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Abstract. In this paper, we present an introduction to sieve methods in number theory,
with particular focus on the classical sieve of Eratosthenes and Brun’s pure sieve. We detail
the study of these two sieve methods in a rigorous and simplified approach,with emphasis on
improving estimates for the count of integers free of small prime divisors. Beginning with a
refined analysis of the classical Eratosthenes sieve, we apply Rankin’s trick to obtain sharper
upper bounds. These estimates lead to an improved asymptotic formula for the generalized
sieve under standard hypotheses. The second part of the paper focuses on Brun’s pure sieve
and its application to problems related to twin primes and integers with few prime factors.
We also introduce a truncated Möbius function and derive bounds for sifted sets with power-
saving error terms. Our approach combines combinatorial identities with analytic estimates,
yielding explicit bounds that approach the strength of more advanced sieve methods.

1. Introduction

Sieve methods are advanced techniques in number theory, used to count the number of
elements with a certain characteristic within larger sets of numbers. The first sieve was
developed by Eratosthenes in third century BC, its idea is intuitive and it works like a prime
counting algorithm, which was used by Legendre in his studies of the prime number counting
function π(x). Later, sieve theory was revisited by Viggo Brun in the 20th century. He
developed what is known as Brun’s sieve and he applied it to deduce many interesting results,
such as, the convergence of the sum of reciprocals of twin primes, and proving that there are
infinitely many primes with exactly seven prime factors. Brun’s groundbreaking work has led
to intense investigation and newfound interest in sieve methods, see [Bru16], [Bru20], [Bru22].
Over the years, mathematicians came up with other sieve methods : Selberg’s sieve, Turàn’s
sieve,Rosser’s Sieve, the large sieve...

These tools have led to numerous remarkable results. Notable examples include the Brun-
Titchmarsh theorem and Bombieri’s influential theorem. Another powerful illustration is
Chen’s theorem [Che02], which asserts the existence of infinitely many primes p such that
p + 2 is semiprime (the product of at most two primes). Furthermore, sieve methods have
been particularly useful recently, and were used in many breakthroughs regarding prime gaps
such as proving that there are infinitely many primes that differ by a gap no more than 246,
see [Pol14].

Sieve methods also play an important part in applied fields of number theory such as
Algorithmic Number Theory, and Cryptography. In fact, they are used directly, for example
for finding all the prime numbers below a certain bound, or constructing numbers free of
large prime factors, and indirectly, for example to deduce valuable information about the
distribution of smooth numbers in short intervals in order to bound the running time of
several factoring algorithms. These applications show how valuable sieve methods are.
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2. Walkthrough

In Section 1, we revisit the classical sieve of Eratosthenes, derive its main counting es-
timate using Möbius inversion, and refine the error term via Rankin’s method. We also
introduce the concept of smooth numbers and prove an upper bound for their distribution.
The generalized sieve of Eratosthenes is then developed in an abstract framework using
multiplicative functions. In Section 2, we study Brun’s pure sieve, beginning with the com-
binatorial identities underlying the truncated Möbius function. We conclude by deriving an
asymptotic formula for the size of sifted sets under general conditions, with optimized error
bounds.

3. Background

Before we delve into the topic of this paper, it is important to introduce some concepts
and notations.

3.1. Big O Notation. Let D ⊆ C and f : D → C. We write

f(x) = O(g(x))

if there exists a positive constant A such that

|f(x)| ≤ Ag(x) for all x ∈ D,

where g : D → R+. Typically, D is N or R+
0 .

Sometimes, the notation

f(x) ≪ g(x) or g(x) ≫ f(x)

is used to mean f(x) = O(g(x)).

3.2. The Möbius function. The Möbius function µ(·) is multiplicative and defined by:

µ(1) = 1, µ(p) = −1 for every prime p, µ(pa) = 0 for a ≥ 2.

Lemma 3.1. The fundamental property of the Möbius function states that:∑
d|n

µ(d) =

{
1 if n = 1,

0 otherwise.

