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Abstract 
This paper introduces a rigorous, measure-theoretic formulation of memory in neural networks, 
proposing that memory corresponds to a stationary distribution in the space of probability 
measures over network parameters. Rather than treating memory as a static value or architectural 
feature, we define it as a fixed point under the gradient flow in Wasserstein space. We develop the 
mathematical underpinnings for this theory by drawing from optimal transport, measure theory, 
and partial differential equations. Our results establish the existence and uniqueness of such 
stationary measures and offer a new framework to understand learning dynamics in infinite-width 
networks. 

Introduction and Motivation  

The concept of memory in neural networks is traditionally understood through heuristic or 
architectural terms—weights, activations, and hidden states are all regarded as vessels through 
which networks "remember" data. However, these interpretations depend on finite-dimensional 
representations and specific architectural constraints, making them fragile across changing model 
scales or designs. In this paper, we seek a more fundamental definition: a mathematically intrinsic 
characterization of memory that is independent of implementation details. 

We posit that memory is best understood not as a stored value or a functional state, but as a 
stationary structure within a dynamical system—specifically, as a stationary probability measure 
in the space of distributions over network parameters, evolving under the learning dynamics of 
gradient descent. This reframing is motivated by the growing body of literature on the mean-field 
limit of neural networks, where the empirical distribution of parameters, rather than the parameters 
themselves, becomes the object of study. In the infinite-width limit, the learning process of a neural 
network can be described by a partial differential equation (PDE) in the space of probability 
measures, typically endowed with the Wasserstein metric from optimal transport theory. 

Let us illustrate this with a simple example. Consider a one-hidden-layer neural network with n 
neurons, where each neuron's parameters are denoted 𝜃! ∈ ℝ". The output of the network for input 
𝑥	 ∈ 	ℝᵖ is: 

𝑓#(𝑥; 𝜃$, … , 𝜃#) =
1
𝑛0𝜎(𝑥; 𝜃!)

#

!%$

 

  



where 𝜎(𝑥; 𝜃!) is the activation function applied to input x with parameters θᵢ. We define the 
empirical measure μ⁽ⁿ⁾ associated with the network as: 

𝜇(#) ≔
1
𝑛0𝛿(!

#

!%$

 

where δθ is the Dirac delta measure centered at θ. As n → ∞, under mild regularity conditions, this 
empirical measure converges weakly to a deterministic measure 𝜇	on	ℝᵈ. Thus, the neural network 
is no longer described by a finite tuple of parameters, but by a distribution μ, which becomes the 
fundamental object in the mean-field framework. 

This convergence allows us to reinterpret training as a dynamical flow of probability measures. 
The key insight is that gradient descent on the loss function induces a Wasserstein gradient flow 
in the space 𝒫₂(ℝᵈ) of probability measures with finite second moments. The dynamics of training 
can then be formulated as a continuity equation: 

𝜕)𝜇) + ∇ ⋅ (𝑣)𝜇)) = 0 

where μt  is the time-dependent measure of parameters and vt is a velocity field derived from the 
functional gradient of the loss. 

To proceed rigorously, we begin by defining the empirical measure over network parameters: 

Definition  (Empirical Measure of Network Parameters) 

Let {θᵢ}ᵢ₌₁ⁿ ⊂ ℝᵈ be the parameters of a neural network with n units. The empirical measure 
associated with these parameters is defined as: 

𝜇(#) =
1
𝑛0𝛿(!

#

!%$

 

where δθ denotes the Dirac measure centered at θᵢ ∈ ℝᵈ. 

As n → ∞, under appropriate regularity conditions, μ⁽ⁿ⁾ ⇀ μ (weak convergence), where μ ∈ 𝒫₂(ℝᵈ) 
is a probability measure with finite second moment. 

Definition (Training Dynamics in the Mean-Field Limit). 

Let F[μ] be the expected population loss associated with a measure μ ∈ 𝒫₂(ℝᵈ). The gradient 
descent dynamics in the mean-field limit induce a continuity equation on μt, given by: 

𝜕𝜇)
𝜕𝑡 + ∇ ⋅ A𝜇)∇

𝛿ℱ
𝛿𝜇C = 0 



where *+
*,

 denotes the first variation (functional derivative) of F with respect to μ, and the flow 
occurs in the Wasserstein-2 space 𝒫₂(ℝᵈ). 

Definition (Memory Measure). 

