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Abstract. After the discovery of the Fourier Series by Fourier himself, the modeling of
both periodic and non-periodic functions became an essential aspect of the ever-evolving
field of Analysis. The goal of this paper is to understand the wide-reaching scope of Fourier
Analysis, and go through many of the most studied ideas in the field.

1. Introduction

1.1. Historical Background. The Fourier Series and its resulting outreach can be traced
back to many of the greatest mathematicians, including but not limited to Euler and
Bernoulli. Of course, the series is named after, and was discovered by, French mathematician
Jean-Baptiste Joseph Fourier in a search for solutions to the heat equation. With the Fourier
Series itself being an expansion of trigonometric functions (explored in depth in this paper),
it makes for a useful mathematical tool. The properties of trigonometric functions are well
understood, making it easy (with ease being relative, we see later that the true power of
Fourier Series lies in their orthogonality) to analyze functions as a sum of trigonometric
functions (very similar to the commonly utilized Taylor series, which aims to accomplish the
same goal in the form of polynomials.) Joseph Fourier himself noted that smooth, periodic
functions have Fourier Series that converge to themselves, which makes the convergence of
Fourier Series something that has been well studied, and well explored.

Past the periodic function, the Fourier transform has been explored similarly to model non-
periodic functions, creating several notable results and theroems. Fourier Series has proved
to be essential to the understanding of Differential Equations. Due to the Fourier Transform
being an integral transform (something explored later on), several unique properties and
identities emerge, with very notable uses in computing, information theory, and quantum
mechanics.

1.2. Aim. This paper aims to provide an exposition into Fourier Analysis as a whole, with
a strong focus on the properties and resutls of the Fourier Transform. We start by exploring
the properties of the Fourier Series and their convergence. We then aim to explore the Fourier
Transform in non-periodic functions, understanding the Uncertainty Theorem and basis of
the Fourier Transform as an improper Riemann Integral. Following that, we look to explore
results with practical implications, such as Plancheral’s Theorem, Parseval’s Identity, and
the Poisson Summation Formula. Finally, we analyze characteristic functions in Probability
Theory, and similar applications in Ergodic Theory.
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2. Preliminaries

Orthogonality. Two functions f, g ∈ L2([−π, π]) are said to be orthogonal if

⟨f, g⟩ = 0.

Euler’s Formula.

eix = cosx+ i sinx.

Real Fourier Coefficients. Let f ∈ L2([−π, π]). The real Fourier coefficients are defined
by

a0 =
1

π

∫ π

−π

f(x) dx, an =
1

π

∫ π

−π

f(x) cos(nx) dx, bn =
1

π

∫ π

−π

f(x) sin(nx) dx.

Complex Fourier Coefficients.

cn =
1

2π

∫ π

−π

f(x)e−inx dx.

Fourier Series Representations. The real Fourier series of f is given by

f(x) ∼ a0
2

+
∞∑
n=1

[an cos(nx) + bn sin(nx)] .

The complex Fourier series is given by

f(x) ∼
∞∑

n=−∞

cne
inx.

Parseval’s Identity. If f ∈ L2([−π, π]), then

1

π

∫ π

−π

|f(x)|2 dx =
a20
2

+
∞∑
n=1

(
a2n + b2n

)
,

or in the complex form,

1

2π

∫ π

−π

|f(x)|2 dx =
∞∑

n=−∞

|cn|2.
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Conditions for Convergence.

• Dirichlet conditions: These require that the function f(x) be zero at the endpoints
of the interval:

f(a) = f(b) = 0.

• Neumann conditions: These require that the derivative of the function vanish at
the endpoints:

f ′(a) = f ′(b) = 0.

• Periodic conditions: These require that both the function and its derivatives match
at the endpoints:

f(a) = f(b), f ′(a) = f ′(b), f ′′(a) = f ′′(b), etc.

3. The Fourier Series

3.1. Definition. By definition, the Fourier Series is a way to define a periodic function as
an infinite sum of sines and cosines, in order to make the function easier to understand.
Given a periodic function f(x), we can define it’s Fourier Series as

(3.1) f(x) =
a0
2

+
∞∑
n=1

[an cos(nω0x) + bn sin(nω0x)]

Where a0 is the cosine term evaluated at 0 (which is not required for the sine term, as the
value of sin(0) is 0. In this expression, an and bn are the coefficients of sine and cosine
respectively.