Proof. If n = 1, the statement is verified; otherwise, let n = pa11 p
a2
2 · · · parr and set

N = p1p2 · · · pr, the radical of n. Since µ(d) = 0 unless d is squarefree, we have∑
d|n µ(d) =

∑
d|N µ(d). The sum on the RHS contains 2r terms corresponding to the subsets

of {p1, . . . , pr}. Note that the number of subsets with k elements is
(
r
k

)
, and for a divisor d

determined by such a subset, µ(d) = (−1)k. Hence,∑
d|n

µ(d) =
r∑

k=0

(
r

k

)
(−1)k = (1− 1)r = 0.

■

Thus: - µ(n) = 0 if n is not squarefree, - µ(n) = (−1)k if n is the product of k distinct
primes.
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3.3. Abel summation or Partial summation.

Theorem 3.2. Let c1, c2, . . . be a sequence of complex numbers and set

S(x) :=
∑
n≤x

cn.

Let n0 be a fixed positive integer. If cj = 0 for j < n0 and f : [n0,∞) → C has continuous
derivative in [n0,∞), then for x an integer > n0 we have∑

n≤x

cnf(n) = S(x)f(x)−
∫ x

n0

S(t)f ′(t) dt.
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4. The Sieve of Eratosthenes

The Eratosthenes sieve is the oldest sieve method (around 3rd century BC), named after
Eratosthenes (276–194 BCE), a Greek mathematician. It is an ancient algorithm used to
find prime numbers up to a certain limit, and it first appeared in the work of Nicomedes
(280–210 BCE), entitled Introduction to Arithmetic.

The idea of the sieve is very intuitive. Take a list of numbers 2, 3, . . . , x, with x an integer
, and start by calling 2 a prime and crossing out all its multiples, the same as 3, then picking
the next uncrossed number and repeat. We stop the process at the next uncrossed integer
m such that m ≥

√
x. At this stage, all of the uncrossed numbers are prime.

A.M. Legendre (1752–1833) included a modern form of the sieve in his book La Théorie
des Nombres [Leg30], 1808. In this section, we will describe this form, and we will show how
the sieve of Eratosthenes becomes as powerful as Brun’s sieve, which we will talk about in
the next section, when it is combined with ‘Rankin’s trick’, through some applications.

4.1. The sieve of Eratosthenes. Let P (z) =
∏

p<z p. The sieve of Eratosthenes deletes

from the list of numbers all those that are not relatively prime to P (z), except the primes
dividing P (z) itself. This motivates us to study the function,

Φ(x, z) = #{n ≤ x : n is not divisible by any prime p < z}.

This will serve as a motivating example, before the formal generalization of the sieve.

Theorem 4.1.

Φ(x, z) = x
∏
p<z

(
1− 1

p

)
+O(2z)

Proof. Using lemma 3.1:

ϕ(x, z) =
∑
n≤x

 ∑
d|gcd(n,P (z))

µ(d)

 =
∑
n≤x

∑
d|n

d|P (z)

µ(d)


We rearrange the sum, by putting the sum over d dividing P (z) on the outside, and for each
of these divisors, we sum over all n less than or equal to x that are divisible by d.

Φ(x, z) =
∑
d|P (z)

µ(d)

∑
n≤x
d|n

1

 =
∑
d|P (z)

µ(d)

∑
m≤x

d

1


The last step follows by substituting n = m · d, so that the sum over all positive integers
n ≤ x such that n is a multiple of d becomes the sum over all positive integers m ≤ x

d
.∑

m≤x
d

1 =
⌊x
d

⌋
=
x

d
+O(1)
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Then using the fact that |µ(d)| ≤ 1 for all d,

ϕ(x, z) =
∑
d|P (z)

µ(d)
⌊x
d

⌋

= x
∑
d|P (z)

µ(d)

d
+O

∑
d|P (z)

1


The sum in the error term is to count the number of subsets of the set of primes less than
or equal to z, which bounded by 2z. For the main term:

x
∑
d|P (z)

µ(d)

d
= x

1 +
∑
p|P (z)

µ(p)

p
+

∑
p1<p2|P (z)

µ(p1p2)

p1p2
+ · · ·


= x

1−
∑
p|P (z)

1

p
+

∑
p1<p2|P (z)

1

p1p2
− · · ·


Observe that in this sum, we either choose a 1

p
or a −1

p
, so:

x
∑
d|P (z)

µ(d)

d
= x

∏
p≤z

(
1− 1

p

)
Thus:

