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1 Introduction
How closely can irrational numbers be approximated by rational ones? Diophantine
approximation seeks to answer this, blending number theory, geometry, and analysis
to study the limits of rational approximation. Beginning with Dirichlet’s foundational
theorem and its refinement by Hurwitz, we trace how well irrationals can be approx-
imated and how such bounds vary across numbers. Continued fractions emerge as a
powerful tool, not only for constructing optimal approximations but also for revealing
deep structure, such as the periodicity of quadratic irrationals.

From there, we explore measures of irrationality, like the irrationality exponent and the
Markov constant, which quantify just how “resistant” a number is to approximation.
Along the way, we meet Liouville numbers, the golden ratio, and the Lagrange spectrum,
each offering a unique perspective on the rational–irrational divide.

This paper charts a path through these ideas, revealing a rich theory where geometry
and arithmetic meet to expose the hidden precision in irrationality.

2 Rational Approximations and Dirichlet’s Theo-
rem

We begin with the following fact: every real number can be arbitrarily approximated
by a rational number. That is, for any real α and any real ϵ > 0, there exists a rational
number p/q ∈ Q such that ∣∣∣α − p

q

∣∣∣ < ϵ

This follows from the fact that the rational numbers are dense in the reals.

But this only tells us that some approximation exists, not how we can approximate it
with rationals. It does not tell us how large we need to make our denominator to get a
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certain level of accuracy. This motivates us to ask the following question. For a fixed
q, how well can we approximate α to a real number p/q?

This leads naturally to a foundational result in Diophantine approximation: Dirichlet’s
Approximation Theorem.

Dirichlet’s Approximation Theorem

For any real numbers α and an integer n > 1, there exists integers p and q such
that 1 ≤ q ≤ n and ∣∣∣∣∣α − p

q

∣∣∣∣∣ <
1

nq

Proof:

Case 1: α is rational

In this case, simply take p
q

= α, so that |α|p
q
| = 0. Since n > 0 and q > 0, nq > 0.

Hence, we have 0 < 1
nq

, and hence |α − p
q
| < 1

nq
.

Case 2: α is irrational

For this case, we start by stating the following principle.

Pigeonhole Principle : if n items are put into m containers, with n > m, then at least
one container must contain more than one item.

Now, consider an integer n ≥ 2. For every k = 0, 1, . . . , n we can write kα = xk + yk

where xk is an integer, and 0 ≤ yk < 1. We can divide the interval [0, 1) into n smaller
intervals of measure 1/n each. We now have n + 1 numbers y0, y1, . . . , yn but only n
intervals. Therefore, by the Pigeonhole Principle, at least 2 of the numbers lie in the
same interval. Let us say those numbers are yi, yj and assume i > j without loss of
generality.

Now:
|(i − j)α − (xi − xj)| = |(iα − xi) − (jα − xj)| = |yi − yj| <

1
n

Dividing both sides by i − j, we get

|α − xi−xj

i−j
| < 1

n·(i−j)

As required.

(Q.E.D)
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What this theorem really says is that real numbers, no matter how irrational, are never
too far from rational ones. For any bound n, we can find a rational number p/q, with
q ≤ n, such that the error |α − p/q| is less than 1/nq. Since q ≤ n, this implies that

|α − p

q
| <

1
nq

≤ 1
q2 .

In other words, we can always find rational approximations whose error is less than the
square of the reciprocal of the denominator. Even the most irrational numbers are still,
in a sense, too close to comfort to rational ones.

This now motivates us to ask: Can the 1/q2 bound be improved on? If so, how much
can we improve it? If not, why not?

3 Improving Dirichlet: Hurwitz’s Theorem
The bound given by Dirichlet’s Theorem is already quite powerful. But surprisingly,
it can be improved. If we restrict our attention to irrational numbers, then there is a
stronger result — one that improves the approximation bound from 1/q2 to a higher
constant multiple of it.

Hurwitz’s Theorem

For any irrational number α, there exist infinitely many rational numbers p
q

such
that ∣∣∣∣∣α − p

q

∣∣∣∣∣ <
1√
5q2

Hurwitz’s Theorem improves Dirichlet’s bound: instead of merely guaranteeing the
existence of approximations satisfying |α − p

q
| < 1

q2 , it ensures that the error can be
made even smaller — less than 1/

√
5q2 — and still occur infinitely often.

Note that no larger constraint works for all irrationals. That is, the constant
√

5 is the
best possible bound that holds for all irrationals. This is because if we plug in α = φ,
there are only finitely many solutions to the inequality.

3.1 Farey Sequences
Let us start by defining a completely reduced fraction to be a fraction whose numerator
and denominator are coprime. That is, a fraction p

q
is completely reduced if and only

if gcd(p, q) = 1.

