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The Problem: Counting Spanning Trees

The Challenge

Counting the number of spanning trees by hand is boring, and for
bigger graphs it becomes frustrating.

The Solution

The Matrix-Tree Theorem provides a powerful and elegant
algebraic method to solve this problem, revealing connections
between graph theory and linear algebra.



Basic Definitions

Graph

A simple graph G is an ordered pair (V ,E ), where V is a finite set
of vertices, and E is a set of unordered pairs of distinct vertices,
called edges.

Degree of a Vertex

The degree of a vertex v , denoted deg(v), is the number of edges
incident to it.

Tree and Spanning Tree

A tree is a connected acyclic graph. A spanning tree of a
connected graph G is a subgraph that is a tree and includes all
vertices of G . The number of spanning trees is denoted by τ(G ).



Basic definitions
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(a) A simple graph G1.
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(b) A subgraph of G1.
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(c) Spanning tree T1.

Figure: Illustrations of graph theory concepts.



Key Graph Matrices

Adjacency Matrix (A)

An n × n matrix where Aij = 1 if vertices vi and vj are connected
by an edge, and 0 otherwise. It represents the connections in the
graph.

Degree Matrix (D)

An n × n diagonal matrix where the entry Dii is the degree of
vertex vi (the number of edges connected to it). All off-diagonal
entries are 0.

Incidence Matrix (I)

An n ×m matrix (for n vertices and m edges) that describes how
vertices and edges are connected. For an arbitrarily oriented edge
ek = (vi , vj), the entries are Iik = 1, Ijk = −1, and 0 otherwise.



Matrices of the Complete Graph K4

1 2

34

Degree (D)3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3


Adjacency (A)0 1 1 1

1 0 1 1
1 1 0 1
1 1 1 0


Incidence (I) 1 1 1 0 0 0

−1 0 0 1 1 0
0 −1 0 −1 0 1
0 0 −1 0 −1 −1





The Laplacian Matrix

Laplacian Matrix (L)

The Laplacian is defined as the Degree Matrix minus the
Adjacency Matrix:

L = D − A

It is a fundamental matrix in spectral graph theory and is central
to the Matrix-Tree Theorem.

Laplacian Matrix L = D − A

LK4 =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3





The Matrix-Tree Theorem

Theorem Statement
Let G be a connected graph with n vertices and let L be its
Laplacian matrix. The number of spanning trees of G , denoted by
τ(G ), is equal to any cofactor of L.

τ(G ) = (−1)i+j det(Lij)

where Lij is the sub-matrix of L obtained by deleting row i and
column j .



Number of spanning trees via the Matrix-Tree theorem

The Laplacian matrix for K4 is:

LK4 =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3


Removing the first row and column:

L′K4
=

 3 −1 −1
−1 3 −1
−1 −1 3


det(L′K4

) = 16.

So, the Matrix-Tree Theorem predicts τ(K4) = 16.



The 16 Spanning Trees of K4
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Figure: By enumeration, we confirm there are 16 spanning trees.



A Formula for Cycles in a Graph

Theorem

For any connected graph, the number of vertices (V), edges (E),
and independent cycles (C) are related by the formula:

V − E + C = 1

Proof Sketch

1. Start with a spanning tree of the graph. By definition, it has
V vertices and V − 1 edges, and no cycles.

2. The remaining edges in the graph that are not in the spanning
tree number E − (V − 1).

3. Each of these remaining edges, when added back to the
spanning tree, creates exactly one independent cycle.

4. Therefore, the number of cycles is C = E − (V − 1).
Rearranging this gives the theorem: V − E + C = 1.



The Cauchy-Binet Formula

The Cauchy-Binet Theorem

Let A be an m × n matrix, and let B be an n ×m matrix. If
m > n, then det(AB) = 0. If m ≤ n, then

det(AB) =
∑
S

(detA[S ])(detB[S ])

where S ranges over all m-element subsets of the columns of A and
rows of B.

Example Setup

Let A be a 2× 3 matrix and B be a 3× 2 matrix.

A =

[
a1 a2 a3
b1 b2 b3

]
B =

c1 d1
c2 d2
c3 d3





Cauchy-Binet: Example Calculation

Expanding the Determinant

The determinant det(AB) is the sum of the products of the
determinants of all corresponding 2× 2 sub-matrices:

det(AB) =

Cols 1 & 2︷ ︸︸ ︷∣∣∣∣a1 a2
b1 b2

∣∣∣∣ · ∣∣∣∣c1 d1
c2 d2

∣∣∣∣+
Cols 1 & 3︷ ︸︸ ︷∣∣∣∣a1 a3

b1 b3

∣∣∣∣ · ∣∣∣∣c1 d1
c3 d3

∣∣∣∣+
Cols 2 & 3︷ ︸︸ ︷∣∣∣∣a2 a3

b2 b3

∣∣∣∣ · ∣∣∣∣c2 d2
c3 d3

∣∣∣∣



Proof Strategy

Goal

We want to prove that any cofactor of the Laplacian matrix, such
as det(L11), is equal to the number of spanning trees, τ(G ).