A memory measure μ*∈	𝒫₂(ℝᵈ). is defined as a stationary solution of the continuity equation 
above. That is:  

∇ ⋅ D𝜇∗∇
𝛿ℱ
𝛿𝜇

(𝜇∗)E = 0 

 

Equivalently, μ* satisfies the Euler–Lagrange condition: 

𝛿ℱ
𝛿𝜇

(𝜇∗) = constant	on	𝑠𝑢𝑝𝑝(𝜇∗) 

 

Intuitively, a memory measure is a fixed point of the learning dynamics in measure space. It 
corresponds to a state of dynamical equilibrium, where the distribution of parameters no longer 
evolves under gradient descent. Unlike weight vectors or activations, this structure is independent 
of the neural architecture and admits analysis via tools from optimal transport and PDE theory. 

Proposition (Well-posedness of Gradient Flow). 

Under suitable assumptions on F (e.g., displacement convexity, lower semi continuity, coercivity), 
the gradient flow 

 
𝜕𝜇)
𝜕𝑡 = −∇."ℱ(𝜇)) 

 

in	𝒫₂(ℝᵈ) is well-posed. That is, there exists a unique curve μt  satisfying the gradient flow equation, 
and for t → ∞, μt→μ* in Wasserstein-2 distance, where μ* is a memory measure. 

Proof: See Ambrosio, Gigli, and Savaré (2008), Chapter 11. 

 

Preliminaries 

This section introduces the mathematical tools necessary for the formulation of our theoretical 
framework. We begin by reviewing foundational concepts in probability measure theory, followed 
by a detailed definition of the Wasserstein-2 space. Finally, we describe how gradient flows can 



be rigorously defined in this geometric setting, preparing the groundwork for analyzing neural 
network dynamics through distributional evolution. 

Let 𝒫(ℝᵈ) denote the set of Borel probability measures on ℝᵈ. A measure μ ∈	𝒫(ℝᵈ) satisfies μ 
(ℝᵈ)= 1, ensuring unit total mass. Given a sequence (μₙ) ⊂ 𝒫(ℝᵈ) we say that μn  converges weakly 
to μ ∈ 𝒫(ℝᵈ), denoted μₙ ⇀ μ, if for every bounded and continuous function ϕ: ℝᵈ → ℝ, the 
following condition holds: 

lim
#→0

R 𝜑(𝑥)
1#

 𝑑𝜇#(𝑥) = R 𝜑(𝑥)
1#

 𝑑𝜇(𝑥) 

This notion of convergence is particularly suitable when dealing with distributions over parameter 
spaces, especially in the infinite-width limit of neural networks, where pointwise convergence of 
parameters loses meaning. 

The Wasserstein-2 Space 

We define the Wasserstein-2 space 𝒫₂(ℝᵈ) as the set of probability measures in 𝒫(ℝᵈ) with finite 
second moment: 

𝒫2(ℝ") ≔ V𝜇 ∈ 𝒫(ℝ") ∣∣ ∫ |𝑥|2ℝ#  𝑑𝜇(𝑥) < ∞ \. 

 

The Wasserstein-2 distance between two measures μ, ν ∈	𝒫₂(ℝᵈ) is defined as: 

𝑊2
2(𝜇, 𝜈) ≔ inf

4∈6(,,8)
R |𝑥
1#×1#

− 𝑦|2 𝑑𝛾(𝑥, 𝑦), 

where Γ(μ,ν) denotes the set of all couplings of μ and ν, i.e., probability measures on ℝᵈ× ℝᵈ with 
marginals μ and ν. This distance metrizes weak convergence along with convergence of second 
moments and endows 𝒫₂(ℝᵈ) with a rich geometric structure that enables differential calculus on 
the space of distributions. 

Gradient Flows in Wasserstein Space 

Let F : 𝒫₂(ℝᵈ) →	ℝ ∪	{+∞} be a functional defined on the space of probability measures. This 
function may represent, for instance, the expected loss in a learning problem. The gradient flow of 
F in Wasserstein space is defined as a curve μt	∈	𝒫₂(ℝᵈ) that satisfies: 

𝑑𝜇)
𝑑𝑡 = −∇."ℱ(𝜇)), 

where ∇."ℱ denotes the Wasserstein gradient of F with respect to the metric structure induced by 
W2. This evolution equation admits a PDE representation known as the continuity equation: 



𝜕𝜇)
𝜕𝑡 + ∇ ⋅ D𝜇)∇

𝛿ℱ
𝛿𝜇

(𝜇))E = 0, 

where *+
*,

 denotes the first variation (functional derivative) of F. The quantity ∇ *+
*,

 serves as the 
velocity field guiding the mass transport of the measure μt . This formulation, pioneered by Otto 
and further developed by Ambrosio, Gigli, and Savaré, provides a rigorous analytic framework for 
studying evolution equations on spaces of measures and underpins the theoretical understanding 
of training as an optimization process in infinite-dimensional space. 

