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The Problem: Counting Spanning Trees

The Challenge

Counting the number of spanning trees by hand is boring, and for
bigger graphs it becomes frustrating.

The Solution

The Matrix-Tree Theorem provides a powerful and elegant
algebraic method to solve this problem, revealing connections
between graph theory and linear algebra.




Basic Definitions

Graph

A simple graph G is an ordered pair (V, E), where V is a finite set
of vertices, and E is a set of unordered pairs of distinct vertices,
called edges.

Degree of a Vertex

The degree of a vertex v, denoted deg(v), is the number of edges
incident to it.

Tree and Spanning Tree

A tree is a connected acyclic graph. A spanning tree of a
connected graph G is a subgraph that is a tree and includes all
vertices of G. The number of spanning trees is denoted by 7(G).



Basic definitions
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A simple graph G;. A subgraph of G;. Spanning tree T;.

Illustrations of graph theory concepts.



Key Graph Matrices

Adjacency Matrix (A)

An n x n matrix where A;; = 1 if vertices v; and v; are connected
by an edge, and 0 otherwise. It represents the connections in the
graph.

Degree Matrix (D)

An n x n diagonal matrix where the entry D;; is the degree of
vertex v; (the number of edges connected to it). All off-diagonal
entries are 0.

Incidence Matrix (I)

An n x m matrix (for n vertices and m edges) that describes how
vertices and edges are connected. For an arbitrarily oriented edge
ex = (i, vj), the entries are I = 1, ljx = —1, and 0 otherwise.



Matrices of the Complete Graph K,

Degree (D) Adjacency (A) Incidence (1)

3 000 01 11 1 1 1 0 0 O
0 3 00 1 011 -1 0 0 1 1 O
0 0 30 1 1 01 0 -1 0 -1 0 1
0 0 0 3 1110 0 0 -1 0 -1 -1



The Laplacian Matrix

Laplacian Matrix (L)
The Laplacian is defined as the Degree Matrix minus the
Adjacency Matrix:

L=D-A
It is a fundamental matrix in spectral graph theory and is central
to the Matrix-Tree Theorem.

Laplacian Matrix L =D — A

3 -1 -1 -1
P T T A
K= 1-1 -1 3 -1

-1 -1 -1 3



The Matrix-Tree Theorem

Theorem Statement

Let G be a connected graph with n vertices and let L be its
Laplacian matrix. The number of spanning trees of G, denoted by
7(G), is equal to any cofactor of L.

7(G) = (=1)" det(Ly)

where L;; is the sub-matrix of L obtained by deleting row i and
column j.



Number of spanning trees via the Matrix-Tree theorem

The Laplacian matrix for Ky is:

3 -1 -1 -1

|t 8 4
Ke =11 -1 3 -1
1 -1 -1 3

Removing the first row and column:
3 -1 -1
=|-1 3 -1
-1 -1 3

det(Lj,) = 16.

So, the Matrix-Tree Theorem predicts 7(Ks) = 16.



The 16 Spanning Trees of K,
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By enumeration, we confirm there are 16 spanning trees.



A Formula for Cycles in a Graph

For any connected graph, the number of vertices (V), edges (E),
and independent cycles (C) are related by the formula:

V—-E+C=1

Proof Sketch
1. Start with a spanning tree of the graph. By definition, it has
V vertices and V — 1 edges, and no cycles.
2. The remaining edges in the graph that are not in the spanning
tree number E — (V — 1).
3. Each of these remaining edges, when added back to the
spanning tree, creates exactly one independent cycle.

4. Therefore, the number of cyclesis C = E — (V —1).
Rearranging this gives the theorem: V — E + C = 1.



The Cauchy-Binet Formula

Let A be an m X n matrix, and let B be an n x m matrix. If
m > n, then det(AB) = 0. If m < n, then

det(AB) = ) (det A[S])(det B[S])
S

where S ranges over all m-element subsets of the columns of A and
rows of B.

Example Setup
Let A be a 2 x 3 matrix and B be a 3 x 2 matrix.

c1 d1
S o R
1 2 8 s s



Cauchy-Binet: Example Calculation

Expanding the Determinant

The determinant det(AB) is the sum of the products of the
determinants of all corresponding 2 x 2 sub-matrices:

Cols 1 & 2 Cols1&3 Cols2 & 3
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Proof Strategy

Goal

We want to prove that any cofactor of the Laplacian matrix, such
as det(L;1), is equal to the number of spanning trees, 7(G).

