

Structure of the Talk

- → Motivation: Why redefine memory
- → Neural networks as distributions
- → Training as a PDE in measure space
- → Memory as a stationary measure

Motivation

- → Traditional memory definitions: weights, activations, hidden states
- → These are heuristic and architecture-dependent
- → Core question: Can we define memory purely mathematically?
- → "Memory is not a stored value, but a stationary structure in distribution space."

Neural Networks as Measures

$$f^{(n)}(x)=rac{1}{n}\sum_{i=1}^n a_i\sigma(w_i\cdot x+b_i)$$

Empirical measure over neurons:

$$\mu^{(n)} := rac{1}{n} \sum_{i=1}^n \delta_{(a_i,w_i,b_i)} \in \mathcal{P}(\mathbb{R}^{2d+1})$$

As $n \to \infty$, $\mu^{(n)} \stackrel{w}{\longrightarrow} \mu$ (weak convergence)

Mean-Field Limit

Limit behavior:

$$f_{\mu}(x) = \int a\,\sigma(w\cdot x + b)\,d\mu(a,w,b)$$

 \rightarrow The network is now described by μ , not finite parameters

Gradient Descent Becomes a PDE

Let the expected loss be:

$$\longrightarrow$$
 $\mathcal{L}(\mu) = \mathbb{E}_{(x,y)} \left[\ell(f_{\mu}(x), y) \right]$

Gradient descent in parameter space becomes a distributional PDE:

$$\rightarrow \partial_t \mu_t + \nabla \cdot (\mu_t V[\mu_t]) = 0$$

Where the velocity field is:

$$igwedge V[\mu_t](a,w,b) = -
abla_{(a,w,b)} \left(rac{\delta \mathcal{L}}{\delta \mu_t}
ight)$$

Wasserstein Space

Wasserstein-2 distance between two distributions:

$$W_2^2(\mu,
u) = \inf_{\gamma \in \Gamma(\mu,
u)} \int \|x-y\|^2 \, d\gamma(x,y)$$

 $\Gamma(\mu,\nu)$: couplings with marginals μ,ν

Training becomes a gradient flow of \mathcal{L} in $\mathcal{P}_2(\mathbb{R}^{d+2})$

Training as Gradient Flow

The continuity equation describes the flow of μ_t :

$$\partial_t \mu_t = -
abla_{\mathcal{W}} \mathcal{L}(\mu_t)$$

Wasserstein gradient flows minimize $\mathcal{L}(\mu)$ over time:

$$rac{d}{dt}\mathcal{L}(\mu_t) = -\|
abla_{\mathcal{W}}\mathcal{L}(\mu_t)\|^2 \leq 0$$

Defining Memory

Memory = stationary distribution:

$$\partial_t \mu_t = 0 \Rightarrow \mu_t = \mu^*$$

Equivalently, memory measure minimizes loss:

$$\mu^* = rg\min_{\mu \in \mathcal{P}_2} \mathcal{L}(\mu)$$

Why the Definition Works

Memory is a fixed point in Wasserstein space

- \rightarrow The definition is:
- → Independent of network architecture
- → Dynamically stable under training
- → Compatible with variational and PDE analysis

THANK YOU/ ANY QUESTIONS?