Neural Networks in the Mean-Field Limit 

In this section, we reformulate neural networks as systems of interacting particles and study their 
behavior as the number of neurons tends to infinity. This asymptotic perspective, often referred to 
as the mean-field limit, provides a rigorous mathematical framework for analyzing the collective 
behavior of parameters as probability distributions. This perspective allows learning dynamics to 
be captured not by trajectories in finite-dimensional parameter space, but by the evolution of 
distributions governed by partial differential equations. 

Neural Networks as Particle Systems 

We begin with a standard one-hidden-layer neural network defined as 

𝑓#(𝑥; 𝜃$, … , 𝜃#) =
1
𝑛0𝜎(𝑥; 𝜃!)

#

!%$

 

where θi	∈	ℝᵈ 

 encodes the parameters (e.g., weights and biases) of the iii-th neuron, and σ: ℝp× ℝᵈ→ ℝ is a fixed 
activation-output map. The subscript n reflects the network width. In this formulation, the output 
is the empirical average of individual neuron responses. 

To capture the statistical behavior of the parameter ensemble, we define the empirical measure 
associated with the neural network as 

𝜇(#) ≔
1
𝑛0𝛿(!

#

!%$

, 

where δθ  denotes the Dirac delta measure at θ ∈ ℝᵈ. This measure encodes the entire parameter 
configuration and permits analysis through measure-theoretic and probabilistic tools. 

As n → ∞, we are interested in the convergence of μ(n) to a limit μ ∈	𝒫₂(ℝᵈ). This convergence is 
understood in the weak sense and forms the basis of the mean-field approximation. 



Limit Network Representation 

Assuming weak convergence μ(n)	⇀	μ, we define the mean-field network as the limit function 

𝑓(𝑥; 𝜇) ≔ R 𝜎(𝑥; 𝜃)
1#

 𝑑𝜇(𝜃). 

This integral representation replaces the finite sum in the original network with an expectation 
under the limiting measure μ, effectively transitioning from a discrete model to a continuous 
ensemble of neurons. The network is now entirely characterized by the probability measure μ, 
which serves as its infinite-width representation. 

This transformation is not merely formal. Under mild assumptions on the smoothness and 
boundedness of σ, one can show that fn (x;θ1,…,θn) → f(x;μ) uniformly over compact domains 
with high probability. The result connects statistical approximation theory with empirical process 
theory and underlies the validity of the mean-field model. 

Dynamics of Training in the Mean-Field Limit 

Let 𝐿(𝜇) denote the expected loss of the network induced by measure μ, defined as 

ℒ(𝜇) ≔ 𝐸(:,;)∼=[ℓ	(𝑓(𝑥; 𝜇), 𝑦)], 

where ℓ is a standard loss function (e.g., squared loss or cross-entropy), and D is the data 
distribution. The evolution of μt under gradient descent on L gives rise to a time-dependent family 
of distributions governed by a Wasserstein gradient flow: 

𝑑𝜇)
𝑑𝑡 = −∇."ℒ(𝜇)). 

This gradient flow can be equivalently formulated as the continuity equation: 

𝜕𝜇)
𝜕𝑡 + ∇ ⋅ D𝜇)∇

𝛿ℒ
𝛿𝜇
(𝜇))E = 0, 

where the velocity field is derived from the first variation of the loss functional. The training 
process thus corresponds to a transport of mass in parameter space, where each particle (or neuron) 
evolves under the influence of the loss-induced potential field. 

 

Interpretation of the Mean-Field Limit 

The mean-field limit provides several critical advantages. First, it removes dependence on specific 
parameterizations or architectures, treating the network as a dynamical system in probability space. 
Second, it enables a variational formulation of learning, allowing one to study convergence and 



generalization through convex analysis and PDE techniques. Third, the framework naturally 
supports the definition of stationary distributions, which will serve as our formal definition of 
memory in the subsequent section. 