3.2. Orthogonality. One of the main goals while studying Fourier Series is to study our
coefficients, of sin and cos respectively. To do so, we have to study the Orthogonality of
functions. In a vector space, if the dot product of two vectors are zero, they are orthogonal.
Similarly, if two functions, f(x) and h(x) are orthogonal if∫ b

a

g(x)h(x) dx = 0

Given the property that Fourier Series are indeed Orthogonal, we can use

Theorem 3.1 (Orthogonality of Trigonometric System). The system

{1, cos(x), sin(x), cos(2x), sin(2x), cos(3x), sin(3x), . . .}

is a complete orthogonal system from [−π, π]. To show this system is orthogonal, we must
show that the following integrals vanish under our given conditions.∫ π

−π

cos(mx) cos(nx) dx = 0, m, n ≥ 0, m ̸= n∫ π

−π

sin(mx) sin(nx) dx = 0, m, n ≥ 1, m ̸= n∫ π

−π

cos(mx) sin(nx) dx = 0, m ≥ 0, n ≥ 1



4 OM LALA

3.2.1. Computing Coefficients.

Proof. By leveraging the integral properties and orthogonality of Fourier series, we can ex-
press a function f(x) as a Fourier series:

f(x) = a0 +
∞∑
n=1

[an cos(nx) + bn sin(nx)] .

To determine the coefficient an, multiply both sides by cos(mx) for m ≥ 1, and integrate
over the interval [−π, π]:∫ π

−π

f(x) cos(mx) dx =

∫ π

−π

(
a0 +

∞∑
n=1

[an cos(nx) + bn sin(nx)]

)
cos(mx) dx.

We now apply the orthogonality identities:∫ π

−π

cos(nx) cos(mx) dx =

{
0, n ̸= m

π, n = m
,

∫ π

−π

sin(nx) cos(mx) dx = 0.

This implies that all terms in the expansion vanish except for the one where n = m.
Therefore: ∫ π

−π

f(x) cos(mx) dx = am

∫ π

−π

cos2(mx) dx = amπ.

Solving for am, we obtain:

(3.2) am =
1

π

∫ π

−π

f(x) cos(mx) dx.

Similarly, to compute the coefficient bm, we follow the same process but multiply by
sin(mx) instead:

(3.3) bm =
1

π

∫ π

−π

f(x) sin(mx) dx.

For further details on the role of orthogonality in Fourier series, refer to [McM10]. ■

3.2.2. Example: Calculating Fourier Series and Fourier Coefficients. Define the even square
wave function f(x) on the interval [−π, π] as:

f(x) =

{
1, |x| < π

2

0, π
2
≤ |x| ≤ π

and extend it periodically with period 2π

Since f(x) is even, its Fourier series contains only cosine terms (due to sine terms being
odd, they are not represented in this Fourier Series):

f(x) =
a0
2

+
∞∑
n=1

an cos(nx)

The coefficients are given by:
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a0 =
1

π

∫ π

−π

f(x) dx = 1

an =
2

π

∫ π/2

0

cos(nx) dx =
2

πn
sin
(nπ

2

)
So:

an =


2

πn
(−1)k, n = 2k + 1 (odd)

0, n is even

Thus, the Fourier series expansion of the even square wave is:

f(x) =
1

2
+

2

π

(
cos(x)− 1

3
cos(3x) +

1

5
cos(5x)− · · ·

)
3.3. Gibb’s Phenomenon and Partial Sums.

Theorem 3.2 (Partial Sums). A partial sum of the Fourier series of a given function f is
shown in the where a function f is integrable on the segment [−π, π], and

S(f) =
a0
2

+
∞∑
k=1

(ak cos(kx) + bk sin(kx))

is its Fourier series, the partial Fourier sum Sn(f) of order n of f is the trigonometric
polynomial

Sn(f) =
a0
2

+
n∑

k=1

(ak cos(kx) + bk sin(kx))

Theorem 3.3 (Gibb’s Phenomenon). Take f , a piecewise, continously differentiable periodic
function that contains a jump discontinuity. The Gibb’s Phenomenon describes a behavior of
the Nth partial Fourier series of f to create larger peaks around the jump, both overestimating
and underestimating the function by nine percent with larger sine values. However, taking
the infinite Fourier Series, the sum does converge everywhere.

