Matrix Tree Theorem & The Number of Spanning Trees

Omar Mohamed Said

IRPW

July 10, 2025

Outline

Introduction & an Overview

Preliminaries

Matrix-Tree Theorem Statement

Cauchy Binet Theorem first proof

Cayley's Formula

Matrix Tree Theorem In Other Graph Types

The Problem: Counting Spanning Trees

The Challenge

Counting the number of spanning trees by hand is boring, and for bigger graphs it becomes frustrating.

The Solution

The Matrix-Tree Theorem provides a powerful and elegant algebraic method to solve this problem, revealing connections between graph theory and linear algebra.

Basic Definitions

Graph

A simple graph G is an ordered pair (V, E), where V is a finite set of vertices, and E is a set of unordered pairs of distinct vertices, called edges.

Degree of a Vertex

The degree of a vertex v, denoted deg(v), is the number of edges incident to it.

Tree and Spanning Tree

A **tree** is a connected acyclic graph. A **spanning tree** of a connected graph G is a subgraph that is a tree and includes all vertices of G. The number of spanning trees is denoted by $\tau(G)$.

Basic definitions

Figure: Illustrations of graph theory concepts.

Key Graph Matrices

Adjacency Matrix (A)

An $n \times n$ matrix where $A_{ij} = 1$ if vertices v_i and v_j are connected by an edge, and 0 otherwise. It represents the connections in the graph.

Degree Matrix (D)

An $n \times n$ diagonal matrix where the entry D_{ii} is the degree of vertex v_i (the number of edges connected to it). All off-diagonal entries are 0.

Incidence Matrix (I)

An $n \times m$ matrix (for n vertices and m edges) that describes how vertices and edges are connected. For an arbitrarily oriented edge $e_k = (v_i, v_j)$, the entries are $l_{ik} = 1$, $l_{jk} = -1$, and 0 otherwise.

Matrices of the Complete Graph K_4

Incidence (I)

$$\begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 0 & -1 & -1 \end{pmatrix}$$

The Laplacian Matrix

Laplacian Matrix (L)

The Laplacian is defined as the Degree Matrix minus the Adjacency Matrix:

$$L = D - A$$

It is a fundamental matrix in spectral graph theory and is central to the Matrix-Tree Theorem.

Laplacian Matrix L = D - A

$$L_{K_4} = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3 \end{pmatrix}$$

The Matrix-Tree Theorem

Theorem Statement

Let G be a connected graph with n vertices and let L be its Laplacian matrix. The number of spanning trees of G, denoted by $\tau(G)$, is equal to any cofactor of L.

$$\tau(G) = (-1)^{i+j} \det(L_{ij})$$

where L_{ij} is the sub-matrix of L obtained by deleting row i and column j.

Number of spanning trees via the Matrix-Tree theorem

The Laplacian matrix for K_4 is:

$$L_{K_4} = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3 \end{pmatrix}$$

Removing the first row and column:

$$L'_{K_4} = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix}$$

 $\det(L'_{K_4})=16.$

So, the Matrix-Tree Theorem predicts $\tau(K_4) = 16$.

The 16 Spanning Trees of K_4

Figure: By enumeration, we confirm there are 16 spanning trees.

A Formula for Cycles in a Graph

Theorem

For any connected graph, the number of vertices (V), edges (E), and independent cycles (C) are related by the formula:

$$V - E + C = 1$$

Proof Sketch

- 1. Start with a spanning tree of the graph. By definition, it has V vertices and V-1 edges, and no cycles.
- 2. The remaining edges in the graph that are not in the spanning tree number E (V 1).
- 3. Each of these remaining edges, when added back to the spanning tree, creates exactly one independent cycle.
- 4. Therefore, the number of cycles is C = E (V 1). Rearranging this gives the theorem: V E + C = 1.

The Cauchy-Binet Formula

The Cauchy-Binet Theorem

Let A be an $m \times n$ matrix, and let B be an $n \times m$ matrix. If m > n, then det(AB) = 0. If $m \le n$, then

$$\det(AB) = \sum_{S} (\det A[S])(\det B[S])$$

where S ranges over all m-element subsets of the columns of A and rows of B.

Example Setup

Let A be a 2×3 matrix and B be a 3×2 matrix.

$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \quad B = \begin{bmatrix} c_1 & d_1 \\ c_2 & d_2 \\ c_3 & d_3 \end{bmatrix}$$

Cauchy-Binet: Example Calculation

Expanding the Determinant

The determinant det(AB) is the sum of the products of the determinants of all corresponding 2×2 sub-matrices:

$$\det(AB) = \overbrace{ \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \cdot \begin{vmatrix} c_1 & d_1 \\ c_2 & d_2 \end{vmatrix} }^{\text{Cols 1 \& 2}} + \overbrace{ \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \cdot \begin{vmatrix} c_1 & d_1 \\ c_3 & d_3 \end{vmatrix} }^{\text{Cols 1 \& 3}} + \overbrace{ \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \cdot \begin{vmatrix} c_2 & d_2 \\ c_3 & d_3 \end{vmatrix} }^{\text{Cols 2 \& 3}}$$

Proof Strategy

Goal

We want to prove that any cofactor of the Laplacian matrix, such as $det(L_{11})$, is equal to the number of spanning trees, $\tau(G)$.