A Farey sequence of order n, denoted by Fn, is defined to be the sequence formed by
the set of all completely reduced fractions between 0 and 1 whose denominator does
not exceed n, arranged in ascending order. Below are the first 6 Farey Sequences.
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F1 =
{0

1 ,
1
1

}

F2 =
{0

1 ,
1
2 ,

1
1

}

F3 =
{0

1 ,
1
3 ,

1
2 ,

2
3 ,

1
1

}

F4 =
{0

1 ,
1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

1
1

}

F5 =
{0

1 ,
1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

1
1

}

F6 =
{0

1 ,
1
6 ,

1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

5
6 ,

1
1

}

We now define the following operation on the rational numbers. We will call this the
mediant.

a

b
⊕ c

d
= a + c

b + d

A property of the mediant is that the mediant of any 2 rational numbers always lies
strictly between them. That is, if a/b < c/d then, a/b < a/b ⊕ c/d < c/d

Proof: Assume a
b

< c
d
.

a

b
<

a + c

b + d
:

⇔ a(b + d) < b(a + c)
⇔ ab + ad < ba + bc

⇔ ad < bc

⇔ a

b
<

c

d

a + c

b + d
<

c

d
:

⇔ d(a + c) < c(b + d)
⇔ da + dc < cb + cd

⇔ da < cb

⇔ a

b
<

c

d

∴
a

b
<

a + c

b + d
<

c

d
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Farey Term Generation via Mediants

If a/b, x/y and c/d are members of a Farey Sequence, and a/b < x/y < c/d,

∃ p, q ∈ Z+ s.t
x

y
= ap

bp
⊕ qc

qd
= ap + qc

bp + qd

Proof:

Let p = cy − dx and q = bx − ay. Both p, q must be positive integers since c/d > x/y
and x/y > a/b.

ap + qc = a(cy − dx) + (bx − ay)c
= acy − adx + cbx − acy

= cbx − adx

= (cb − ad)x
bp + qd = b(cy − dx) + (bx − ay)d

= bcy − bdx + bdx − ady

= bcy − ady

= (cb − ad)y

∴
ap + qc

cp + qd
= (cb − ad)x

(cb − ad)y = x

y

3.1.1 Farey Neighbours

Two rational numbers are said to be Farey Neighbours if the appear next to each other
in a Farey Sequence.

Property 1 of Farey Neighbours

If a/b and c/d are Farey Neighbours, (a + b)/(c + d) is a completely reduced
fraction.

Proof: Let us assume that there exists two rational numbers a/b and c/d that are
neighbours in Fn such that gcd(a+c, b+d) = g ≥ 2 . Firstly, notice that n ≥ max(b, d).
Secondly, notice that n is strictly less than b+d as otherwise, (a+c)/(b+d) lies between
a/c and b/d which means they can’t be neighbours.

This means that we can write

a + c

b + d
=

a+b
g

b+d
g

= e

f
, gcd(e, f) = 1
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Recall that n ≥ max(b, d). This means that 2n ≥ b + d. That is,

f = b + d

g
≤ b + d

2 ≤ n

This means that e/f is a completely reduced fraction with denominator at most n. That
is, it is in Fn — contradicting the assumption that a/b and c/d are rational numbers
in Fn.

(Q.E.D)

Property 2 of Farey Neighbours

a/b and c/d are Farey Neighbours if and only if |bc − ad| = 1

Proof:

We first prove that if |bc−ad| = 1, a/b and c/d are Farey Neighbours. Assume a/b < c/d
without loss of generality.

Now, assume a/b and c/d are not neighbours. Firstly, notice that if a

b
<

c

d
,

∀p, q ∈ Z+,
a

b
<

ap + c

bp + d
<

ap + qc

bp + qd
<

c

d

This is because
ap + c

bp + d
− ap + qc

bp + qd
= p(1 − q)(bc − ad)

(bp + qd)(bp + d) < 0

Secondly, recall that every term between a/b and c/d is expressable in the form ap + qc

bp + qd

where p, q ∈ Z+. Hence, the neighbour of a/b must be of the form ap + c

bp + d
. Notice that

(ap+ c)b− (bp+d)a = abp+ bc−abp−ad = bc−ad = 1. Hence, gcd(ap+ c, bp+d) = 1.
Hence, the fraction is irreducible.

This tells us that if bc − ad = 1, the denominator of the neighbour of a/b, if not b/d is
of the form bp + d ≥ b + d ∀p ∈ Z+. Hence, for all n such that max(b, d) ≤ n < b + d,
a/b and c/d must be neighbours.

We will prove that a/b, c/d are Farey Neighbours ⇒ |bc − ad| = 1 using a geometrical
approach. Let a/b and c/d be Farey Neighbours in Fb+d−1. We know that if a/b
and c/d are neighbours in Fb+d−1, they will also be neighbours in all Fn such that
max(b, d) ≤ n < b + d.
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x

y

(0, 0)

(a, b)

(c, d)

(a+c, b+d)

(x, y)

Consider the lattice points (a, b), (c, d) and (a+b, c+d). These three points, along with
the origin (0, 0) lie form the vertices of a parallelogram. Assume that this parallelogram
has at least one interior lattice point, say, (x, y). By definition, y < b + d and a/b <
x/y < c/d. Hence, if such a point exists, it lies between a/b and c/d — a contradiction.
Therefore, this parallelogram has no interior lattice point.