This is caused by the fact that functions of type f exhibit pointwise convergence, NOT
uniform convergence (see 2). The Fourier Series of f converges to the function at every point
other than that of the jump discontinuity. One way to combat issues that arise due to the
Gibb’s Phenomena is by using a smoother summation, such as the Fejér Kernel or Cesaro
Summation.

3.4. Convergence of Fourier Series. The convergence of a Fourier series of a given peri-
odic function f(x) is a question that has been studied deeply in harmonic analysis. In this
section, our aim is to study pointwise and uniform convergence.

https://en.wikipedia.org/wiki/Fejér_kernel
https://en.wikipedia.org/wiki/Cesàro_summation
https://en.wikipedia.org/wiki/Cesàro_summation
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Figure 1. An example of the Fourier Series of the Square Wave, where the
partial sums slowly converge to the actual function as more partial sums are
taken (Adapted from Chemicool Dictionary)

3.4.1. Pointwise Convergence.

Definition 3.4 (Pointwise Convergence). The mathematical definition of pointwise conver-
gence is the idea that a sequence of functions can convergence to a very particular function
on a point by point basis, not over the entire interval.

Theorem 3.5. Let f be a piecewise continuous function on the interval [−L,L], and let

f̃(x) be defined by

f̃(x) =

{
f(x), if f is continuous at x
1
2
(f(x+) + f(x−)) , if f is discontinuous at x

Then the partial sums of the Fourier series SN(x) satisfy:

lim
N→∞

SN(x) = f̃(x) for all x ∈ (−L,L)

Notice how this does not satisfy on the endpoints, of −L and L

Definition 3.6 (Pointwise Convergence of Fourier Series). A Fourier series
∑∞

n=−∞ cne
inx

converges pointwise to a function f(x) on an interval [a, b] if for every x ∈ [a, b],

lim
N→∞

SN(f ;x) = f(x),

where SN(f ;x) is the N -th partial sum of the series.
At points where f is continuous, the series converges to f(x). At jump discontinuities, it

converges to the average of the left- and right-hand limits:

lim
N→∞

SN(f ;x0) =
1

2

(
f(x−

0 ) + f(x+
0 )
)
.



AN EXPOSITION TO FOURIER ANALYSIS 7

Figure 2. An example of the Gibbs Phenomena, where it can be noted that
the overshooting trends to 9% as k increases

This result is a consequence of Dirichlet’s theorem on Fourier series convergence. While
pointwise convergence is useful, it does not preserve all properties of f , such as continuity
or boundedness.

Theorem 3.7 (Dirilecht Kernel). The convolution of Dn(x) of any function f with period
2π is the nth degree Fourier Series approximation to f . We have

(Dn ∗ f)(x) =
∫ π

−π

f(y)Dn(x− y) dy = 2π
n∑

k=−n

f̂(k)eikx,

where

f̂(k) =
1

2π

∫ π

−π

f(x)e−ikx dx
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The motivation for the Dirilecht Kernel when it comes to pointwise convergence of Fourier
Series is that when we expand out the Fourier Series with the expression for coefficients,
we define the Dirilecht Kernel and its related series. By looking at its relation to the geo-
metric series and resubstiting into the original cosine series, we find a direct integral for the
partial sum of the Fourier Series. Pointwise convergence often fails at the endpoints, which
introduces the need for stronger convergence.

3.4.2. Uniform Convergence of Fourier Series.

Definition 3.8 (Uniform Convergence). A series of functions can be described as having
uniform convergence if they converge to the desired functions at all points.

Theorem 3.9 (Uniform Convergence of Fourier Series). A Fourier series
∑∞

n=−∞ cne
inx

converges uniformly to a function f(x) on an interval [a, b] if

lim
N→∞

sup
x∈[a,b]

|SN(f ;x)− f(x)| = 0,

where SN(f ;x) denotes the N-th partial sum of the series.

Uniform convergence is a stronger condition than pointwise convergence. It guarantees
that the Fourier series approximates f(x) with equal accuracy across the entire interval, not
just at individual points. This implies that properties such as continuity and boundedness
are preserved in the limit.

Uniform convergence is especially important in applications where global error bounds or
numerical stability are necessary.

Theorem 3.10 (Rules of Uniform Convergence of Fourier Series). The Fourier series con-
verges to f(x) uniformly in [a, b], if

(i) f(x) is continuous, and f ′(x) is piecewise continuous on [a, b].
(ii) f(x) satisfies the associated boundary conditions.

