Memory as a Stationary Measure in the Mean-Field Limit of Neural Networks

A Measure-Theoretic Formulation of Memory



Structure of the Talk

— Motivation: Why redefine memory
— Neural networks as distributions
— Training as a PDE in measure space

— Memory as a stationary measure



Motivation

— Traditional memory definitions: weights, activations, hidden states
— These are heuristic and architecture-dependent
— Core question: Can we define memory purely mathematically?

— “Memory is not a stored value, but a stationary structure in
distribution space.”



Neural Networks as Measures
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Empirical measure over neurons:
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Mean-Field Limit

Limit behavior:
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— The network is now described by y, not finite parameters



Gradient Descent Becomes a PDE

Let the expected loss be:
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Gradient descent in parameter space becomes a distributional PDE:
— Ot + V- (peV]e]) =0

Where the velocity field is:
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Wasserstein Space

Wasserstein-2 distance between two distributions:

W2(u,v) = inf / 1 — vl dv(z, y)

vl (p,v)

[(u,v): couplings with marginals p,v

raining becomes a gradient flow of £ in P,(R%"?)




Training as Gradient Flow

The continuity equation describes the flow of p.:
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Wasserstein gradient flows minimize £(u) over time:
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Defining Memory

Memory = stationary distribution:

*

Oipt = 0= py = p
Equivalently, memory measure minimizes loss:

j = arg min ()



Why the Definition Works

Memory is a fixed point in Wasserstein space

— The definition is:
— |Independent of network architecture

— Dynamica
— Compatib

ly stable under training

e with variational and PDE analysis
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