Key Term: The Adjugate Matrix

The adjugate of a matrix M, written adj(M), is the transpose of its cofactor matrix. Its main property is:

$$M \cdot \operatorname{adj}(M) = \det(M) \cdot I$$

Our Two-Step Strategy

- 1. Show that $\operatorname{adj}(L)$ must be a constant matrix: $\operatorname{adj}(L) = \alpha \cdot J$, where J is the all-ones matrix. This means all cofactors are equal to some constant α .
- 2. Use the Cauchy-Binet formula to find this constant and show that $\alpha = \tau(G)$.

Proof

From the definition of the adjugate, we have:

$$L \cdot \operatorname{adj}(L) = \det(L) \cdot I$$

Using Properties of the Laplacian

- For a connected graph with n vertices, we know rank(L) = n 1 so det(L) = 0.
- ▶ Therefore, the equation becomes: $L \cdot adj(L) = 0$.

The equation $L \cdot \operatorname{adj}(L) = 0$ means that every column of $\operatorname{adj}(L)$ is in the null space of L. For a connected graph, this space is simply all multiples of the all-ones vector $\mathbf{1}$. So, every column of $\operatorname{adj}(L)$ has the same value α in every entry, proving that $\operatorname{adj}(L) = \alpha \cdot J$.

Proof

Finding α with a Cofactor

Since all cofactors are equal to α , we only need to calculate one. Let's find the (1,1)-cofactor:

$$\alpha = \det(L_{11})$$

We know $L = II^T$, so we can write $L_{11} = I_1I_1^T$, where I_1 is the incidence matrix with the first row removed.

Applying the Cauchy-Binet Formula

$$\det(L_{11}) = \det(I_1I_1^T) = \sum_{F \subseteq E, |F| = n-1} (\det((I_1)_F))^2$$

And $det((I_1)_F)$ is ± 1 if the edges in F form a spanning tree, and 0 otherwise.

$$\alpha = \tau(G)$$

Identity: $L = I I^T$

Proof

1. **Diagonal Entries** (i = j): The entry (II^T)_{ii} is the dot product of the *i*-th row of *I* with itself:

$$(II^T)_{ii} = \sum_{k=1}^m I_{ik}^2$$

Since l_{ik} is ± 1 only if edge k touches vertex i, l_{ik}^2 is 1 for every incident edge and 0 otherwise. The sum is simply the number of edges connected to vertex i, which is $\deg(v_i)$. This matches L_{ii} .

Identity: $L = I I^T$

Proof

2. **Off-Diagonal Entries** $(i \neq j)$: The entry $(II^T)_{ij}$ is the dot product of rows i and j:

$$(II^T)_{ij} = \sum_{k=1}^m I_{ik}I_{jk}$$

This product is non-zero only if an edge k connects vertices i and j. For that edge, one entry (e.g., l_{ik}) will be +1 and the other (l_{jk}) will be -1. Their product is -1, which matches L_{ij} . If no edge connects i and j, the sum is 0.

Cayley's Formula for Complete Graphs

Theorem (Cayley, 1889)

The number of spanning trees of a complete graph K_n is n^{n-2} .

Example: K_6

Using the Matrix-Tree theorem, $\tau(K_6) = 6^{6-2} = 6^4 = 1296$.

Proof Idea

Establish a bijection between labeled trees on n vertices and sequences of length n-2 from $\{1,\ldots,n\}$ using **Prüfer codes**.

Prüfer Code: Encoding Example

Figure: A labeled tree on 6 vertices.

The Prüfer code is generated by iteratively removing the smallest leaf and recording its neighbor.

Step (i)	Smallest Leaf (b_i)	_	Remaining Vertices
1	2	1	{1,3,4,5,6}
2	3	1	{1,4,5,6}
3	1	4	$\{4, 5, 6\}$
4	5	4	{4,6}

The resulting Prüfer code is the sequence of neighbors: (1, 1, 4, 4).

Other Graph Types: Complete Bipartite Graphs

Definition: Complete Bipartite Graph $(K_{n,m})$

A bipartite graph has its vertices divided into two disjoint sets, A (with n vertices) and B (with m vertices). Every vertex in set A is connected to every vertex in set B.

Spanning Trees in $K_{n,m}$

Theorem

The number of spanning trees in a complete bipartite graph $K_{n,m}$ is given by the formula:

$$\tau(K_{n,m}) = n^{m-1}m^{n-1}$$

Checking for $K_{5,4}$

For the graph in the paper $(K_{5,4})$, the number of spanning trees would be:

$$\tau(K_{5,4}) = 5^{4-1} \cdot 4^{5-1} = 5^3 \cdot 4^4 = 125 \cdot 256 = 32,000$$

Proof for $K_{n,m}$

Strategy: Using the Eigenvalue Formula

We use the version of the Matrix-Tree Theorem that relates the number of spanning trees to the non-zero eigenvalues (λ_i) of the Laplacian matrix:

$$\tau(G) = \frac{1}{\text{number of vertices}} \prod \lambda_i$$

For $K_{n,m}$, the number of vertices is n + m.

$$\tau(K_{n,m}) = \frac{1}{n+m} \cdot (n+m)^1 \cdot n^{m-1} \cdot m^{n-1}$$
$$\tau(K_{n,m}) = n^{m-1} m^{n-1}$$

A Question on Weighted Graphs

Question

Consider this graph where every edge has a uniform weight of 5. Is the number of spanning trees in this weighted graph 5 times the number in its unweighted version?

Thank You!

Questions?