The classical Fourier series requires different boundary conditions depending on the form
of the series. Dirichlet conditions for the sine series, Neumann conditions for the cosine
series, and periodic conditions for the full Fourier series. See [Gri12] for a more in-depth
discussion.

3.5. Convolution Theorem. One of the most practical results that come from the study of
Fourier Series is the relationship between convolution in the time domain and multiplication
in the frequency domain.

(3.2) F(f ∗ g)(n) = f̂(n) · ĝ(n)
The convolution f ∗ g is defined on the interval [−π, π] as

(f ∗ g)(x) =
∫ π

−π

f(x− y)g(y) dy,

Assuming both f and g are integrable and have a period of 2π

This result reveals that a convolution blending or smoothing operation in the spatial
domain corresponds to a simple multiplication of Fourier coefficients. To smooth a function,
we can multiply its high-frequency coefficients by small values.
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While a rigorous proof of the convolution theorem requires deeper analysis of convergence
and periodic extensions, the idea that it can make operations that are complex in one domain,
simple in another is the very property makes Fourier Series and the Fourier Transform
essential in many mathematical fields, notably the study of Partial Differential Equations,
where they become a powerful tool in the process of solving.

4. The Fourier Transform

4.1. Fourier Transform. In the last section, we thoroughly explored the properties of
Fourier Series and how they’re used to model periodic functions.

Definition 4.1 (Fourier Transform). We can define the Fourier Transform of a function g(t)
as

F{g(t)} = G(f) =

∫ ∞

−∞
g(t)e−2πift dt

In this case, we are left with a function of f , or frequency. G(f) helps us understand how
much power g(t) has at a certain frequency f . This idea can be applied in many different
ways.

Lets take the example of the square wave, in which we previously discussed it’s decom-
position as a sum of trignometric functions, or it’s Fourier Series. We will soon extend this
idea to non-periodic functions, but the square wave is a nice starting point.

Seeing as we used an even square wave when calculating Fourier Series, we can show the
Fourier Transform with an odd square wave.

Proof. Define the time-domain function g(t) as:

g(t) =


1, −a < t < 0

−1, 0 < t < a

0, otherwise

This is an odd, non-periodic square pulse of width 2a, centered at the origin.

We compute the Fourier Transform of g(t) with our previously defined definition:

F{g(t)} = G(f) =

∫ ∞

−∞
g(t) e−2πift dt

Since g(t) is only nonzero on from −a to a, we split the integral:

G(f) =

∫ 0

−a

1 · e−2πiftdt+

∫ a

0

(−1) · e−2πiftdt

=

∫ 0

−a

e−2πiftdt−
∫ a

0

e−2πiftdt

Evaluate both integrals:

G(f) =

[
e−2πift

−2πif

]0
−a

−
[
e−2πift

−2πif

]a
0

=
1− e2πifa

2πif
− e−2πifa − 1

2πif
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=
2−

(
e2πifa + e−2πifa

)
2πif

=
2(1− cos(2πfa))

2πif

G(f) =
1− cos(2πfa)

πif

This is the Fourier Transform of the odd square wave. It is purely imaginary and odd,
being a reflection of the time-domain input. ■

4.2. Inverse Transform. Seeing as we just took the Fourier Transform of g(t) in the time
domain and received an output G(f) on the frequency domain, one might ask how to go
from the frequency domain to the time domain. In order to do so, we must utilize the Inverse
Fourier Transform.

Theorem 4.2 (Inverse Fourier Transform). We can define the Inverse Fourier Transform
as

F−1{G(f)} =

∫ ∞

−∞
G(f) e2πift df = g(t).

This gives us a useful tool to take functions from the frequency domain and transform them
into functions of the time domain.