The measure μt captures the entire state of the network at time t, and its evolution is fully described 
by the gradient flow of the loss functional in 𝒫₂(ℝᵈ). As training progresses, we expect μt to 
approach a fixed point μ*, whose properties reflect the system’s learned representations. In this 
formulation, learning is not a movement through parameter space, but through the space of 
distributions — an inherently geometric and collective process. 

Training as a Distributional Partial Differential Equation 

In the mean-field formulation of neural networks, the training process is no longer viewed as 
discrete updates to finite-dimensional parameters, but rather as the evolution of a probability 
distribution over parameter space. This distributional viewpoint allows us to describe learning 
dynamics as a continuum flow — a process that unfolds not in parameter vectors, but in the space 
of measures. In this section, we formalize that intuition and demonstrate how the gradient descent 
training of infinitely wide neural networks converges, in the large n limit, to a partial differential 
equation (PDE) in the space of probability measures. This PDE governs the temporal evolution of 
the network's parameter distribution and constitutes the core dynamical object in our analysis of 
memory. 

Loss Functional and Functional Derivative 

Let μt	 ∈	 𝒫₂(ℝᵈ) denote the time-dependent probability measure representing the network’s 
parameter distribution at training time t. Suppose we are given a data distribution D over input-
output pairs (x,y) ∈	ℝp× ℝ, and an activation function or neuron output mapping σ: ℝp× ℝd → ℝ. 
Then we can define a functional F: 𝒫₂(ℝᵈ) → ℝ	∪	{+∞}, representing the expected loss under the 
parameter distribution μ, as follows: 

ℱ(𝜇) ≔ 𝐸(:,;)∼> jℓ	 kR 𝜎(𝑥; 𝜃)
1#

 𝑑𝜇(𝜃), 𝑦lm, 

where ℓ: ℝ	× ℝ	→ ℝ+ is a convex loss function, such as the squared error ℓ(𝑎, 𝑏) = $
2
(𝑎 − 𝑏)2. 

The integral ∫𝜎(𝑥; 𝜃)  𝑑𝜇(𝜃) represents the prediction made by the infinite-width neural network, 
and the expectation over D computes the average prediction error across the data distribution. 

To compute the gradient flow of this loss functional in Wasserstein space, we require its first 
variation, also referred to as the functional derivative. Informally, this derivative quantifies how 
a small perturbation in the measure μ influences the value of the functional F. Formally, it is 
defined via the Gâteaux derivative: 

𝑑
𝑑𝜖 ℱq𝜇 + 𝜖

(𝜈 − 𝜇)r|?%@ = R
𝛿ℱ
𝛿𝜇

(𝜃)
1#

 𝑑(𝜈 − 𝜇)(𝜃), 



 

for any perturbation measure ν ∈	𝒫₂(ℝᵈ). When the functional F is sufficiently regular — for 
instance, when σ is smooth and bounded and the loss function ℓ is differentiable — the functional 
derivative exists and admits an explicit representation: 

𝛿ℱ
𝛿𝜇

(𝜃) = 𝐸(:,;)∼> jℓ	(𝑓(𝑥; 𝜇), 𝑦) ⋅
𝜕𝜎(𝑥; 𝜃)
𝜕𝜃 m. 

This derivative defines a scalar field over the parameter space ℝᵈ. Its gradient gives rise to the 
velocity field that governs the evolution of the distribution μt  under training. 

Continuity Equation Formulation 

With the functional derivative in hand, we can describe the temporal evolution of the parameter 
distribution as a PDE. Specifically, the measure μt evolves according to a continuity equation, 
which expresses conservation of probability mass under a velocity field. The equation takes the 
form: 

𝜕𝜇)
𝜕𝑡 + ∇ ⋅

(𝑣)𝜇)) = 0, 

where the velocity field vt(θ) is given by the negative gradient of the functional derivative: 

𝑣)(𝜃) ≔ −∇D
𝛿ℱ
𝛿𝜇

(𝜃)E. 

This formulation is the infinite-dimensional analogue of gradient descent in finite-dimensional 
Euclidean space. Rather than evolving a single point θt , the continuity equation describes how the 
entire distribution of parameters flows through the landscape of the loss functional F. Each 
infinitesimal mass of probability moves in the direction of steepest descent, and the full evolution 
reflects the aggregate behavior of infinitely many such particles. 