ϕ(x, z) = x
∏
p<z

(
1− 1

p

)
+O(2z)

■

4.2. Rankin’s Trick and the Function ψ(x, z). We want to refine the error term obtained
in the previous subsection, and this can be done using a clever idea due to Rankin. Let’s
introduce the function ψ(x, z):

ψ(x, z) = # {n ≤ x : p | n⇒ p ≤ z}

In that case, n is called a z-smooth number: only divisible by primes at most z. Recall that:

ϕ(x, z) =
∑
d|P (z)

µ(d)
⌊x
d

⌋
Note that the term

⌊
x
d

⌋
is only nonzero when d ≤ x. This implies that we are only summing

over divisors of P (z) that are less than or equal to x. Hence:

ϕ(x, z) =
∑
d≤x

d|P (z)

µ(d)
⌊x
d

⌋
=
∑
d≤x

d|P (z)

µ(d)
(x
d
+O(1)

)

ϕ(x, z) = x
∑
d≤x

d|P (z)

µ(d)

d
+O

∑
d≤x

d|P (z)

1


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Thus:

(4.1) ϕ(x, z) = x
∑
d≤x

d|P (z)

µ(d)

d
+O (ψ(x, z))

In order to show that the error term above is actually better than the exponential error
term, we will try to bound ψ(x, z).

Theorem 4.2.

ψ(x, z) ≪ x(log z) exp

(
− log x

log z

)
Proof.

Theorem 4.3. ∑
p<z

log p

p
= log z +O(1)

Proof. Consider the prime factorization of n!.

n! =
∏
p≤n

pep ,

where ep is the multiplicity of p. Since only primes p ≤ n can divide n!, we only need to

track the product of primes up to n. There are
⌊
n
p

⌋
multiples of p that are at most n, and⌊

n
p2

⌋
multiples of p2 that are at most n, and so on. Hence:

ep =

⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · · ,

Note that the sum is finite since for some power pa of p we will have n < pa so that
⌊

n
pa

⌋
= 0.

Therefore:

log n! =
∑
p≤n

(⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · ·

)
log p.

We also have,

log n! =
∑
k≤n

log k = n log n− n+O(log n),

which can be proved using Abel summation, and∑
p≤n

(⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · ·

)
log p ≤ n

∑
p

log p

p(p− 1)

We consider the series: ∑
p

log p

p(p− 1)

where the sum runs over all primes p.
Note that:

log p

p(p− 1)
=

log p

p2 − p
∼ log p

p2
as p→ ∞.
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But the following series is known to converge:∑
p

log p

p2
<∞.

Hence, by comparison: ∑
p

log p

p(p− 1)
<∞.

Hence, ∑
p≤n

(⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · ·

)
log p≪ n

. we get, ∑
p≤n

⌊
n

p

⌋
log p = n log n+O(n).

■

Theorem 4.4. ∑
p<z

1

p
= log log z +O(1)

Proof. We apply partial summation to deduce the result from Theorem 4.3. Setting cn :=
(log n)/n if n is prime and zero otherwise,∑

p≤n

1

p
=
∑
k≤n

ckf(k) = C(n)f(n)−
∫ n

2

C(t)f ′(t) dt,

where C(t) :=
∑

p≤t
log p
p

= log t+O(1), by Theorem 4.3, and

f ′(t) = − 1

t(log t)2
.

So, ∑
p≤n

1

p
= (log n+O(1)) · 1

log n
+

∫ n

2

(log t+O(1)) · 1

t(log t)2
dt.

The first term is 1 +O
(

1
logn

)
, and the integral yields log log n+O(1), so:

∑
p≤n

1

p
= log log n+O(1).