Revisiting G(f), our Fourier Transform of g(t), an odd square wave, we can perform the
Inverse Fourier Transform to get g(t)

G(f) =
1− cos(2πfa)

πif

We compute the inverse Fourier transform with:

g(t) = F−1{G(f)} =

∫ ∞

−∞
G(f)e2πift df

Substitute G(f) into the integral:

g(t) =

∫ ∞

−∞

1− cos(2πfa)

πif
e2πift df

Split the integral using linearity:

g(t) =
1

πi

∫ ∞

−∞

e2πift

f
df − 1

πi

∫ ∞

−∞

cos(2πfa)

f
· e2πift df

Now write cos(2πfa) in exponential form:

cos(2πfa) =
e2πifa + e−2πifa

2
Substitute into the second integral:

g(t) =
1

πi

∫ ∞

−∞

e2πift

f
df − 1

2πi

∫ ∞

−∞

(
e2πif(t+a) + e2πif(t−a)

f

)
df

Group terms:
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g(t) =
1

πi

∫ ∞

−∞

e2πift

f
df − 1

2πi

∫ ∞

−∞

e2πif(t+a)

f
df − 1

2πi

∫ ∞

−∞

e2πif(t−a)

f
df

Let us define each of these integrals symbolically:

I1 =

∫ ∞

−∞

e2πift

f
df, I2 =

∫ ∞

−∞

e2πif(t+a)

f
df, I3 =

∫ ∞

−∞

e2πif(t−a)

f
df

Thus, we have:

g(t) =
1

πi
I1 −

1

2πi
(I2 + I3)

These integrals do not converge classically. We can denote these as Cauchy Principal
Value Integrals. Our combination of integrals gives us our original time domain function.
Refer to [SW71] for a more indepth discussion.

g(t) =


1, −a < t < 0

−1, 0 < t < a

0, else

This confirms that the inverse Fourier transform of G(f) yields the original odd square
wave.

4.3. General Properties. In this section, we will go over many of the essential properties
of the Fourier Transform that allow it to be used so generally.

(1) Linearity Property

Definition 4.3 (Linearity of Fourier The Transform). Take any two functions in the
time domain, g(t) and f(t). Say that both functions have Fourier Transforms G(f)
and F (f) respectively. The Fourier Transform of any linear combinations of our time
domain functions can be expressed as

(4.1) F {c1g(t) + c2f(t)} = c1G(f) + c2F (f)

(2) Shifts Property

Definition 4.4 (Shifts Property of the Fourier Transform). Take a function g(t) in
the time domain, with a Fourier Transform G(F ). The Fourier Transform of g(t− a)
where a is a real number can be denoted as

e−i2πfa G(f)

Which is shown by

F{g(t− a)} =

∫ ∞

−∞
g(t− a) e−i2πft dt

=

∫ ∞

−∞
g(u) e−i2πf(u+a) du

= e−i2πfa

∫ ∞

−∞
g(u) e−i2πfu du

= e−i2πfaG(f)

https://en.wikipedia.org/wiki/Cauchy_principal_value
https://en.wikipedia.org/wiki/Cauchy_principal_value
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(3) Scaling Property

Definition 4.5 (Scaling Property of the Fourier Transform). Take a function g(t) in
the time domain and scalar c ∈ R. The Fourier Transform of g(ct) can be represented
as

F{g(ct)} =
1

|c|
G

(
f

c

)
Proof.

F{g(ct)} =

∫ ∞

−∞
g(ct) e−i2πft dt

Substitute: u = ct, du = c dt

F{g(ct)} =

∫ ∞

−∞

g(u)

c
e−i2πf u

c du

Where once we integrate under the dual pretense that c is either negative or positive,
we receive our Fourier Transform for g(ct)

F{g(ct)} =
1

|c|
G

(
f

c

)
■

(4) Derivative Property

Definition 4.6 (Derivative Property of the Fourier Transform). Take a function g(t)
in the time domain. The Fourier Transform of the derivative of g(t) can be shown as

F
{
dg(t)

dt

}
= i2πf ·G(f)

(5) Modulation Property

Definition 4.7 (Modulation Property of the Fourier Transform). Take two functions,
g(t) and f(t) in the time domain. We can say that these two functions are modulated
if they are multiplied in the time domain. We can take the Fourier Transform of their
modulation with

F{g(t)h(t)} = G(f) ∗ F (f)

Where G(f) and F (f) are the Fourier Transforms of g(t) and f(t) respectively.

4.4. Plancherel Theorem.

4.4.1. Plancherel Theorem. Plancherel’s Theorem is an important result in modern analysis,
which showcases the unitary of the Fourier Transform.

Definition 4.8 (Unitary Transformation). A Unitary Transformation is a linear isomor-
phism that preserves the inner product. The inner product of two functions before the
transformation is equivalent to the inner product after the transformation.

Theorem 4.9 (Plancherel Theorem).