Properties of the Gradient Flow 

The gradient flow described above is well-posed under standard assumptions. If F is lower 
semicontinuous and displacement convex — a condition that generalizes convexity to geodesic 
paths in Wasserstein space — then the evolution equation admits a unique solution μt  that depends 
continuously on the initial distribution μ0. Moreover, the flow converges to a limiting distribution 
μ* ∈	𝒫₂(ℝᵈ) as t → ∞, which satisfies the stationary condition 

𝛿ℱ
𝛿𝜇

(𝜇∗) = constant	on	𝑠𝑢𝑝𝑝(𝜇∗) 



This Euler–Lagrange condition characterizes equilibrium points of the flow and will form the 
mathematical basis for our definition of memory in the next section. These stationary measures are 
not transient or noisy but instead reflect fixed structures in distribution space — structures that 
retain the result of learning even after training has ceased. 

The mathematical theory underlying this flow was first developed in the context of 
thermodynamics and fluid dynamics by Jordan, Kinderlehrer, and Otto, and was later rigorously 
formalized by Ambrosio, Gigli, and Savaré. These results connect the geometry of 𝒫₂(ℝᵈ) to 
variational problems in infinite-dimensional spaces, enabling a rich theory of dynamics and 
equilibria. 

Conceptual Implications 

The reformulation of training as a PDE over measures introduces a profound shift in perspective. 
In traditional optimization, training is a path through a finite-dimensional parameter space, 
governed by local updates. In the mean-field setting, training becomes a trajectory through the 
space of distributions, governed by global flows. This abstraction strips away architectural 
dependencies and instead focuses on the geometry of learning itself. 

The continuity equation enables us to characterize learning trajectories, convergence rates, and 
stability properties at a macroscopic level. It permits analysis using tools from functional analysis, 
calculus of variations, and optimal transport. More importantly, it sets the stage for defining and 
analyzing the notion of memory in purely mathematical terms — as a fixed point of this dynamical 
system, independent of network instantiation. 

In what follows, we will define memory as a stationary distribution under this PDE and explore its 
theoretical and practical consequences. 

Defining Memory as a Stationary Distribution 

In the preceding sections, we have described the evolution of neural network parameters in the 
infinite-width limit as a gradient flow in the Wasserstein-2 space 𝒫₂(ℝᵈ). Within this continuous 
framework, the behavior of the parameter distribution as training progresses is governed by a 
distributional partial differential equation (PDE). In this section, we formalize the notion of 
"memory" in neural networks rigorously, defining it explicitly as a stationary distribution of the 
aforementioned PDE. We will explore the mathematical foundations underpinning this 
definition, discuss conditions ensuring existence and uniqueness, and interpret these stationary 
solutions as capturing the learned representations within the network. 

Stationary Measures and Equilibrium Conditions 

Recall from the previous section that the temporal evolution of the parameter distribution μt is 
governed by the continuity equation: 



𝜕𝜇)
𝜕𝑡 + ∇ ⋅ D𝜇)∇

𝛿ℱ
𝛿𝜇

(𝜇))E = 0, 

where F denotes the expected loss functional and *ℱ
*,

 its functional derivative. We say a measure 
μ* ∈	𝒫₂(ℝᵈ) is a stationary solution or equilibrium measure if it satisfies: 

∇ ⋅ D𝜇∗∇
𝛿ℱ
𝛿𝜇

(𝜇∗)E = 0. 

Equivalently, the equilibrium condition can be expressed via the Euler–Lagrange condition, 
requiring the first variation of the loss functional to be constant on the support of the equilibrium 
measure: 

𝛿ℱ
𝛿𝜇

(𝜇∗) = constant	on	𝑠𝑢𝑝𝑝(𝜇∗) 

 

for some constant c ∈	ℝ. Intuitively, this condition means that at equilibrium, no infinitesimal re-
distribution of mass within the support of μ* can yield a decrease in the loss. 

We now adopt this equilibrium notion formally as our definition of memory: 

Definition (Memory Distribution): A probability measure μ* ∈	𝒫₂(ℝᵈ) satisfying the stationary 
condition described above is called a memory distribution of the infinitely wide neural network. 

In other words, memory is defined not as a specific choice of weights or activations, but rather as 
a global statistical configuration of parameters that is invariant under training dynamics. 

Existence and Uniqueness of Memory Measures 

The question of existence and uniqueness of stationary measures hinges on the properties of the 
loss functional F. Standard assumptions ensuring existence and uniqueness typically include lower 
semicontinuity and displacement convexity of the functional. More explicitly, if F is proper, lower 
semicontinuous, and displacement convex, then a minimizer of F exists and is unique. Such 
minimizers necessarily satisfy the equilibrium conditions described above and thus constitute 
memory distributions. 