■

We are going to use Rankin’s trick to estimate ψ(x, z). For δ > 0

Ψ(x, z) =
∑
n≤x

p|n⇒p<z

1 ≤
∑
n≤x

p|n⇒p<z

(x
n

)δ
≤ xδ

∏
p<z

(
1− 1

pδ

)−1
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Hence:

ψ(x, z) ≤ xδ
∏
p<z

(
1− 1

pδ

)−1

=
∏
p<z

(
1 +

1

pδ

)(
1− 1

p2δ

)−1

≪
∏
p<z

(
1 +

1

pδ

)
,

because
(
1− 1

p2δ

)−1

converges for δ > 1
2
. Using the inequality 1 + x ≤ ex, we get

Ψ(x, z) ≪ xδ
∏
p<z

exp

(
1

pδ

)

= xδ exp

(∑
p<z

1

pδ

)

We set δ := 1− η, with η ”small” enough to ensure δ > 1
2
and η → 0 as z → ∞. Writing:

p−δ = p−1pη = p−1eη log p

Note that: ex ≤ 1 + xex Hence:

Ψ(x, z) ≪ x1−η exp

(∑
p<z

1

p
(1 + η log p · xη log p)

)

We choose η sufficiently small, η := 1
log z

, which yields:

Ψ(x, z) ≪ x1−log z exp

(∑
p<z

1

p

(
1 +

log p

log z
· e
))

Thus:

Ψ(x, z) ≪ x exp

(
− log x

log z

)(∑
p<z

1

p
+
∑
p<z

log p

p
· e

log z

)
Using 4.4 and 4.3, we get the following:

Ψ(x, z) ≪ x exp

(
− log x

log z

)(
log log z +O(1) +

e

log z
(log z +O(1))

)
≪ x exp

(
− log x

log z

)
exp(log log z)

≪ x(log z) exp

(
− log x

log z

)
■
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Lemma 4.5. Let C(x) =
∑

n≤x cn, and let f(t) be a differentiable function with continuous
derivative. Suppose that

lim
Y→∞

C(Y )f(Y ) = 0 and

∫ ∞

1

|C(t)f ′(t)| dt <∞.

Then, for all x ≥ 1, ∑
n>x

cnf(n) = −C(x)f(x)−
∫ ∞

x

C(t)f ′(t) dt.

Proof. By Abel summation, we have

(4.2)
∑
n≤x

cnf(n) = C(x)f(x)−
∫ x

1

C(t)f ′(t) dt

Now observe that:∑
n>x

cnf(n) =
∞∑
n=1

cnf(n)−
∑
n≤x

cnf(n)

=
∞∑
n=1

cnf(n)−
[
C(x)f(x)−

∫ x

1

C(t)f ′(t) dt

]

=
∞∑
n=1

cnf(n)− C(x)f(x) +

∫ x

1

C(t)f ′(t) dt

To proceed, it suffices to show that:

∞∑
n=1

cnf(n) = −
∫ ∞

1

C(t)f ′(t) dt

which follows by sending x→ ∞ in equation (4.2). Since:

lim
x→∞

∫ x

1

C(t)f ′(t) dt =

∫ ∞

1

C(t)f ′(t) dt <∞,

we conclude that: ∑
n>x

cnf(n) = −C(x)f(x)−
∫ ∞

x

C(t)f ′(t) dt.

■

Theorem 4.6. ∑
d|P (z)
d≤Z

µ(d)

d
=
∏
p<z

(
1− 1

p

)
+O

(
x(log x)2 exp

(
− log x

log z

))
.

Proof. Note that ∑
d|P (z)
d≤Z

µ(d)

d
=
∑
d|P (z)

µ(d)

d
−
∑
d|P (z)
d>Z

µ(d)

d
,
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and ∣∣∣∣∣∣∣∣
∑
d|P (z)
d>Z

µ(d)

d

∣∣∣∣∣∣∣∣ ≤
∑
d|P (z)
d>Z

1

d
.

Using Lemma 4.5, this sum is bounded by∑
d|P (z)
d>Z

1

d
≤ −ψ(x, z)

x
+

∫ ∞

x

ψ(t, z)

t2
dt.

The integral satisfies the following.

log z

∫ ∞

x

exp

(
− log t

log z

)
dt

t
= log z

∫ ∞

x

dt

t1+
1

log z

≤ (log z)2 exp

(
− log x

log z

)
,

which completes the proof. ■

Theorem 4.7.

Φ(x, z) = x
∏
p<z

(
1− 1

p

)
+O

(
x(log z)2 exp

(
− log x

log z

))
, as

log x

log z
→ ∞.