Now, we prove that this parallelogram has exactly four lattice points on its boundary,
those being the vertices themselves.

Edge joining (0, 0) and (a, b): This is represented by the line y = b

a
x, 0 ≤ x ≤ a. By

definition of a Farey Sequence, gcd(a, b) = 1. Hence, if b

a
x is an integer, a|x. Only

such x in the relevant range are x = 0, a which represent the vertices (0, 0) and (a, b)
respectively. Similarly, no lattice points except the vertices lie on the edge joining (0, 0)
and (b, a).

Edge joining (a, b) and (a+b, c+d): This is represented by the line y = d

c
x+b− da

c
, c ≤

x ≤ a+c. If d

c
x+b− da

c
is an integer, dx − da

c
is also an integer, which means c|d(x−a).

By definition of a Farey Sequence, gcd(c, d) = 1. Hence, c|(x − a). Only such x in the
relevant range are x = a, a + c which represents the vertices (b, a) and (a + b, c + d)
respectively. Similarly, no lattice points except the vertices lie on the edge joining (b, a)
and (a + c, b + d).

Therefore, exactly four points lie on the boundary of this parallelogram.

Now, we apply Pick’s Formula, which states that: For any simple polygon with integer
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vertex co-ordinates having I points in its interior and B points on its boundary, its area
A is

A = I + B

2 − 1.

Since the parallelogram in question has four points on its boundary and no interior
points, we plug in I = 0, B = 4 to find its area.

A = 0 + 4
2 − 1 = 1

Hence, the parallelogram has area 1. The area of a parallelogram is A = bh where b is
the length of the base and h is height. For this parallelogram, b =

√
c2 + d2 and the

height is the perpendicular distances between the lines y = d

c
x and y = d

c
x + b − da

c

which is |bc − da|√
c2 + d2

.

A = bh =
√

c2 + d2 |bc − da|√
c2 + d2

= |bc − da| = 1

(Q.E.D)

3.2 Proving Hurwitz’s Theorem
Now that we have proved the results involving Farey Sequences required for our proof,
we can proceed. We prove by contradiction, following the argument presented in [3]

Start by assuming that the statement of Hurwitz’s theorem is false. Let a/b, c/d be
Farey Neighbours and our irrational number, α between them. Let a + c

b + d
= e

f
. For the

sake of contradiction, assume
α − a

b
≥ 1√

5b2

c

d
≤ 1√

5d2

α − e

f
≥ 1√

5f 2

Adding the first and third inequality to the second inequality separately, we get

c

d
− a

b
≤ 1√

5q2

( 1
b2 + 1

d2

)

c

d
− e

f
≤ 1√

5q2

(
1
d2 + 1

f 2

)
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By Property 2 of Farey Neighbours, we know that

c

d
− a

b
= 1

bd
,

c

d
− e

f
= 1

df

Hence, we can simplify these inequalities into

1
bd

≥ 1√
5

( 1
b2 + 1

d2

)
⇒

√
5bd ≥ d2 + b2

1
df

≥ 1√
5

(
1
d2 + 1

f 2

)
⇒

√
5df > d2 + f 2

Adding the two inequalities and using the fact that f = b + d, we get
√

5d(b + f) =
√

5(2b + d) ≥ 2d2 + b2 + f 2 = 3d2 + 2b2 + 2bd

Making the left side to be equal to zero, we get

0 ≥ 3d2 + 2b2 + 2bd −
√

5d(2b + d) = 1
2((

√
5 − 1)d − 2b)2

⇒((
√

5 − 1)d − 2b)2 = 0
⇒(

√
5 − 1)d − 2b = 0

⇒
√

5 − 1 = 2b

d

Which implies that 2b/d is irrational, a contradiction, as both b, d are integers.

(Q.E.D)

4 Lagrange Numbers and Markov Numbers
Recall how we stated that the

√
5 constant in Hurwitz’s theorem can not be improved

upon as when a = φ, any higher multiple of q2 will result in only finitely many p
q

satisfying this inequality. This raises a question: if α ̸= φ, what is the biggest multiple of
q2 we can have in the denominator? This question was answered by Hurwitz. Consider∣∣∣∣∣α − p

q

∣∣∣∣∣ >
1

kq2

Hurwitz showed that if we omit the number φ, we can increase the k to 2
√

2. But when
we take 2

√
2, the number α =

√
2 poses a problem, as for any multiple of q2 higher

than 2
√

2 and α =
√

2, we only have finitely many solutions. But now, what if we
omit α = φand

√
2? Then we can increase k to

√
221/5. Continuing this process of
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omission, we get the infinite sequence of numbers
√

5, 2
√

2,
√

221/5 . . . which converge
to 3. These numbers are called Lagrange Numbers. Let us denote the n-th Lagrange
number by Ln

Very closely related to the Lagrange Numbers and Lagrange Spectrum are the Markov
Numbers.

