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Applications

Combinatorics on words has some applications to other sciences,
including:

Theoretical CS (string processing, data compression, error
detection)

Bioinformatics (analyzing DNA sequences with words)

Physics (encoding scenarios in symbolic dynamics)
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Definitions

Definition

An alphabet is a finite set of symbols (called letters), often
denoted Σ.
Examples include the standard English alphabet {a, b, c , . . . z} and
the set {0, 1}.

Definition

A word is a sequence of letters, all of which are elements of Σ.
Words may be finite, infinite in one direction, or infinite in both
directions. For a finite word w , |w | is its length. We denote by Σ∗

the set of all finite words that can be formed from the letters in Σ.

Remark

There is a unique empty word, denoted ε, which has length 0.
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More Definitions

Definition

A factor of a word w is any contiguous subword of w . A prefix is a
factor found at the beginning of w and a suffix is a factor found at
the end of w .

Example

The word bababba has the factor b as a prefix,

bba as a suffix, ba
as a prefix and a suffix, and does not have the word aa as a factor.
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More Definitions

Definition

A factor of a word w is any contiguous subword of w . A prefix is a
factor found at the beginning of w and a suffix is a factor found at
the end of w .

Example

The word bababba has the factor b as a prefix, bba as a suffix, ba
as a prefix and a suffix, and does not have the word aa as a factor.

bababba
(aa doesn’t appear)
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Final Definitions

Factors can be ”multiplied” via concatenation. Concatenating u
with v is uv . Raising a word to a power is repeated concatenation.

Example

u = ab, v = ba −→ uv = abba

u = abba, v = ε −→ uv = abba

u = ab −→ u3 = ababab

Definition

A morphism is a function h : Σ∗ → Γ∗ that is always distributive
over concatenation. In other words, for all words u, v ∈ Σ∗,
h(uv) = h(u)h(v).
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Patterns

Definition

Consider a second alphabet ∆. The letters in this alphabet are
called variables, and words in ∆∗ are called patterns. A finite word
w ∈ Σ∗ follows a pattern p if there is a way to create w by
substituting finite non-empty words in Σ∗ for each variable of p.

Example

The word abab follows the patterns xx , xy , and xyzy , but not xxx .

We are interested in distinguishing patterns that infinite words
must encounter (some factor follows the pattern) from ones that
can be avoided (no factor follows the pattern) for some large
enough alphabet size.
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Patterns We’ll Investigate

Squares (pattern xx), which are 2-unavoidable and
3-avoidable.

Cubes (pattern xxx), which are 2-avoidable.

Overlaps (pattern xyxyx), which are 2-avoidable.

The Zimin Patterns, which are always unavoidable.
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The Thue-Morse Sequence

Let µ : {a, b}∗ −→ {a, b}∗ be the following morphism:

µ(a) = ab

µ(b) = ba

Consider the words tn generated by evaluating µn(a) :

t0 = a

t1 = ab

t2 = abba

t3 = abbabaab

t4 = abbabaabbaababba

There is an infinite limiting word t, the Thue-Morse Word.
Importantly, µ(t) = t.



Preliminaries Patterns Unavoidable Patterns Some Open Problems

The Thue-Morse Sequence

Let µ : {a, b}∗ −→ {a, b}∗ be the following morphism:

µ(a) = ab

µ(b) = ba

Consider the words tn generated by evaluating µn(a) :

t0 = a

t1 = ab

t2 = abba

t3 = abbabaab

t4 = abbabaabbaababba

There is an infinite limiting word t, the Thue-Morse Word.
Importantly, µ(t) = t.



Preliminaries Patterns Unavoidable Patterns Some Open Problems

The Thue-Morse Sequence

Let µ : {a, b}∗ −→ {a, b}∗ be the following morphism:

µ(a) = ab

µ(b) = ba

Consider the words tn generated by evaluating µn(a) :

t0 = a

t1 = ab

t2 = abba

t3 = abbabaab

t4 = abbabaabbaababba

There is an infinite limiting word t, the Thue-Morse Word.
Importantly, µ(t) = t.



Preliminaries Patterns Unavoidable Patterns Some Open Problems

What Does t Avoid?

The Thue-Morse Word is cube-free.

Proof (Rough Idea).

1 Assume for contradiction there is a cube uuu of minimal
length in t.

2 Use properties of µ to show |u| is even
3 Show the factor that would generate uuu after applying µ is a

smaller cube in t, contradicting uuu’s minimality.

■

The Thue-Morse word is also overlap-free, and a similar proof
(albeit with more casework) can prove that this is true.
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Using t to Generate a Square-free Ternary Word

We go through the Thue-Morse word and observe how many b’s
appear between consecutive instances of a. If it is a 0, 1, or 2, we
append a, b, or c. Continue infinitely, generating u.

Proof that the infinite word u is square-free.

1 Define the morphism π : a → a, b → ab, c → abb, and notice
π(u) = t.

2 Assume a square vv exists in u for the sake of contradiction.
Consider vv and whatever letter appears next, say x .

3 It follows π(vvx) = π(v)π(v)π(x) appears in t, and since
each of these factors starts with an a, π(vvx) can be rewritten
as aw1aw1aw2, which implies the existence of either a cube or
overlap in t, a contradiction.

■
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Defining the Zimin Patterns

We once again consider the alphabet of variables ∆. The Zimin
patterns are defined as follows:

Definition

Start with Z0 = ε, and perform the following process:
Given the pattern Zn, we pick a variable x in ∆ that has not been
used prior and perform the concatenation Zn+1 = ZnxZn. Here are
the first few examples:

Z1 = α

Z2 = αβα

Z3 = αβαγαβα

It turns out all Zimin patterns are unavoidable, no matter how
large the alphabet is.
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Proving Unavoidability

Proposition

All Zimin patterns are unavoidable on all alphabets.

Proof.

We proceed by induction, assuming that Zn is encountered by all
words of some finite length l in Σ∗.

1 Base case: Z1 = α is unavoidable for all words of length 1.

2 Inductive proof: Split into blocks of l letters, with one letter of
space between each. After a large enough number of blocks,
we must have a block repeated. The blocks are identical and
must contain the same word following Zn. We set the new
variable to be the word between the instances of Zn. Thus, we
have encountered Zn+1 within a finite number of letters.

■
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Zimin’s Characterization

Theorem (Zimin’s Theorem)

A pattern p is unavoidable on all alphabets if and only if p is a
factor of a Zimin pattern.

The proof of this is omitted, but results from reducing patterns via
the Zimin algorithm.
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Extremal Words

Definition

We say a finite word is extremal pattern-free if the word avoids the
pattern, but all extensions (additions of a letter to the word at any
position) cause it to encounter the pattern.

Example

The only binary extremal square-free words are aba and bab.

Example

There are infinitely many ternary extremal square-free words, the
shortest of which is abcabacbcabcbabcabacbcabc .
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Open Questions

Two MIT students proved in 2021 that there are no extremal
square-free words for alphabets of size 17 or larger.

But are there extremal square-free words for alphabets of size
4-16?

Are there any extremal cube-free binary words?

It is known that infinitely many extremal overlap-free words
exist in binary alphabets, but do any exist for larger alphabets?
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Thank you!
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