(4.2)

∫ ∞

−∞
|g(t)|2 dt =

∫ ∞

−∞
|G(f)|2 df
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In layman’s terms, this lets us know that the energy over the Fourier Transform is preserved
(where the integral of the squared magnitude represents energy). Taking the integral of the
squared modulus over the interval of all R gives us the crucial identity that the Fourier
Transform is unitary.

This theorem has also been known as Plancherel-Parseval’s Theorem, but the general idea
of the Fourier Transform being unitary is preserved, regardless of notation.

Remark 4.10. What this also gives us is the notion that, if g(t) belongs to L1 and L2, G(f)
also belongs to L2, which can be shown as a reiteration of the original theorem.

4.5. Poisson Summation Formula.

Definition 4.11 (Schwartz Function). We can define any function f as a Schwartz Function
if f is smooth, and is of rapid decay

|f(x)| ≪ |x|−N as x → ∞ for all N.

In simpler terms, where the derivative of f is rapidly decreasing

Remark 4.12. The Fourier Transform of a Schwartz Function is also a Schwartz Function

Theorem 4.13 (Poisson Summation Formula). Let g(n) be a function in the time domain,
and G(n) be its Fourier Transform. The Poisson Summation Formula states∑

n∈Z

g(n) =
∑
n∈Z

G(n)

Proof. Define

G(x) =
∑
n∈Z

g(x+ n).

Since the sum converges absolutely, G(x) is 1-periodic and integrable on [0, 1], so it has a
Fourier series. Its Fourier coefficients are:

Ĝ(k) =

∫ 1

0

∑
n∈Z

g(x+ n)e−2πikx dx.

By absolute convergence and the fact that g is a Schwartz function (rapidly decreasing and
smooth), we can swap summation and integration:

Ĝ(k) =
∑
n∈Z

∫ 1

0

g(x+ n)e−2πikx dx.

u = x+ n yields:

=
∑
n∈Z

∫ n+1

n

g(u)e−2πik(u−n) du =
∑
n∈Z

∫ n+1

n

g(u)e−2πiku du.

We see this is a sum of integrals over disjoint intervals covering all of R, so we get:

Ĝ(k) =

∫
R
g(u)e−2πiku du = ĝ(k).

So the Fourier series of G is:

G(x) =
∑
k∈Z

ĝ(k)e2πikx.
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Evaluating at x = 0, we conclude:∑
n∈Z

g(n) = G(0) =
∑
k∈Z

ĝ(k),

■

5. Applications of Fourier Analysis

5.1. Characteristic Function in Probability Theory.

Definition 5.1 (Probability Density Function). In Probability Theory, we can say that a
non-negative function f which has the property

1

2π

∫ π

−π

f(x) dx = 1

can be called a Probability Density Function (PDF).

Definition 5.2 (Characteristic Function). We can say that the complex Fourier Coefficients
of f ,

cn = E
[
feinx

]
are called the characteristic function of the distribution.

Theorem 5.3. What this gives us is a unique identity, if g and f are distribution functions
of independent data, this convolution

f ⋆ g(x) =
1

2π

∫ π

−π

f(x− y)g(y) dy

represents the distribution of the sum of the data from g and f . An indepth discussion and
proof can be found on [Kni25]

Theorem 5.4. Let {Xk}mk=1 be a sequence of independent random variables on the circle,
each with a density function possessing Fourier coefficients {cn}. Then, as m → ∞, the
distribution of the normalized sum of the Xk converges to the uniform (constant) distribution
on the circle.

Proof. Suppose each density function fk has Fourier coefficients {cn}. Because the data are
independent, the Fourier coefficients of the distribution of the sum are given by cmn . Since
|cn| < 1 for all n ̸= 0, we have cmn → 0 as m → ∞.
In the limit, the only surviving Fourier coefficient is c0, which corresponds to the mean (and

equals 1 for normalized densities). Thus, the limiting distribution has all higher frequencies
vanishing and only the constant term remaining. This is the uniform distribution on the
circle. ■

5.2. Discrete Fourier Transform.

Definition 5.5 (Discrete Fourier Transform). The Discrete Fourier Transform (DFT) con-
verts equally spaced samples of a function into a sequence with the same length, but samples
of the Discrete Time Fourier Transform (DTFT). The DTFT is a complex valued function
of frequency
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Definition 5.6 (Discrete Time Fourier Transform). The Discrete Time Fourier Transform
(DTFT) is a method in Fourier Analysis used to analyze samples of a continous function.
It produces a function of frequency that is a periodic summation of the continuous Fourier
Transform. The DTFT is a continuous function of frequency, but in application we often
take discrete samples via the DFT.