A Markov Number is a positive integer x, y or z such that it is a part of an positive
integral triple that satisfies the below equation, known as the Markov Diophantine
Equation

x2 + y2 + z2 = 3xyz

Let us now define the n-th Markov Number mn to be the n-th smallest number such
that the equation

m2
n + y2 + z2 = 3mnyz

has a solution in positive integers for (x, y).

There exists a relation between the n-th Markov Number and Lagrange number. Par-
ticularly,

Ln =
√

9 − 4
m2

n

The smallest Markov number is 1, which means that the smallest Lagrange Number is√
5.

The smaller the Markov number, the smaller the Lagrange number, and hence the
worse the associated irrational can be approximated. This means that φ is the worst
approximable irrational number, as

√
5 is the smallest Lagrange number.

4.1 Lagrange Spectrum
We start with Hurwitz’s theorem:

|α − p

q
| <

1√
5q2

We know that
√

5 is the best uniform constant that works for all irrationals. But what
about individual irrational numbers? Can this constant be improved?

Consider
|α − p

q
| <

1
Lq2

We now define the Lagrange number of a real number α to be the supremum of the
set of all L satisfying the above inequality. We denote this by L(α). This leads us to
the Lagrange Spectrum — the set of all real numbers L for which there exist infinitely
many rational numbers p

q
for which the above inequality holds. That is,

L = {L(α) : α ∈ RnQ}
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The smallest element of the Lagrange spectrum is
√

5, corresponding to the golden
ratio φ = 1+

√
5

2 — the most difficult irrational number to approximate using rationals.
Other rationals, like

√
2, can be approximated well, corresponding to larger constants

in the Lagrange Spectrum.

The Lagrange spectrum has a very interesting geometry — it is initially a discrete set,
in the interval [

√
5, 3). The last gap in The Lagrange Spectrum is known as Freiman’s

constant F ; namely:

F = 2221564096 + 283748
√

462
491993569 = 4.52782956 . . .

All real numbers in the interval [F, ∞) are part of the Lagrange Spectra. This means
that the part of the Lagrange spectrum lying after F is continuous.

Let us look at some pictures of approximations of parts of the Lagrange spectrum

Figure 1: Parts of the Lagrange Spectra visualised, obtained from [2]

5 Continued Fraction
So far, we’ve talked about how well irrational numbers can be approximated by rational
numbers. But we haven’t yet addressed a crucial question: how do we actually find
good approximations? To answer this, we look to continued fractions.
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A continued fraction is an expression of the form:

α = b0 + a1

b1 + a2
b2+ a3

b3...

Where b0, b1, b2, b3, . . . and a1, a2, a3, . . . are integers.

We shall be dealing with some special continued fractions, called simple continued
fractions. Simple continued fractions are continued fractions where all the numerators
are equal to 1. So, an expression of the form

α = b0 + 1
b1 + 1

b2+ 1
b3...

Generally written as
α = [b0; b1, b2, b3, . . . ]

Note that if α is an integer, we have b0 = α and we call it a degenerate case. For non
integer α, we can find bn for n > 0 by writing bn−1 in the form ⌊bn−1⌋+{bn−1}, where ⌊x⌋
is defined as the greatest integer that does not exceed x, rewriting it as ⌊bn−1⌋ + 1

1
{bn−1}

.

bn = ⌊ 1
{bn−1}⌋ = ⌊ 1

bn−1−⌊bn−1⌋⌋. When n = 0, b0 = ⌊α⌋

Note that every bn for n > 0 must be a positive integer as bn = ⌊ 1
{bn−1}⌋ and 0 ≤

{bn−1} < 1 which means 1
bn−1

> 1.

Every real number has a simple continued fraction expansion. If the expansion is finite,
the real number is also rational. Otherwise, it is irrational.

When we truncate simple continued fractions at some point, we obtain rational approx-
imations called convergents. Generally, when truncating the simple continued fractions
at b0, b1, b2, b3 . . . we get the convergents p0

q0
, p1

q1
, p2

q2
, p3

q3
, . . . .

A very interesting property of these convergents is that they are recursively defined

Recursive formula for Convergents

Let pn

qn

represent the n-th convergent of some real number α = [b0, b1, b2 . . . ]

pn = bnpn−1 + pn−2

qn = bnqn−1 + qn−2

With initial values p−1 = 1, p0 = b0, q−1 = 0, q0 = 1.
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Proof of the recursion:

We prove by induction. We can manually verify that the recursion holds true for n = 1.
Now, we assume it to be true for n.

pn

qn

= bnpn−1 + pn−2

bnqn−1 + qn−2

We can get the next convergent pn+1/qn+1 by considering the n-th partial quotient to
be bn + 1

bn+1
instead of bn. This means we can find the n + 1-th convergent, pn+1/qn+1

by replacing bn with bn + 1
bn+1

. Performing this replacement, we have

pn+1

qn+1
=

(bn + 1
bn+1

)pn−1 + pn−2

(bn + 1
bn+1

)qn−1 + qn−2

= bnbn+1pn−1 + pn−1 + bn+1pn−2

bnbn+1qn−1 + qn−1 + bn+1qn−2

= bn+1(bnpn−1 + pn−2) + qn−1

bn+1(bnqn−1 + qn−2) + qn−1

= bn+1pn + pn−1

bn+1qn + qn−1

(Q.E.D)