Proof. The proof follows from recalling 4.1 and combining 4.2 and 4.6. ■

4.3. The generalized sieve of Eratosthenes. We can now introduce the formal general-
ized form of the sieve of Eratosthenes. Let A be any set of natural numbers ≤ x and let P be
a set of primes. To each prime p ∈ P , associate ω(p) distinguished residue classes modulo p.
Let Ap denote the subset of elements in A that belong to at least one of the residue classes
modulo p. Set A1 := A, and for any squarefree integer d composed only of primes from P ,
define:

Ad :=
⋂
p|d

Ap

and

ω(d) :=
∏
p|d

ω(p).

Let z be a positive real number and define:

P (z) :=
∏
p∈P
p<z

p.

We denote by S(A,P , z) the number of elements of the sifted set:

A \
⋃

p|P (z)

Ap.

We assume that there exists a constant X such that for every squarefree d composed of
primes from P , the cardinality of Ad satisfies:

(5.3) #Ad =
ω(d)

d
X +Rd
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for some remainder term Rd.

Theorem 4.8. The sieve of Eratosthenes
In the above setting, suppose the following conditions hold,

(1) |Rd| = O(ω(d));
(2) for some κ ≥ 0, ∑

p|P (z)

ω(p) log p

p
≤ κ log z +O(1);

(3) for some positive real number y, #Ad = 0 for every d > y.

Then

S(A,P , z) = XW (z) +O

((
X +

y

log z

)
(log z)κ+1 exp

(
− log y

log z

))
,

where

W (z) :=
∏

p∈P, p<z

(
1− ω(p)

p

)
.

Proof.

Lemma 4.9. Under the assumptions of 4.8, define

F (t, z) :=
∑
d≤t

d|P (z)

ω(d).

Then we have

F (t, z) = O

(
t(log z)κ exp

(
− log t

log z

))
.

Proof. We apply Rankin’s trick. For any δ > 0,

F (t, z) ≤
∑
d|P (z)

ω(d)

(
t

d

)δ

.

Since ω is multiplicative, the sum can be factorized, and we obtain

F (t, z) ≤ tδ
∏

p|P (z)

(
1 +

ω(p)

pδ
+
ω(p2)

p2δ
+ · · ·

)
.

Using the inequality 1 + x ≤ ex and the fact that the Dirichlet series converges, we deduce

F (t, z) ≤ exp

δ log t+ ∑
p|P (z)

ω(p)

pδ

 .

Now set δ = 1− θ for some small θ > 0. Using the inequality ex ≤ 1 + xex, we find

F (t, z) ≤ t exp

(
−θ log t+

∑
p≤z

ω(p)

p
+ θzθ

∑
p≤z

ω(p) log p

p

)
.

From the second assumption in Theorem 5.4.1 and partial summation, we have∑
p≤z

ω(p)

p
≤ κ log log z +O(1).
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So we get
F (t, z) ≪ t exp

(
−θ log t+ κ log log z + κθ(log z)zθ

)
.

Choosing θ = 1/ log z yields the desired estimate:

F (t, z) = O

(
t(log z)κ exp

(
− log t

log z

))
.

■

Lemma 4.10. Under the same assumptions,∑
d>y

d|P (z)

ω(d)

d
= O

(
(log z)κ+1 exp

(
− log y

log z

))
.

Proof. By partial summation, ∑
d>y

d|P (z)

ω(d)

d
≪
∫ ∞

y

F (t, z)

t2
dt.

Now apply 4.9 to estimate F (t, z) and conclude the result. ■

Using the inclusion–exclusion principle and the first and third hypotheses of the theorem,
we write:

S(A,P , z) =
∑
d≤y

d|P (z)

µ(d)
|Ad|
d

=
∑
d≤y

d|P (z)

µ(d)
Xω(d)

d
+O (F (y, z)) .

Then by 4.9 and 4.10, we deduce

S(A,P , z) = XW (z) +O

((
X +

y

log z

)
(log z)κ+1 exp

(
− log y

log z

))
.

■

4.4. Application of the Sieve of Eratosthenes. A twin prime is a prime number p such
that p + 2 is also prime. Viggo Brun proved that

∑
p,p+2prime

1
p
< ∞ in his 1919 paper

see [HR13], using the sophisticated Brun’s sieve which we will discuss in the next section.
However, the interesting thing is that the same result can be derived using the elementary
sieve of Eratosthenes. The following upper bound is not the best that we can find, but it is
enough to prove that the series mentioned above converges.