G(f) ≜
∞∑

k=−∞

∆t · g(k∆t) e−i2πfk∆t

• G(f) is the Fourier transform of the sampled signal.
• g(k∆t) is the original continuous-time signal sampled at intervals of ∆t.
• ∆t is the sampling interval
• f is the continuous frequency variable (in Hz).
• k indexes the sampled points in time.

There are alternative definitions to the DTFT, but we’ll use this definition henceforth for
simplicity purposes.

The DFT has many uses in Fourier Analysis, including but not limited to

• Digital Signal Processing
• Image Processing
• Solving Partial Differential Equations

Theorem 5.7. We can mathematically define the DFT as

Xk =
N−1∑
n=0

xn · e−i2π k
N
n

• Xk is the k-th frequency component.
• xn is the n-th sample of the time-domain signal.
• N is the total number of samples.
• k is the index of the output frequency bin (k = 0, 1, . . . , N − 1).

• e−i2π k
N
n is the complex exponential basis function.

5.2.1. Fast Fourier Transform. The Fast Fourier Transform is an efficient computer algo-
rithm that computes the DFT. The FFT rapidly computes the DFT by factorizing the
matrix produced when taking the DFT into a product of mostly zero factors.

Definition 5.8 (Big O Notation). Big O notation is a mathematical notation that describes
the behavior of a function when trending to its limit, whether that be at infinity or a constant
N . We denote big O notation as

O(g(x))

In computer science, the field we are interested in when discussing the rapid speeds of
calculation of the FFT, Big O notation is a useful tool to classify algorithms by their runtime
as the input grows.

If we denote the DFT as taking O(n2) operations n sums with n terms, the FFT can be
denoted as taking O(n log n operations. This is a significant saving, allowing for the FFT to
be employed in far more efficient settings, and making it far more practical in actual use.
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Definition 5.9 (Cooley-Turkey Algorithm). This is the most commonly used FFT with
the most widespread applications in computing. This recursively breaks down DFTs of size
n = n1n2 into smaller DFTs of size n2. This also has a unique ability, where it can be
combined with other DFT algorithms, making it essential in computations.

Other notable FFT algorithms include the Prime-factor FFT algorithm, Rader’s FFT
algorithm, and Hexagonal FFT.

5.2.2. Quantum Fourier Transform. The Quantum Fourier Transform is the Quantum analouge
of the DFT. As we discussed earlier, the QFT has a significant runtime advantage compared
to the DFT, making it essential in practice. In Quantum Computing, it is the linear trans-
formation of Quantum bits. It is a part of many algorithms, notably Shor’s Algorithm for
factoring and computing the discrete logarithm, and plays a crucial role in many mathemat-
ical fields. It also enables the ability of Quantum Computers to do extremely fast arithmetic
calculations.

Definition 5.10 (Quantum Fourier Transform). We can define the QFT mathematically:
Consider a complex-valued vector

(x0, x1, . . . , xN−1) ∈ CN .

The classical discrete Fourier transform (DFT) maps this to another vector

(y0, y1, . . . , yN−1) ∈ CN

using the formula

yk =
1√
N

N−1∑
j=0

xj ω
−jk
N , for k = 0, 1, . . . , N − 1,

where ωN = e2πi/N denotes a primitive N -th root of unity.
In the quantum context, the QFT transforms a basis state |x⟩ of the form

|x⟩ =
N−1∑
j=0

xj |j⟩

into a new state

|x̃⟩ =
N−1∑
k=0

yk |k⟩ ,

where the new amplitudes yk are given by

yk =
1√
N

N−1∑
j=0

xj ω
jk
N , for k = 0, 1, . . . , N − 1.

6. Conclusion

Seeing as this paper has explored several different results in Fourier Series, both highly
theoretical and highly practical, several questions emerge. One could explore the limitations
of Fourier Series when applied to functions with highly localized discontinuities, or explore
how the role of the QFT in the ever-evolving field of Quantum Computing could push the
bounds of the practical applications of Fourier Analysis. It is heavily recommended that
the reader study the wide-reaching impact of Fourier Analysis, all the way from undiscussed
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kernels to the applications of Fourier Analysis in fields like Number Theory or Ergodic
Theory.
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