphere can be reconstructed as infinite
combinations of zonal harmonics centered at different points.

6. Generalization to Sn: Hyperspherical Harmonics

In this section, we extend the theory of spherical harmonics from S2 to the general n-
dimensional unit sphere Sn ⊂ Rn+1. We develop the function spaces and coordinate systems,
derive the Laplace–Beltrami Operator on Sn, and study its eigenfunctions(hyperspherical
harmonics) along with their eigenvalues, orthogonality, and expansion properties. [8, 9]

6.1. Function Spaces and Geometry. We denote by Sn the n-dimensional unit sphere
in Rn+1, Sn = {x ∈ Rn+1 : ∥x∥ = 1} . Let L2(Sn) denote the Hilbert space of complex-valued
square-integrable functions f : Sn → C, with respect to the standard surface measure dΩn

on Sn:

L2(Sn) =

{
f : Sn → C

∣∣∣∣ ∫
Sn

|f(x)|2 dΩn(x) < ∞
}
.

The inner product on L2(Sn) is given by

⟨f, g⟩ =
∫
Sn

f(x)g(x) dΩn(x),

and the associated norm is ∥f∥ =
√

⟨f, f⟩. A set {Yℓ} of functions on Sn is orthonormal if
⟨Yℓ, Yk⟩ = δℓk, and complete if their span is dense in L2(Sn).

The standard coordinates on Sn are the hyperspherical coordinates (θ1, θ2, . . . , θn−1, ϕ),
where θ1, . . . , θn−1 ∈ [0, π], and ϕ ∈ [0, 2π). In these coordinates, a point x ∈ Sn is repre-
sented as:

x1 = cos θ1,

x2 = sin θ1 cos θ2,

x3 = sin θ1 sin θ2 cos θ3,

...

xn = sin θ1 · · · sin θn−2 cos θn−1,

xn+1 = sin θ1 · · · sin θn−2 sin θn−1 cosϕ,

xn+2 = sin θ1 · · · sin θn−2 sin θn−1 sinϕ.

The volume element (surface measure) in these coordinates is:

dΩn =

(
n−1∏
j=1

(sin θj)
n−j−1

)
dθ1 · · · dθn−1 dϕ.

6.2. Laplacian and Laplace–Beltrami Operator. We begin with the standard Laplacian
in Euclidean space Rn+1. Given a smooth function f : Rn+1 → R, the Laplacian is defined
by (the divergence of the gradient)

∆f = ∇ · (∇f) =
n+1∑
i=1

∂2f

∂x2
i

.

However, when the domain is constrained to the surface of a manifold such as Sn, this
Euclidean formulation fails to account for intrinsic curvature (Section 3.1). To adapt
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the Laplacian to curved spaces, we replace the Euclidean gradient and divergence with
their intrinsic counterparts defined using the Riemannian metric. We thus obtain the
Laplace–Beltrami operator, denoted ∆Sn , which generalizes ∆ to arbitrary Riemannian man-
ifolds. In hyperspherical coordinates (θ1, . . . , θn−1, ϕ) on Sn, the Laplace–Beltrami operator
takes the recursive form:

(6.1) ∆Snf =
1

sinn−1 θ1

∂

∂θ1

(
sinn−1 θ1

∂f

∂θ1

)
+

1

sin2 θ1
∆Sn−1f.

This identity reflects the spherical symmetry of Sn and allows the operator to be sepa-
rated recursively. At each stage, the angular coordinate θj contributes a radial-type term
and a rescaled Laplace–Beltrami operator on a lower-dimensional sphere. The base case is
∆S1 =

∂2

∂ϕ2 . This recursive structure is essential for solving the eigenvalue problem on Sn via

separation of variables, which we develop in the next subsection.

6.3. Eigenvalue Problem. We now consider the eigenvalue problem for the Laplace–Beltrami
operator on the unit n-sphere Sn. Given a smooth function f : Sn → C, we seek all solutions
to the equation ∆Snf+λf = 0, where λ ∈ R is an eigenvalue, and f ̸≡ 0 is the corresponding
eigenfunction.

The solutions to this eigenvalue problem are called hyperspherical harmonics. They gener-
alize the classical spherical harmonics Y m

ℓ on S2 to higher dimensions. For each integer ℓ ≥ 0,
there exists a finite-dimensional eigenspace Hℓ(Sn) of homogeneous harmonic polynomials
of degree ℓ restricted to the sphere. The dimension of this space depends on n and ℓ, and
the corresponding eigenvalue is λℓ = ℓ(ℓ+ n− 1).

Thus, hyperspherical harmonics are defined as the eigenfunctions Y
(n)
ℓ : Sn → C satisfying

∆SnY
(n)
ℓ = −ℓ(ℓ+ n− 1)Y

(n)
ℓ .

These functions are orthogonal with respect to the inner product on L2(Sn) and form a

complete set over the space. For fixed ℓ, the functions {Y (n)
ℓ,i }dℓi=1 form an orthonormal basis

for the eigenspace Hℓ(Sn), where dℓ = dimHℓ(Sn). In the next subsection, we derive the
eigenvalues and compute this dimension explicitly.

6.4. Eigenvalues and Eigenspace. We now state two fundamental results concerning the
structure of these eigenspaces, however proofs are omitted in the scope of this paper.

Proposition 6.1 (Eigenvalues of the Laplace–Beltrami Operator). Let Y
(n)
ℓ be a hyper-

spherical harmonic of degree ℓ on Sn. Then it satisfies the eigenvalue equation ∆SnY
(n)
ℓ =

−ℓ(ℓ+ n− 1)Y
(n)
ℓ ,for each integer ℓ ≥ 0.

