
 Memory as a Stationary Measure in the Mean-Field Limit of Neural Networks

A Measure-Theoretic Formulation of Memory



Structure of the Talk

    Motivation: Why redefine memory

Neural networks as distributions

    Training as a PDE in measure space

Memory as a stationary measure



Motivation

Traditional memory definitions: weights, activations, hidden states

These are heuristic and architecture-dependent

Core question: Can we define memory purely mathematically?

“Memory is not a stored value, but a stationary structure in
distribution space.”



Neural Networks as Measures

Empirical measure over neurons:

As n → ∞, μ⁽ⁿ⁾ ⇢ μ (weak convergence)
w



Mean-Field Limit

The network is now described by μ, not finite parameters

Limit behavior:



Gradient Descent Becomes a PDE

Let the expected loss be:

Gradient descent in parameter space becomes a distributional PDE:

Where the velocity field is:



Wasserstein Space

Wasserstein-2 distance between two distributions:

Γ(μ,ν): couplings with marginals μ,ν

Training becomes a gradient flow of



Training as Gradient Flow

The continuity equation describes the flow of μ :t

Wasserstein gradient flows minimize over time:



Defining Memory

Memory = stationary distribution:

Equivalently, memory measure minimizes loss:



Memory is a fixed point in Wasserstein space

The definition is:
Independent of network architecture
Dynamically stable under training
Compatible with variational and PDE analysis

Why the Definition Works



THANK YOU/ ANY
QUESTIONS?