Ambrosio, Gigli, and Savaré (2008) established general existence results for gradient flows in 
Wasserstein space, providing the mathematical basis for our formulation. Under standard 
regularity assumptions—such as Lipschitz continuity and smoothness conditions on the activation 
functions and convexity conditions on the loss—the existence of at least one stationary measure 
μ*	is guaranteed. Strict convexity further ensures uniqueness, resulting in a well-defined notion of 
memory. 



Convergence to Memory Distributions 

A central feature of the gradient flow structure in Wasserstein space is that the functional F 
decreases monotonically along the trajectory of the distribution μt . Formally, this monotonic 
decrease is expressed by the energy dissipation identity: 

𝑑
𝑑𝑡 ℱ

(𝜇)) = −R ||∇
𝛿ℱ
𝛿𝜇

(𝜃) ||2
1#

 𝑑𝜇)(𝜃) ≤ 0. 

This inequality demonstrates that the expected loss functional acts as a Lyapunov function for the 
system. Due to the monotone decrease and boundedness from below (assuming F is proper and 
lower bounded), the parameter distribution μt  converges, in the Wasserstein-2 distance, towards 
the set of stationary measures as time goes to infinity. Under strict displacement convexity 
conditions, this convergence is stronger: the parameter distribution μt converges uniquely to the 
stationary measure μ*. 

Interpretation and Implications 

The definition of memory as a stationary distribution offers a natural and rigorous interpretation: 
memory encapsulates those parameter configurations that remain invariant under training 
dynamics. Each equilibrium measure represents a global, self-consistent geometric configuration 
of parameters for which no local improvement in predictive performance can be achieved via 
infinitesimal perturbations. 

This perspective has several important implications for understanding learning and generalization. 
Concentrated stationary measures with compact or tightly localized support correspond to 
configurations with implicit regularization properties, akin to finite-width networks with strong 
inductive biases. Conversely, diffuse or multimodal stationary measures reflect networks that can 
memorize multiple patterns, indicative of highly over-parameterized settings. 

Relation to Finite-Width Networks 

To bridge the gap between finite-width and infinite-width networks, we consider the empirical 
measure μt(n)  defined by the finite-width neural network parameters at time t: 

𝜇)
(#) =

1
𝑛0𝛿(!

(%)())

#

!%$

. 

As the width n → ∞, standard propagation-of-chaos arguments ensure that μt(n) converges in 
Wasserstein-2 sense towards the mean-field distribution μt. Consequently, in the limit t → ∞, the 
finite-width empirical distributions converge to the stationary memory distribution: 

 



Thus, finite-width networks can be interpreted as finite-sample approximations to the infinite-
width memory distribution. Memory in finite-width networks emerges as a statistical 
approximation of the stationary solutions characterizing the infinite-width limit. 

In summary, we have formally defined memory in neural networks as a stationary measure of the 
Wasserstein gradient flow associated with the infinite-width network training dynamics. 
Existence, uniqueness, and convergence results have been discussed, along with interpretative 
insights connecting geometric properties of memory distributions to learning and generalization. 

The subsequent sections of the paper discuss the analytical characterizations of these memory 
distributions, investigate their structural properties in concrete scenarios, and explore how varying 
network architectures and training algorithms influence the formation and geometry of stationary 
solutions. 

Wasserstein Gradient Flows: Mathematical and Analytical Insights 

Wasserstein gradient flows can be naturally viewed as curves of steepest descent in the metric 
space 𝒫₂(ℝᵈ), endowed with the Wasserstein-2 distance. From a geometric standpoint, the 
Wasserstein metric endows the space of probability measures with a Riemannian-like structure, 
enabling a rich geometrical interpretation of distributional dynamics. This structure facilitates a 
deeper understanding of concepts like geodesics, curvature, and convexity in the space of 
probability measures, which in turn impact convergence rates, stability, and generalization. 

A major practical advantage of interpreting training dynamics as Wasserstein gradient flows is the 
availability of advanced analytical and numerical methods. These include: 

Variational schemes: Minimizing movements and JKO (Jordan–Kinderlehrer–Otto) schemes 
provide powerful numerical approximations for solutions of gradient flow equations. 