Theorem 4.11. The number of primes p ≤ x such that p+ 2 is prime is

≪ x(log log x)2

log2 x
.

Proof. Let A be the set of natural numbers n less than or equal to x and let P be the set
of all primes. Let z be a positive real number, to be chosen soon. For each prime p < z, we
distinguish the residue classes 0 and −2 modulo p. Since Ap (the set of n less than or equal
to x belonging to at least one of these residue classes) is empty for p > x+ 2, we apply the
sieve of Eratosthenes κ = 2 to deduce that

S(A,P , z) = xW (z) +O

(
x(log z)3 exp

(
− log x

log z

))
,
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where

W (z) :=
∏
p<z

(
1− 2

p

)
.

Now

W (z) =
∏
p<z

(
1− 2

p

)
≤ exp

(
−
∑
p<z

2

p

)
≪ (log z)−2.

We choose z such that
log z = log x/A log log x

for some large positive constant A and deduce

S(A,P , z) ≪ x(log log x)2

log2 x
.

Thus,the number of primes does not exceed:

π(z) + S(A,P , z) ≤ z + S(A,P , z),
with z as above. The result follows directly. ■

Theorem 4.12. (Brun’s theorem) The sum,∑
p

p+2 prime

1

p

converges.

Proof. By partial summation and Theorem 4.11, the sum is bounded by∑
p

p+2 prime

1

p
≪
∫ ∞

2

π2(t)

t2
dt≪

∫ ∞

2

(log log t)2

t log2 t
dt,

which is finite. ■

13



5. Brun’s Pure Sieve

In 1915, Viggo Brun (1885–1978) introduced the sieve method that now bears his name,
as documented in his paper [Bru15]. Prior to Brun’s contribution, Jean Merlin [Mer11] had
made what is considered the first serious attempt to improve upon the sieve of Eratosthenes.
Merlin was killed during World war I (refer to [HR13]), leaving only two of his manuscripts,
which was prepared for publication posthumously by Jacques Hadamard (1865–1963). Brun
reportedly studied Merlin’s work closely and found inspiration in it. This influence likely led
to his seminal 1915 paper, which later evolved into a more refined sieving method [Bru20].

In his groundbreaking research, Brun proved that there exist infinitely many integers n
such that both n + 2 have no more than nine prime factors. He also showed that any
sufficiently large even integer can be expressed as the sum of two integers, each having at
most nine prime factors. These results constitute relevant progress towards solving the twin
prime conjecture and Goldbach’s conjecture.As mentioned in the introduction, one of his
notable conclusions was that the sum of the reciprocals of the twin primes is finite.

Despite his groundbreaking work, Brun’s original papers received little attention at first.
There is a story that Edmund Landau (1877–1938) left the papers unread on his desk for
eight years, and a share of this neglect could partly be explained by Brun’s use of complicated
notation.

As previously mentioned, some of Brun’s early results can be replicated using the sieve of
Eratosthenes combined with Rankin’s trick, though this was not realized until the publication
of [MS87]. Nevertheless, Brun’s later developments in sieve theory go well beyond basic
techniques and are essential to the modern study of sieve methods.

5.1. Starting idea. In this section, we will detail Brun’s starting idea for the development
of Brun’s pure sieve. Observe that by comparing the coefficients of xr on both sides of the
identity

(1− x)−1(1− x)ν = (1− x)ν−1.

We obtain that for any positive integers ν and r such that 0 ≤ r ≤ ν − 1,∑
k≤r

(−1)k
(
ν/k

k

)
= (−1)r

(
ν − 1

r

)
.

Let n be a positive integer and let N be the radical of n. Using the above formula with
ν = ν(n) to deduce that, for any 0 ≤ r ≤ ν(n)− 1,∑

d|n
ν(d)≤r

µ(d) =
∑
d|N

ν(d)≤r

µ(d) =
∑
k≤r

(−1)k
(
ν(n)

r

)
= (−1)r

(
ν(n)− 1

r

)
.

Let’s introduce truncated Möbius function of d by

µr(d) :=

{
µ(d) if ν(d) ≤ r,

0 if ν(d) > r,

and let us set

ψr(n) :=
∑
d|n

µr(d).