Key Term: The Adjugate Matrix

The adjugate of a matrix M, written adj(M), is the transpose of
its cofactor matrix. Its main property is:

M - adj(M) = det(M) - |

Our Two-Step Strategy

1. Show that adj(L) must be a constant matrix: adj(L) = - J,
where J is the all-ones matrix. This means all cofactors are
equal to some constant «.

2. Use the Cauchy-Binet formula to find this constant and show
that o = 7(G).



From the definition of the adjugate, we have:

L-adj(L) = det(L) - /

For a connected graph with n vertices, we know
rank(L) = n—1 so det(L) = 0.
Therefore, the equation becomes: L -adj(L) = 0.

The equation L - adj(L) = 0 means that every column of adj(L) is
in the null space of L. For a connected graph, this space is simply
all multiples of the all-ones vector 1. So, every column of adj(L)
has the same value « in every entry, proving that adj(L) = o - J.



Finding a with a Cofactor

Since all cofactors are equal to «, we only need to calculate one.
Let's find the (1, 1)-cofactor:

o = det(L11)

We know L = /T, so we can write L1; = llllT, where 1 is the
incidence matrix with the first row removed.

Applying the Cauchy-Binet Formula

det(Lyy) = det(h) = > (det((h)))

FCE,|F|=n—1

And det((/1)F) is 1 if the edges in F form a spanning tree, and 0

otherwise.
a=1(G)



|dentity: L =117

Diagonal Entries (i = j): The entry (/IT); is the dot
product of the i-th row of | with itself:

(1) => 14
k=1

Since Ik is +1 only if edge k touches vertex i, II% is 1 for
every incident edge and 0 otherwise. The sum is simply the
number of edges connected to vertex i, which is deg(v;). This
matches L;;.



|dentity: L =117

Off-Diagonal Entries (i # j): The entry (/IT); is the dot
product of rows i and j:

(7= Il
k=1

This product is non-zero only if an edge k connects vertices /
and j. For that edge, one entry (e.g., i) will be +1 and the
other (/i) will be -1. Their product is -1, which matches Lj.
If no edge connects i and j, the sum is 0.



Cayley's Formula for Complete Graphs

Theorem (Cayley, 1889)

The number of spanning trees of a complete graph K, is n"~2.

Example: Kg
Using the Matrix-Tree theorem, 7(Ks) = 6°72 = 6* = 1296.
Proof Idea

Establish a bijection between labeled trees on n vertices and
sequences of length n — 2 from {1,..., n} using Priifer codes.



Prifer Code: Encoding Example

The Priifer code is generated by

(2) (5) iteratively removing the smallest leaf
B)—(D)— ] and recording its neighbor.
@ Step Smallest Neighbor Remaining
j Leaf (b; i Verti
A labeled tree on 6 (0 eaf (b) (27) erees
vertices. 1 2 i {1,3,4,5,6}
2 3 1 {17475’6}
3 1 4 {4,5,6}
4 5 4 {4,6}

The resulting Priifer code is the sequence
of neighbors: (1,1,4,4).



Other Graph Types: Complete Bipartite Graphs

Definition: Complete Bipartite Graph (K, )

A bipartite graph has its vertices divided into two disjoint sets, A
(with n vertices) and B (with m vertices). Every vertex in set A is
connected to every vertex in set B.

Set A (n=5)

Set B (m = 4)



Spanning Trees in K, 1,

The number of spanning trees in a complete bipartite graph K,
is given by the formula:

A ) = nmImn-t

Checking for Ks 4

For the graph in the paper (Ks4), the number of spanning trees
would be:

T(Ksq) = 5%1 . 4571 = 53.4% = 125. 256 = 32,000



Proof for K,

We use the version of the Matrix-Tree Theorem that relates the

number of spanning trees to the non-zero eigenvalues (\;) of the
Laplacian matrix:

1
)\.
number of vertices H !

7(6) =

For Ki,m, the number of vertices is n + m.




A Question on Weighted Graphs

)

SRS
2 5 3
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Question

Consider this graph where every edge has a uniform weight of 5.
Is the number of spanning trees in this weighted graph 5 times the
number in its unweighted version?



Thank You!

Questions?
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