Energy-dissipation inequalities: They quantify convergence rates and enable precise stability 
analyses. 

Functional inequalities: Tools such as Talagrand inequalities, log-Sobolev inequalities, and 
displacement convexity conditions yield direct control on the convergence behavior of the 
parameter distributions. 

While much of the theory of Wasserstein gradient flows rests on convexity assumptions, neural 
network loss landscapes are often non-convex. Extending classical gradient-flow theory beyond 
convexity remains a significant and largely open mathematical challenge. Recent research has 
begun exploring generalized notions of convexity, such as Polyak-Łojasiewicz conditions and 
gradient dominance, to characterize convergence behavior in these more general settings. 

Wasserstein gradient flows offer a rigorous yet flexible mathematical foundation for analyzing 
neural network training dynamics. They provide a geometric and analytical framework that not 
only clarifies the interpretation of memory as stationary measures but also suggests powerful 



computational tools and opens pathways to solving contemporary mathematical problems arising 
from practical non-convex optimization scenarios in deep learning. 

Stationary Distributions and the Concept of Memory 

Stationary distributions serve as a foundational component of the framework developed throughout 
this paper. By characterizing neural network training as a gradient flow in the Wasserstein-2 space, 
we arrive at a mathematically rigorous and intrinsic definition of memory. A stationary 
distribution, formally introduced as an equilibrium solution to the gradient-flow PDE, is a 
probability measure μ* that remains invariant under the training dynamics. More explicitly, a 
stationary measure satisfies the condition: 

∇ ⋅ D𝜇∗∇
𝛿ℱ
𝛿𝜇

(𝜇∗)E = 0. 

From a variational viewpoint, this condition implies that the first variation (functional derivative) 
of the loss functional F is constant across the support of the stationary measure. Thus, no local 
perturbation of the distribution can produce a further decrease in the loss. Geometrically, stationary 
distributions represent points in the infinite-dimensional distribution space where the gradient of 
the loss functional vanishes or is uniform, indicating stable equilibria. 

Conceptually, the notion of memory as stationary distributions differs significantly from 
traditional definitions reliant upon specific neural architectures or parameter vectors. Instead of 
representing memory by particular weights, neuron activations, or hidden states, memory is now 
viewed as a robust global structure in distribution space. This abstraction is both powerful and 
natural, allowing memory to be studied as an intrinsic property of the training dynamics, 
independent of any finite-dimensional parameterization or specific neural architecture. Hence, 
memory emerges as a stable, self-consistent statistical configuration of parameters that 
encapsulates the network’s learned representation of the data. 

Furthermore, this distributional notion of memory sheds light on critical aspects of neural learning 
and generalization. Concentrated stationary distributions, characterized by low entropy and 
compact support, are indicative of strong implicit regularization effects, mirroring classical notions 
of good generalization. Conversely, more diffuse or multimodal stationary distributions 
correspond to over-parameterized networks capable of memorizing diverse patterns. Thus, the 
geometric properties of stationary distributions directly translate into meaningful implications 
about the network’s generalization capabilities and the nature of its learned representations. 

Existence and Uniqueness of Stationary Measures 

Given the foundational significance of stationary distributions as the formal definition of memory, 
it becomes essential to address questions of their existence and uniqueness rigorously. Classical 
results in the theory of Wasserstein gradient flows ensure existence under general assumptions: 



First, consider the loss functional F: 𝒫₂(ℝᵈ) → ℝ	∪	{+∞}. If F is proper, lower-semicontinuous, 
and displacement convex, then it admits at least one stationary distribution μ*. Such conditions 
are typically satisfied by common neural network loss functions—for example, mean squared error 
losses combined with sufficiently regular activation functions. 

Moreover, the uniqueness of stationary measures is determined primarily by the strictness of 
displacement convexity. Strict displacement convexity ensures that the stationary measure is 
unique, providing an unambiguous notion of memory. Conversely, if displacement convexity is 
non-strict or degenerate, multiple stationary distributions might coexist. Such multiplicity 
corresponds to networks capable of memorizing distinct modes or patterns, each represented by a 
separate equilibrium measure. 

These theoretical guarantees have important practical implications: existence ensures a meaningful 
notion of memory is always achievable, while uniqueness governs the interpretability and 
predictability of learning outcomes. In practice, most standard neural architectures and losses 
produce landscapes where at least local uniqueness is achievable, although global uniqueness may 
not always hold. 