14



Rewriting 5.1:

ψr(n) = (−1)r
(
ν(n)− 1

r

)
,

The above formula could be seen as a generalization of the fundamental property of the
Möbius function.

From 5.1 we see that ψr(n) ≥ 0 if r is even, and ψr(n) ≤ 0 if r is odd. Hence for any
positive integers n and r,

ψ2r+1(n) ≤
∑
d|n

µ(d) ≤ ψ2r(n).

Notice that,

ψ2r+1(n) =
∑
d|n

r(d)≤r

µ(d) +
∑
d|n

r(d)=2r+1

µ(d) = ψr(n) +O

 ∑
d|n

r(d)=2r+1

|µ(d)|

 .

Therefore, for any positive integers n and r,

∑
d|n

µ(d) = ψr(n) +O

 ∑
d|n

r(d)=2r+1

|µ(d)|

 .

Brun had the clever idea to use ψr(n), through 5.1 in the sieve of Eratosthenes in order
to improve the error terms. We will try to apply Brun’s idea to obtain an upper bound for
Φ(x, z). Set

P (z) :=
∏
p<z

p.

Then by 5.1, for r even,

Φ(x, z) ≤
∑
n≤x

∑
d|n
d|Pz

µr(d) =
∑
d|Pz

µr(d)
⌊x
d

⌋
= x

∑
d|Pz

µr(d)

d
+O(zr),

since µr(d) = 0 unless r(d) ≤ r.
Observe that by Möbius inversion,

µr(d) =
∑
δ|d

µ

(
d

δ

)
ψr(δ).

Hence,∑
d|Pz

µr(d)

d
=
∑
δ|Pz

∑
d|Pz

δ|d

µ

(
d

δ

)
ψr(δ)

d
=
∑
δ|Pz

ψr(δ)
∑
d|Pz

δ|d

µ(d/δ)

d
=
∑
δ|Pz

ψr(δ)

δ

∑
f |Pz

µ(f)

f
= W (z)

∑
δ|Pz

ψr(δ)

δ
,

with

W (z) :=
∏
p<z

(
1− 1

p

)
15



and ϕ denotes the Euler function.∑
d|Pz

µr(d)

d
= W (z) +W (z)

∑
δ|Pz

δ>1

ψr(δ)

δϕ(δ)
.

Notice that from 5.1,

ψr(δ) ≤
(
ν(δ)− 1

r

)
,

Therefore, ∑
δ|Pz

δ>1

ψr(δ)

δϕ(δ)
≤
∑
δ|Pz

δ>1

1

ϕ(δ)

(
ν(δ)− 1

r

)

≤
∑

r+1≤m≤π(z)

(
m− 1

r

) ∑
δ|Pz

ν(δ)=m

1

ϕ(δ)

≤
∑

r+1≤m≤π(z)

(
m− 1

r

)
1

m!

(∑
p<z

1

p− 1

)m

≤ 1

r!

∑
n≥r+1

(n− 1)r

n!
(log log z + c1)

n

=
(log log z + c1)

r

r!

∑
n≥r+1

1

n
(log log z + c1)

n−r

≤ (log log z + c1)
r

r!
exp(log log z + c1).

Where we have used the elementary estimate,∑
p<z

1

p
≤ log log z + c1

for some positive constant c1. C Thus,∑
δ|Pz

δ>1

ψr(δ)

δϕ(δ)
≤ (log log z + c1)

r

r!
exp(log log z + c1).

We use the well-known bound:
1

r!
≤
(e
r

)r
to further simplify 5.1. Hence,∑

δ|Pz

δ>1

ψr(δ)

δϕ(δ)
≤ c2 exp (r − r log r + r log Λ) log z,

where

Λ := log log z + c1

and c2 is a positive constant.
16



Combining estimates 5.1, ‘5.1, and 5.1, we derive an upper bound for Φ(x, z):

Φ(x, z) ≤ xW (z) + xW (z) ·O (exp(r − r log r + r log Λ) log z) +O(z).