Property of Consecutive Convergents

Let pn

qn

represent the n-th convergent of some real number α

pnqn−1 − pn−1qn = (−1)n−1

Proof:

pnqn−1 − pn−1qn = (anpn−1 + pn−2)qn−1 − pn−1(anqn−1 + qn−2)
= anpn−1qn−1 + pn−2qn−1 − anpn−1qn−1 − pn−1qn−2

= pn−2qn−1 − pn−1qn−2

= −(pn−1qn−2 − pn−2qn−1)

Repeating this step with n − 1, n − 2, . . . , 2 in place of n, we get:

q0 = 1, q1 = b1 > 0, q2 = b2q1 + q0 > 0, . . .
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5.1 Error of approximation for the n-th convergent
A key property of the convergents is the following bound for the error of the Convergents

Error Bound of m-th convergent

Let pn

qn

represent the n-th convergent of some real number α.

∣∣∣∣∣α − pn

qn

∣∣∣∣∣ <
1

qnqn+1

Proof: Notice that the n-th convergent of α = [b0, b1, b2 . . . ] can be written as
pn

qn

= pn

qn

− pn−1

qn−1
+ pn−1

qn−1
− pn−2

qn−2
+ pn−2

qn−2
− pn−3

qn−3
+ pn−3

qn−3
· · · + pm+1

qm+1
− pm

qm

+ pm

qm

The above tells us that α can be written in the form

α = p0

q0
− p0

q0
+ p1

q1
− p1

q1
+ p2

q2
− p2

q2
+ p3

q3
− p3

q3
. . .

Which in turn tells us that α can be written in the form

α = k0 − k1 − k2 − k3 . . .

Where kn = kn = pn−1

qn−1
− pn

qn

, n > 1. These kn become smaller and smaller, and α minus
the first n terms is less than the value of kn+1. This directly implies the inequality.

(Q.E.D)

This shows that convergents provide rational approximations that are far better than
those guaranteed by Dirichlet’s theorem alone. In fact, the n-th convergent of α, pn

qn
is

the best rational approximation of α with denominator at most qn. A simple proof of
this is below.

Proof: Consider a fraction a/b that is closer to α than its convergent pn/qn.That is,∣∣∣∣α − a

b

∣∣∣∣ <

∣∣∣∣∣α − pn

qn

∣∣∣∣∣
Case 1: Both a

b
,
pn

qn

lie on same side of α.

In this case, a/b must lie between α and pn/qn. That is,

1
q2

n

≥ 1
qnqn+1

>

∣∣∣∣∣α − pn

qn

∣∣∣∣∣ ≥
∣∣∣∣∣ab − pn

qn

∣∣∣∣∣ = |aqn − bpn|
bqn

≥ 1
bqn

⇒ b > qn
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Case 2: Both a

b
,
pn

qn

lie on different sides of α.

In this case, pn/qn lies between a/b and α

1
q2

n

≥ 1
qnqn+1

>

∣∣∣∣∣α − pn

qn

∣∣∣∣∣ ≥
∣∣∣∣∣ab − pn

qn

∣∣∣∣∣ = |apn − bqn|
bqn

≥ 1
bqn

⇒ b > qn

(Q.E.D)

Let us now look at the error of approximation of the convergents of some irrational
numbers.

Figure 2: Error of approximation for the convergents of
√

2

Figure 3: Error of approximation for the convergents of φ
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Figure 4: Error of approximation for the convergents of π

Note that for these graphs are scaled logarithmically in the y- axis with points at
(n, |α − pn/qn|) Observe how the error of approximation of π is nearly 4 orders of
magnitude less than that of

√
2 for the same convergents. This indicates that π is more

well approximable than
√

2 and φ.

Additionally, notice how the error of approximation decreases much faster for
√

2 than
for φ — displaying how

√
2 is far more accurately approximable using rational numbers

than φ.

5.2 Quadratic Irrationals
A Quadratic Irrational is a real number that is a root of a quadratic equation with
integer coefficients, but is not rational. They are real numbers of the form a + b

√
n

where a, b ∈ Q, b ̸= 0 where n is not the square of any integer. Interestingly enough,
these are the only types of irrationals that have eventually periodic continued fraction
representations. Note that all quadratic irrationals will be the roots of a quadratic
equation with integer coefficients.

Proving that if the continued fraction expansion of α is eventually periodic, it is a
quadratic irrational.