Applications and Implications for Learning Theory 

The formal definition of memory as stationary distributions in Wasserstein space has profound 
theoretical implications and broad applications in the learning theory of neural networks. One 
immediate consequence is an enhanced understanding of generalization and capacity control. 
Stationary distributions inherently embody regularization properties encoded through their 
geometric structure. For example, concentrated stationary distributions reflect implicit 
regularization akin to norm-based methods, thus leading to strong generalization. Conversely, 
diffuse stationary distributions characterize models with excessive memorization capacity, 
typically arising in highly overparameterized scenarios. 

This distributional viewpoint also suggests novel analytical tools. Energy-dissipation inequalities, 
integral curvature bounds, and other functional inequalities become accessible through the 
Wasserstein geometry, enabling rigorous quantitative analyses of convergence rates, stability 
properties, and generalization errors. 

Additionally, computational schemes arising naturally from the gradient-flow formulation, such 
as Jordan–Kinderlehrer–Otto (JKO) approximations, can offer new numerical methods to simulate 
training dynamics, analyze convergence behavior, and identify memory distributions explicitly in 
practice. 

Furthermore, this rigorous notion of memory may inspire new algorithms explicitly designed to 
find equilibrium measures efficiently, improving practical training convergence and robustness. 

Comparison with Traditional Memory Models 

The concept of memory presented herein contrasts significantly with traditional notions used in 
neural network theory. Conventionally, memory is represented explicitly by weights, activation 



vectors, or discrete hidden states, dependent strongly on the architecture and parameterization of 
specific networks. Such definitions are inherently finite-dimensional, localized, and tied to 
particular implementations, limiting general theoretical insights and robustness under 
perturbations. 

In sharp contrast, defining memory as a stationary distribution provides a universal, intrinsic 
characterization independent of network parameterization or architecture specifics. This approach 
removes the inherent limitations associated with traditional, finite-dimensional memory models, 
allowing deeper theoretical analysis of learned representations, generalization behavior, and 
robustness. 

Moreover, the geometric nature of stationary distributions facilitates direct mathematical insights 
into their structural properties, stability under perturbations, and generalization capacity. 
Traditional finite-dimensional models typically require heuristic or empirical studies, while our 
distributional framework admits rigorous mathematical analysis through tools from optimal 
transport, PDE theory, and geometric measure theory. 

In summary, viewing memory through the lens of stationary distributions represents a substantial 
theoretical advancement, bridging a fundamental conceptual gap by providing a rigorous, unified, 
and robust mathematical notion of memory. This approach offers both conceptual clarity and 
powerful analytical tools, enriching theoretical understanding and practical methodology in neural 
network learning. 

Conclusion 

In this paper, we have presented a mathematically rigorous formulation of memory in neural 
networks as stationary distributions arising naturally from the Wasserstein gradient-flow dynamics 
of infinitely wide networks. Unlike traditional finite-dimensional approaches that depend 
explicitly on particular network architectures, our measure-theoretic definition provides an 
intrinsic and universal characterization, bridging the gap between mathematical theory and 
practical learning dynamics. 

We began by formulating neural network training as gradient flows in the Wasserstein-2 space, 
providing a distributional partial differential equation (PDE) governing parameter evolution. 
Within this context, we defined memory formally as equilibrium points or stationary solutions of 
this PDE. These stationary distributions represent robust, stable parameter configurations invariant 
under training dynamics, capturing the essence of learned information within the network. 

Subsequently, we established conditions ensuring existence and uniqueness of stationary 
distributions, highlighting displacement convexity and related analytical conditions from optimal 
transport theory. We showed that stationary measures inherently encode generalization and 
regularization properties, allowing new analytical insights into network training dynamics, 
convergence behavior, and robustness. 

A comparison with traditional neural memory models revealed significant theoretical and practical 
advantages of our distributional formulation, particularly its architecture-independence, robustness 



to perturbations, and amenability to rigorous mathematical analysis through advanced tools from 
measure theory and PDEs. 

This rigorous viewpoint opens numerous directions for future research. Extending these theoretical 
tools beyond displacement convexity to non-convex landscapes represents an exciting 
mathematical challenge. Moreover, translating our theoretical insights into computationally 
efficient algorithms for identifying and analyzing memory distributions can significantly impact 
practical deep learning methodologies. Ultimately, our measure-theoretic framework enriches the 
theoretical understanding of memory in neural networks, providing a foundation for deeper 
analysis and more robust applications. 
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