We want to minimize the exponential error term. To do this, we let:

r = η
log z

log log z

for some function η = η(x, z), to be determined. Plugging this choice of r into 5.1,

x exp (−η(log η)(log log z) + 2η log log z) ,

To balance the exponential terms and minimize the error, we set:

η =
α log x

(log z)(log log z)
for some α < 1.

for such a choice of r, it follows that:

log z = O((log x)1−ϵ)

for some ϵ > 0. For any 0 < ε < 1,

Φ(x, z) ≤ xW (z) +O (x exp (−(log x)ε)) .

After this introduction , we are now prepared to formally present the pure sieve. We begin
with the following key identity:

Lemma 5.1. Let n, r be positive integers with r ≤ ν(n). Then there exists |θ| ≤ 1 such that∑
d|n

µ(d) =
∑
d|n

ν(d)≤r

µ(d) + θ
∑
d|n

ν(d)=r+1

µ(d).

Proof. This can be easily derived from the combinatorial identities stated at the beginning
of this section. ■

5.2. Brun’s pure sieve. Let A be any set of natural numbers ≤ x, and let P be a set of
primes. For each prime p ∈ P , let Ap be the set of elements of A that are divisible by p.
Let A1 := A, and for any squarefree positive integer d composed of primes of P , let

Ad :=
⋂
p|d

Ap.

Let z be a positive real number, and define

P (z) :=
∏
p∈P
p<z

p.

We want to estimate

S(A,P , z) := #

A \
⋃

p|P (z)

Ap

 .

We suppose that there exists a multiplicative function ω(·) such that, for any d as above,

#Ad =
ω(d)

d
X +Rd

17



for some remainder term Rd, where

X := #A.

Theorem 5.2 (Brun’s pure sieve). We keep the above setting and we make the additional
assumptions that:

(1) |Rd| ≤ ω(d) for any squarefree d composed of primes of P;
(2) there exists a positive constant C such that ω(p) < C for any p ∈ P;
(3) there exist positive constants C1, C2 such that∑

p<z
p∈P

ω(p)

p
< C1 log log z + C2.

Then

S(A,P , z) = XW (z)
(
1 +O

(
(log z)−A

))
+O

(
zη log log z

)
with A = η log η. In particular, if log z ≤ c log x/ log log x for a suitable positive constant c
sufficiently small, we obtain

S(A,P , z) = XW (z)(1 + o(1)).

Proof. By 5.1, for any positive integer r, we have

S(A,P , z) =
∑
a∈A

∑
d|(a,P (z))

µ(d).

Using the identity µ(d) = µr(d) + θ
∑

ν(d)=r+1 µ(d), this becomes

=
∑
a∈A

 ∑
d|(a,P (z))

µr(d) + θ
∑

d|(a,P (z))
ν(d)=r+1

µ(d)

 .

Grouping terms by d, we obtain

=
∑
d|P (z)

µr(d)#Ad +O

(
X
π(z)r+1

(r + 1)!

)
,

where #Ad is the number of elements a ∈ A divisible by d.
Now using 5.2, along with the first hypothesis and the multiplicativity of ω(·), we find:

S(A,P , z) = X
∑
d|P (z)

µr(d)ω(d)

d
+O

 ∑
d|P (z)
ν(d)≤r

|Rd|

+O

(
X

zr+1

(r + 1)!

)
.

By using the bound |Rd| ≤ ω(d) from the first assumption, this simplifies further to:

= X
∑
d|P (z)

µr(d)ω(d)

d
+O

((
1 +

∑
p<z

ω(p)

)
1

r!

)
+O

(
X

zr+1

(r + 1)!

)
.
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Then, by once again applying the Möbius inversion formula, we deduce:

S(A,P , z) = X
∑
δ|P (z)

ψr(δ)ω(δ)

δ

∑
d|P (z)

δ

µ(d)ω(d)

d
+O

((
1 +

∑
p<z

ω(p)

)r
1

r!

)
+O

(
X

zr+1

(r + 1)!

)
.

Now, we introduce the function

Ω(d) :=
∏
p|d

(p− ω(p)).

With this definition, the first sum in the previous expression simplifies to

XW (z)
∑
δ|P (z)

ψr(δ)ω(δ)

Ω(δ)
.

Finally, using the first and second assumptions of the theorem, we arrive at the desired
asymptotic formula. ■
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