Key Term: The Adjugate Matrix

The adjugate of a matrix M, written adj(M), is the transpose of
its cofactor matrix. Its main property is:

M · adj(M) = det(M) · I

Our Two-Step Strategy

1. Show that adj(L) must be a constant matrix: adj(L) = α · J,
where J is the all-ones matrix. This means all cofactors are
equal to some constant α.

2. Use the Cauchy-Binet formula to find this constant and show
that α = τ(G ).



Proof

From the definition of the adjugate, we have:

L · adj(L) = det(L) · I

Using Properties of the Laplacian

▶ For a connected graph with n vertices, we know
rank(L) = n − 1 so det(L) = 0.

▶ Therefore, the equation becomes: L · adj(L) = 0.

The equation L · adj(L) = 0 means that every column of adj(L) is
in the null space of L. For a connected graph, this space is simply
all multiples of the all-ones vector 1. So, every column of adj(L)
has the same value α in every entry, proving that adj(L) = α · J.



Proof

Finding α with a Cofactor

Since all cofactors are equal to α, we only need to calculate one.
Let’s find the (1, 1)-cofactor:

α = det(L11)

We know L = IIT , so we can write L11 = I1I
T
1 , where I1 is the

incidence matrix with the first row removed.

Applying the Cauchy-Binet Formula

det(L11) = det(I1I
T
1 ) =

∑
F⊆E ,|F |=n−1

(det((I1)F ))
2

And det((I1)F ) is ±1 if the edges in F form a spanning tree, and 0
otherwise.

α = τ(G )



Identity: L = I IT

Proof

1. Diagonal Entries (i = j): The entry (IIT )ii is the dot
product of the i-th row of I with itself:

(IIT )ii =
m∑

k=1

I 2ik

Since Iik is ±1 only if edge k touches vertex i , I 2ik is 1 for
every incident edge and 0 otherwise. The sum is simply the
number of edges connected to vertex i , which is deg(vi ). This
matches Lii .



Identity: L = I IT

Proof

2. Off-Diagonal Entries (i ̸= j): The entry (IIT )ij is the dot
product of rows i and j :

(IIT )ij =
m∑

k=1

Iik Ijk

This product is non-zero only if an edge k connects vertices i
and j . For that edge, one entry (e.g., Iik) will be +1 and the
other (Ijk) will be -1. Their product is -1, which matches Lij .
If no edge connects i and j , the sum is 0.



Cayley’s Formula for Complete Graphs

Theorem (Cayley, 1889)

The number of spanning trees of a complete graph Kn is nn−2.

Example: K6

Using the Matrix-Tree theorem, τ(K6) = 66−2 = 64 = 1296.

Proof Idea
Establish a bijection between labeled trees on n vertices and
sequences of length n − 2 from {1, . . . , n} using Prüfer codes.



Prüfer Code: Encoding Example
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3 1 4

5

6

Figure: A labeled tree on 6
vertices.

The Prüfer code is generated by
iteratively removing the smallest leaf
and recording its neighbor.

Step Smallest Neighbor Remaining
(i) Leaf (bi ) (ai ) Vertices

1 2 1 {1, 3, 4, 5, 6}
2 3 1 {1, 4, 5, 6}
3 1 4 {4, 5, 6}
4 5 4 {4, 6}

The resulting Prüfer code is the sequence
of neighbors: (1, 1, 4, 4).



Other Graph Types: Complete Bipartite Graphs

Definition: Complete Bipartite Graph (Kn,m)

A bipartite graph has its vertices divided into two disjoint sets, A
(with n vertices) and B (with m vertices). Every vertex in set A is
connected to every vertex in set B.

Set A (n = 5)

Set B (m = 4)



Spanning Trees in Kn,m

Theorem

The number of spanning trees in a complete bipartite graph Kn,m

is given by the formula:

τ(Kn,m) = nm−1mn−1

Checking for K5,4

For the graph in the paper (K5,4), the number of spanning trees
would be:

τ(K5,4) = 54−1 · 45−1 = 53 · 44 = 125 · 256 = 32, 000



Proof for Kn,m

Strategy: Using the Eigenvalue Formula

We use the version of the Matrix-Tree Theorem that relates the
number of spanning trees to the non-zero eigenvalues (λi ) of the
Laplacian matrix:

τ(G ) =
1

number of vertices

∏
λi

For Kn,m, the number of vertices is n +m.

τ(Kn,m) =
1

n +m
· (n +m)1 · nm−1 ·mn−1

τ(Kn,m) = nm−1mn−1



A Question on Weighted Graphs
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Question
Consider this graph where every edge has a uniform weight of 5.
Is the number of spanning trees in this weighted graph 5 times the
number in its unweighted version?



Thank You!

Questions?
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