Let α = [b0, b1, . . . bk+1, bk+2, . . . , bk+n] where [bk+1, bk+2, . . . , bk+n] represents a continued
fraction where bx+mn = bx for all m ∈ N. Let β = [bk+1, bk+2, . . . , bk+n]

Since the expression is periodic, we have β = [bk+1, bk+2, . . . , bk+n, β]

Using the recursion, we have β = pn−1β+pn−2
qn−1β+qn−2

. This gives us a quadratic in β. Since β is
irrational, this means that β is a quadratic irrational.
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α = [b0, b1, . . . β] is a linear functional transformation of β. This means that α = cβ+d
eβ+f

where c, d, e, f ∈ Z. Since β is a quadratic irrational, this means that α is also a
quadratic irrational.

Let us now prove the converse. We follow the argument presented in [4] Assume β is a
quadratic irrational and

β = [b0, b1, b2, b3 . . . ]

Note that [0, 0, . . . , 0, z] in general is greater than 1 if the number of zeros is even and
lesser than 1 if the number of zeros is odd. If [0, 0, . . . bi, bi+1 . . . ] = [0, 0, . . . , bj, bj+1, . . . ],
i − j is even and bi+k = bj+k for all k.

There exists aβ2 + bβ + c = 0. We denote this assertion by β ∈ (a, b, c). Now, we define
the function

f(β) =


β − 1, if β ≥ 1

β

1 − β
, if β < 1

Define β1 = β, and βn+1 = f(βn) for n > 1. We manually verify that

a(β − 1)2 + (2a + b)(β − 1) + (a + b + c) = aβ2 + bβ + c = 0

And
(a + b + c)β2 + (b + 2c)β(1 − β) + c(1 − β)2 = aβ2 + bβ + c = 0,

Therefore, f(β) ∈ (a, 2a + b, a + b + c) or f(β) ∈ (a + b + c, b + 2c, c). (β1, β2 . . . ) is a
sequence of quadratic irrationals and hence determines an infinite sequence of triples
βn ∈ (an, bn, cn). We assume bn > 0 without loss of generality as βn ∈ (an, bn, cn) ⇔
βn ∈ (−an, −bn, −cn).

(2a + b)2 − 4a(a + b + c) = b2 − 4ac = (b + 2c)2 − 4c(a + b + c)

That is, b2
n − 4ancn is independent of n.

If only finitely many triplets (an, bn, cn) have cn < 0, eventually an, cn > 0. Because
βn > 0, we will have bn < 0. This, however, is impossible as an − bn + cn would then be
strictly decreasing and non-negative. Therefore, ancn < 0 infinitely often. Now, since
b2

n − 4ancn is constant, there must be a triple which appears thrice in the sequence
(an, bn, cn). Therefore, βi = βj, i > j for some i, j. If β = [b0, b1, b2, b3 . . . ], βi is of
the form [0, . . . , 0, b, bn, bn+1 . . . ] and βj = [0, . . . 0, c, bm, bm+1, . . . ] where b, c > 0 and
n > m necessarily. Since βi = βj, we have that n − m is a positive even integer, b = c
and bm+k = bn+k for all k. Therefore, the sequence bk is eventually periodic. Which, in
turn, means that the simple continued fraction expansion β is also eventually periodic.

(Q.E.D)
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Let us now look at an example of a quadratic irrational

Example:
√

2

1 <
√

2 < 2
⇒⌊

√
2⌋ = 1

⇒
√

2 = 1 + (
√

2 − 1) = 1 + 1
1 +

√
2

⇒
√

2 = 1 + 1
2 + 1

2+ 1
2 ...

⇒
√

2 = [1, 2]

The periodicity of the continued fraction expansion of a quadratic irrational has im-
portant consequences. Since the expansion eventually repeats, the number can be
described completely by a finite amount of data. This makes it possible to compute
arbitrarily many convergents algorithmically. In other words, the number is not just
well-approximable; they are computable with precise instructions for generating its
rational approximations.

Moreover, this periodicity characterises quadratic irrationals among all real numbers:
a real number has an eventually periodic continued fraction expansion if and only if
it is the solution to a quadratic equation with integer coefficients. This tells us that
quadratic irrationals can be approximated very well using rationals, but in a highly
structured, algebraic way.

This begs the question: Are there irrationals that can be approximated better? Or
worse? How can we measure how well a number can be approximated by rationals?

6 Measuring Irrationality
Not all irrational numbers are created equal. As we observed earlier, some irrationals,
like π, can be approximated well using rationals. Others, like the golden ratio φ =
1 +

√
5

2 are extremely resistant to approximation. This motivates us to ask: Why
are certain irrational numbers easier to approximate using rationals? Is there a way
to quantify how well or how poorly an irrational number can be approximated using
rationals?

6.1 Transcendence and Approximation
A real number is called algebraic if it is a root of a non-zero polynomial with integer
coefficients. Otherwise, it is transcendental. All rational numbers are algebraic, and so
are familiar irrationals like

√
2. But numbers like e and π are not roots of any such

polynomial; they are transcendental.
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If α is an algebraic irrational number, we define its degree d to be the degree of its
minimal polynomial. That is, the smallest possible degree of a polynomial f such that
f(α) = 0.

