Too Close for Comfort: Rational Approximations and the Limits of Irrationality

Niranjana Pottekkat

June 2025

Introduction

- ► How closely can irrational numbers be approximated by rationals?
- ► Are certain irrational numbers better approximable than others?

Rational Approximations & Dirichlet's Theorem

- Every real number is arbitrarily approximable by rationals.
- ▶ For any real α and n > 1 $n \ge q$, there exist integers p, q such that

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{nq}$$

▶ In particular, since $q \leq n$, we have

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^2}.$$

Now, consider an integer n > 1. For every k = 0, 1, ..., n we can write $k\alpha = x_k + y_k$ where x_k is an integer, and $0 \le y_k < 1$. We can divide the interval of y_k , [0, 1) into n smaller intervals of measure $\frac{1}{n}$ each.

We now have n+1 numbers y_0, y_1, \ldots, y_n but only n intervals. Therefore, by PHP, at least 2 of the numbers lie in the same interval. Let us say those numbers are y_i, y_j and assume i > j without loss of generality.

Now:

$$|(i-j)\alpha - (x_i - x_j)| = |(i\alpha - x_i) - (j\alpha - x_j)| = |y_i - y_j| < \frac{1}{n}$$

Dividing both sides by i - j, we get

$$\left|\alpha - \frac{x_i - x_j}{i - j}\right| < \frac{1}{n \cdot (i - j)}$$

As required.

Improving the Bound: Hurwitz's Theorem

▶ For any irrational α , there are infinitely many $\frac{p}{q}$ with

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{\sqrt{5}\,q^2}.$$

▶ The constant $\sqrt{5}$ is best possible for all irrationals.

Lagrange Spectrum

▶ Define the bound

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{Lq^2}.$$

The Lagrange Spectrum \mathcal{L} is the set of all L such that the above inequality is true for infinitely many rational $\frac{p}{q}$

▶ The smallest element of \mathcal{L} is $\sqrt{5}$, corresponding to the golden ratio,

$$\varphi = \frac{1 + \sqrt{5}}{2}.$$

Figure: Parts of the Lagrange Spectrum visualised

Continued Fractions

► A simple continued fraction is a continued fraction of the form

$$\alpha = b_0 + \frac{1}{b_1 + \frac{1}{b_2 + \frac{1}{b_2}}}$$

This can also be represented in the form $\alpha = [b_0; b_1, b_2, b_3, \dots]$. Every real number has a simple continued fraction expansion.

- ▶ $b_i > 0 \forall i > 0$
- ▶ Truncating the fraction at the b_n gives the convergent $\frac{p_n}{q_n}$ with error bound

$$\left|\alpha - \frac{p_n}{q_n}\right| < \frac{1}{q_n \, q_{n+1}} \le \frac{1}{q_n^2}.$$

This follows from the fact that all the denominators $q_n>0$ fo n>1 and Dirichlet's theorem,

Error of Approximation

Figure: Error of approximation for the convergents of $\sqrt{2}$

Figure: Error of approximation for the convergents of φ

Figure: Error of approximation for the convergents of π

Quadratic Irrationals

- ▶ Quadratic irrationals are of the form $\frac{a+b\sqrt{n}}{c}$.
- ► They have eventually periodic continued fraction expansions.
- Example:

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}} = [1; \overline{2}].$$

▶ They are the only fractions with eventually periodic continued fractions.

Irrationality Exponent

▶ Define $\mu(\alpha)$ as the supremum of μ such that

$$0 < \left| \alpha - \frac{p}{q} \right| < \frac{1}{q^{\mu}}$$

holds for infinitely many $\frac{p}{q}$.

- ▶ For algebraic irrationals, $\mu(\alpha) = 2$.
- ▶ For Transcendental numbers, $\mu(\alpha) \ge 2$
- \triangleright Certain numbers have irrationality exponent ∞ . One such number is the Liouville number,

Markov Constant

▶ Define the Markov constant $M(\alpha)$ as the largest M such that

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{Mq^2}$$

for infinitely many $\frac{p}{q}$.

 \triangleright For φ , the Markov constant is

$$M(\varphi) = \sqrt{5}.$$