The integer ℓ corresponds to the degree of the harmonic polynomial in Rn+1 from which
the hyperspherical harmonic is obtained by restriction to the unit sphere. Each value of ℓ
defines a distinct eigenspace of the Laplace–Beltrami operator.

Proposition 6.2. The space Hℓ(Sn) of degree-ℓ hyperspherical harmonics has dimension

dimHℓ(Sn) =
(2ℓ+ n− 1)(ℓ+ n− 2)!

ℓ!(n− 1)!
.

This formula counts the number of linearly independent eigenfunctions corresponding to the
eigenvalue ℓ(ℓ+ n− 1). In the case n = 2, the expression simplifies to dimHℓ(S2) = 2ℓ+ 1,
which matches the (familiar) count of 2-sphere spherical harmonics Y m

ℓ . These eigenspaces
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are mutually orthogonal in L2(Sn) and together span the space. Thus, the hyperspherical
harmonics form a complete orthonormal system for square-integrable functions on the sphere.

6.5. S3. We now examine the case n = 3, corresponding to the 3-dimensional unit sphere
S3 ⊂ R4. The eigenvalue formula simplifies to

λℓ = ℓ(ℓ+ 2),

and the dimension of the eigenspace becomes

dimHℓ(S3) = (ℓ+ 1)2.

This structure is particularly transparent for small values of ℓ:

ℓ Eigenvalue λℓ Dimension dimHℓ(S3)
0 0 1
1 3 4
2 8 9
3 15 16
4 24 25

Each eigenspace Hℓ(S3) contains (ℓ + 1)2 mutually orthogonal hyperspherical harmonics
of degree ℓ. These form a complete orthonormal basis for L2(S3).

Proposition 6.3. Let Y
(3)
ℓ,i and Y

(3)
k,j be hyperspherical harmonics on S3. Then∫

S3
Y

(3)
ℓ,i (ξ)Y

(3)
k,j (ξ) dΩ3(ξ) = δℓkδij.

As a simple verification, consider the constant function Y
(3)
0 , which spans the degree-zero

eigenspace. To normalize it, we compute the volume of S3 [10]:

Vol(Sn) =
2π(n+1)/2

Γ
(
n+1
2

) so Vol(S3) =
2π2

Γ(2)
= 2π2.

Hence, the normalized constant eigenfunction is

Y
(3)
0 =

1√
2π2

.

We now verify orthonormality:∫
S3

(
1√
2π2

)2

dΩ3 =
1

2π2
· 2π2 = 1.

The S3 case offers a concrete illustration of the general theory. The eigenvalues grow
quadratically in ℓ, while the dimension of each eigenspace grows as a perfect square. These
harmonics are used extensively in applications involving three-dimensional rotations, wave
equations, and quantum systems with spherical symmetry.

6.6. Orthonormality of Hyperspherical Harmonics. The hyperspherical harmonics

{Y (n)
ℓ,i } form an orthonormal basis for the Hilbert space L2(Sn) with respect to the stan-

dard inner product:

⟨f, g⟩ =
∫
Sn

f(ξ)g(ξ) dΩn(ξ).

We now state the orthonormality property precisely.
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Theorem 6.4 (Orthonormality). Let ℓ, k ∈ Z≥0 and let {Y (n)
ℓ,i }dℓi=1 and {Y (n)

k,j }
dk
j=1 be or-

thonormal bases for the eigenspaces Hℓ(Sn) and Hk(Sn). Then∫
Sn

Y
(n)
ℓ,i (ξ)Y

(n)
k,j (ξ) dΩn(ξ) = δℓkδij.

Sketch of Proof. The Laplace–Beltrami operator is self-adjoint on the compact manifold Sn

with respect to the L2 inner product. This implies that eigenfunctions corresponding to
distinct eigenvalues are orthogonal. Since each Hℓ(Sn) is a finite-dimensional eigenspace, its
elements can be orthonormalized using the Gram–Schmidt process. The result then follows
directly.

6.7. Expansion theorem. Just as classical Fourier series decompose functions into orthog-
onal trigonometric modes, any square-integrable function on the sphere can be decomposed
into hyperspherical harmonics. This yields a complete orthogonal expansion.

Theorem 6.5 (Expansion Theorem). Let f ∈ L2(Sn). Then f can be written as an infinite
sum of hyperspherical harmonics:

f(ξ) =
∞∑
ℓ=0

dℓ∑
i=1

⟨f, Y (n)
ℓ,i ⟩Y (n)

ℓ,i (ξ),

where dℓ = dimHℓ(Sn) and the series converges in L2.

Sketch of Proof. The Laplace–Beltrami operator has a countable orthonormal basis of eigen-
functions in L2(Sn) due to compactness and self-adjointness. Since the hyperspherical har-
monics form an orthonormal basis for each eigenspace Hℓ(Sn), their union spans L2(Sn), and

any function in this space can be expanded as a sum over them.

Theorem 6.6 (Parseval’s Identity). Let f ∈ L2(Sn) with expansion coefficients

aℓ,i = ⟨f, Y (n)
ℓ,i ⟩.

Then

∥f∥2 =
∫
Sn

|f(ξ)|2 dΩn(ξ) =
∞∑
ℓ=0

dℓ∑
i=1

|aℓ,i|2.

Sketch of Proof. This identity follows directly from the orthonormality of the basis and the
completeness of the expansion. It is a special case of Bessel’s inequality, which becomes an
equality when the expansion is over a complete orthonormal set.

Conclusion

This exposition established the foundational theory of spherical harmonics via Laplace’s
equation on the sphere. We developed their construction, orthogonality, expansion prop-
erties, and generalization to Sn. These structures form analytical tools for understanding
symmetry, solving boundary value problems or decomposing functions on curved spaces. For
further readings, one can refer to the following [2], [6], [7], [4], [5], or go into greater depths
of other citations that I just touched upon at the surface level.
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