Earlier, we encountered the Lagrange spectrum, which deals with the best constant c
such that

∣∣∣x − p
q

∣∣∣ < c
q2 holds for infinitely many rational numbers. That framework

focuses on specific constants for error decay. In contrast, we now shift to a scale-based
view of approximation, where we ask how fast the error can decrease, as a function of
q. This leads us to the concept of the irrationality exponent.

6.2 Liouville-Roth Irrationality Measure
The irrationality exponent (also called the Liouville–Roth measure) of a real
number α, denoted µ(α), is defined as the supremum of all real numbers µ for which
the inequality

0 <

∣∣∣∣∣α − p

q

∣∣∣∣∣ <
1
qµ

has infinitely many solutions in coprime integers p and q > 0.

For any rational number α, we have µ(α)=1, as a consequence of Dirichlet’s approxi-
mation theorem.

Note that a higher irrationality exponent means that the irrational number is better
approximable.

For any irrational number α, µ(α) ≥ 2.

If α is an algebraic irrational, that is, it is a real root of a polynomial with integer
coefficients, µ(α) = 2. If α is not algebraic, that is, it is transcendental, we have
µ(α) ≥ 2.

The golden ratio φ = 1+
√

5
2 is known to be the worst approximable irrational number.

Among all irrationals, it has the smallest possible irrationality exponent—exactly 2.
Additionally, its continued fraction expansion is [1; 1, 1, 1, . . . ], which leads to the slowest
convergence of its convergents, making it maximally resistant to rational approximation.
We shall reinforce the notion of φ’s poor approximability using another measure of
irrationality later on.

For most transcendental numbers, their irrationality measure is exactly 2. For others,
the exact value of their irrationality exponent is not known. Below are some transcen-
dental numbers along with the known upper and lower bounds of their irrationality
exponent.
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Number α Exact µ(α) Lower Bound Upper Bound
e 2 2 2

ln 2 unknown 2 3.57455 . . .
ln 3 unknown 2 5.11620 . . .
π unknown 2 7.10320 . . .
π2 unknown 2 5.09541 . . .

There exists a special class of numbers, called Liouville Numbers, that have irra-
tionality measure ∞. That is, they can be approximated to rationals exceptionally
well.

6.3 Liouville Numbers
We now start by stating Liouville’s theorem - a tool that helps us differentiate between
the approximability of algebraic irrational numbers and transcendental numbers.

Liouville’s Theorem

Let α ∈ R be an irrational number with degree d. Then, there is a non-zero
constant C such that for every rational number p

q
∈ Q,

∣∣∣∣∣α − p

q

∣∣∣∣∣ ≥ C

qd

We follow the argument presented in [6]

Proof:

Let r1, r2, . . . , rk be the rational roots of a polynomial f of degree n that has α as a
root. Since α is irrational, ri ̸= α ∀i

Let c1 > 0 be the minimum of |α − ri|. If there are no ri, let c1 = 1.

Now let β = p

q
, where β /∈ {r1, . . . , rk}. Then:

f(β) ̸= 0

⇒ |f(β)| ≥ 1
qn

Since f(β) is a rational number with denominator qn

⇒ |f(α) − f(β)| ≥ 1
qn

because f(α) = 0

Let
f(α) =

n∑
k=0

akαk
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⇒ f(α) − f(β) =
n∑

k=0
akαk −

n∑
k=0

akβk

=
n∑

k=0
ak(αk − βk)

=
n∑

k=1
ak(αk − βk) since α0 − β0 = 0

=
n∑

k=1
ak(α − β)

k−1∑
i=0

αk−1−iβi

= (α − β)
n∑

k=1
ak

k−1∑
i=0

αk−1−iβi

Case 1: |α − β| ≤ 1

Then:

|β| − |α| ≤ |α − β|
⇒ |β| ≤ |α| + 1

Therefore:

|f(α) − f(β)| ≤ |α − β|
n∑

k=1
|ak|

k−1∑
i=0

|αk−1−iβi| Triangle Inequality

≤ |α − β|
n∑

k=1
|ak|

k−1∑
i=0

|αk−1−i(1 + |α|)i| substituting α = |x| + 1

≤ |α − β|
n∑

k=1
|ak|

k−1∑
i=0

|αk−1
(

|α|+1
|α|

)i
|

≤ |α − β|
n∑

k=1
|akαk−1|

k−1∑
i=0

(
1 + 1

|α|

)i

moving αk−1 out of the nested sum

≤ |α − β|
n∑

k=1
|akαk−1| ·

(
1 + 1

|α|

)k
− 1(

1 + 1
|α|

)
− 1

= |α − β|
n∑

k=1
|akαk|

(1 + 1
|α|

)k

− 1


≤ |α − β|
n∑

k=1
|ak|

(
(|α| + 1)k − |α|k

)

Let
cα =

n∑
k=1

|ak|
(
(|α| + 1)k − |α|k

)
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⇒|f(α) − f(β)| ≤ |α − β| · cα

⇒|α − β| ≥ |f(α) − f(β)|
cα

≥ 1
cαqn

Case 2: |α − β| > 1

Then:
|α − β| > 1 ≥ 1

qn

(Q.E.D)

As a Corollary of the above, we have the following result.

Corollary of Liouville’s Theorem

For every transcendental number α, C > 0, d ≥ 1, there exists a rational number
p
q

∈ Q such that ∣∣∣∣∣α − p

q

∣∣∣∣∣ <
C

qd

This tells us that transcendental numbers are far more well-approximable than algebraic
irrational numbers. Yet, not all transcendental numbers are created equal, either.
Among the transcendentals, Liouville numbers are so well-approximated that their
irrationality exponent is infinite.

A Liouville number is a real number α such that, for every positive integer n, there
exist integers p and q > 1 satisfying

0 <

∣∣∣∣∣α − p

q

∣∣∣∣∣ <
1
qn

This means the error in approximating α can decay faster than any power of 1/q - an
extreme property not shown by any algebraic numbers.

Joseph Liouville used this property to construct the first known decimal example of a
transcendental number. An explicit example of a Liouville number is

α =
∞∑

k=1

1
10k! = 0.110001000000000000000001 . . .

The gaps of zeros between the 1s grow rapidly, which ensures the number can be
approximated extremely well by truncating the sum at various stages.

All Liouville numbers are transcendental, but not all transcendental numbers are Liou-
ville numbers. For instance, e and π are transcendental, but their irrationality expo-
nents have known exact values or upper bounds. Thus, Liouville numbers form a very
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special subclass of transcendental numbers, distinguished by their exceptional approx-
imability.

6.4 Markov Constant and the Most Irrational Number
Another way to measure how irrational a number is comes from looking at how badly
it can be approximated by rationals. Instead of asking how small the error |α − p

q
| can

get, we flip the question: what’s the best lower bound we can guarantee for that error?

The Markov constant of a real number α, denoted M(α), is defined as:

M(α) = sup
{

M > 0
∣∣∣∣∣
∣∣∣∣∣α − p

q

∣∣∣∣∣ <
1

Mq2 for infinitely many p

q
∈ Q

}

Note that M(α) being higher implies α is well approximable using the rationals. If the
set does not have an upper bound, M(α) = ∞.

So, if M(α) is small, then no matter how hard you try, rational approximations p
q

will
always miss α by at least 1

Mq2 , for all large enough q. That makes α hard to approximate
- in a sense, very irrational.

M(α) is not continuous, as it is undefined for rationals. The maxima and minima of
M(α) are ∞ and

√
5 respectively. Here’s the neat part:

M(φ) =
√

5

This tells us that φ is the worst approximable irrational number. This observation can
also be justified by looking at the convergence of φ.

φ = [1; 1, 1, 1, 1, . . . ]

All the partial quotients are as small as possible - all 1s - which makes the denominators
grow slowly, that is, error decays slowly and prevents any rational from sneaking up on
φ too close too quick.

Even better: any number that’s a linear functional transformation in φ - that is, any
aφ+b
cφ+d

with integers a, b, c, d and ad − bc ̸= 0 - will have the same Markov constant.
This is because every number of such form can be written in the form αφ + β, where
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α, β ∈ Q. A brief proof is as below.

aφ + b

cφ + d
=

a1+
√

5
2 + b

c1+
√

5
2 + d

= (1 +
√

5)a + 2b

(1 +
√

5)c + 2d

= (1 +
√

5)c + 2b√
5c + (c + 2d)

= [(1 +
√

5)c + 2b][
√

5c − (c + 2d)]
5c2 − c2 − 4d2 − 4dc

= [(1 +
√

5)c + 2b][(1 +
√

5)c − (2c + 2d)]
4c2 − 4d2 − 4dc

= 4c2φ2 + 4c(b − c − d)φ − 4b(c + d)
4c2 − 4d2 − 4dc

= 4c2(φ + 1) + 4c(b − c − d)φ − 4b(c + d)
4c2 − 4d2 − 4dc

= 4c(b − d)φ + 4c2 − 4b(c + d)
4c2 − 4d2 − 4dc

= c(b − d)φ + c2 − b(c + d)
c2 − d2 − dc

= c(b − d)
c2 − d2 − dc

φ + c2 − b(c + d)
c2 − d2 − dc

Which means that any rational expression in φ can be written as a linear combination
of φ in terms of rational coefficients. That is, any rational expression in φ is as well
approximable as φ.

So if Liouville numbers live on one end of the spectrum - being way too friendly with
rationals - then the golden ratio lives proudly on the other end, as the most unap-
proachable irrational number out there.

Now, recall an earlier observation we made while observing graphs displaying the er-
ror of approximation for the convergence of different irrational numbers: The error of
approximation decreases extremely slowly for φ, and extremely fast for π in compar-
ison to that of

√
2. Turns out that we need both Liouville and Markov’s findings to

appropriately justify these observations. The corollary of Liouville’s theorem tells us
that transcendental numbers like π are far more well-approximable than algebraic ir-
rational numbers like

√
2, and the Markov constant of φ tells us that it is the worst

approximable irrational number.
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