## Combinatorics on Words: Pattern Avoidance

Nikhil Ravishankar

Euler Circle

July 10, 2025

# Overview

- Preliminaries
- 2 Patterns
- Unavoidable Patterns
- 4 Some Open Problems

Combinatorics on words has some applications to other sciences, including:

Combinatorics on words has some applications to other sciences, including:

Theoretical CS (string processing, data compression, error detection)

Combinatorics on words has some applications to other sciences, including:

- Theoretical CS (string processing, data compression, error detection)
- Bioinformatics (analyzing DNA sequences with words)

Combinatorics on words has some applications to other sciences, including:

- Theoretical CS (string processing, data compression, error detection)
- Bioinformatics (analyzing DNA sequences with words)
- Physics (encoding scenarios in symbolic dynamics)

# **Preliminaries**

## **Definitions**

### Definition

An *alphabet* is a finite set of symbols (called *letters*), often denoted  $\Sigma$ .

Examples include the standard English alphabet  $\{a, b, c, ... z\}$  and the set  $\{0, 1\}$ .

## **Definitions**

#### Definition

An *alphabet* is a finite set of symbols (called *letters*), often denoted  $\Sigma$ .

Examples include the standard English alphabet  $\{a, b, c, ... z\}$  and the set  $\{0, 1\}$ .

### Definition

A word is a sequence of letters, all of which are elements of  $\Sigma$ . Words may be finite, infinite in one direction, or infinite in both directions. For a finite word w, |w| is its length. We denote by  $\Sigma^*$  the set of all finite words that can be formed from the letters in  $\Sigma$ .

## **Definitions**

#### Definition

An *alphabet* is a finite set of symbols (called *letters*), often denoted  $\Sigma$ .

Examples include the standard English alphabet  $\{a, b, c, ... z\}$  and the set  $\{0, 1\}$ .

#### Definition

A word is a sequence of letters, all of which are elements of  $\Sigma$ . Words may be finite, infinite in one direction, or infinite in both directions. For a finite word w, |w| is its length. We denote by  $\Sigma^*$  the set of all finite words that can be formed from the letters in  $\Sigma$ .

#### Remark

There is a unique *empty word*, denoted  $\varepsilon$ , which has length 0.



### Definition

A factor of a word w is any contiguous subword of w. A prefix is a factor found at the beginning of w and a suffix is a factor found at the end of w.

## Definition

A factor of a word w is any contiguous subword of w. A prefix is a factor found at the beginning of w and a suffix is a factor found at the end of w.

### Example

The word bababba has the factor b as a prefix,

bababba

## Definition

A factor of a word w is any contiguous subword of w. A prefix is a factor found at the beginning of w and a suffix is a factor found at the end of w.

### Example

The word bababba has the factor b as a prefix, bba as a suffix,

bababba



### Definition

A factor of a word w is any contiguous subword of w. A prefix is a factor found at the beginning of w and a suffix is a factor found at the end of w.

### Example

The word bababba has the factor b as a prefix, bba as a suffix, ba as a prefix and a suffix,

#### bababba

#### Definition

A factor of a word w is any contiguous subword of w. A prefix is a factor found at the beginning of w and a suffix is a factor found at the end of w.

## Example

The word bababba has the factor b as a prefix, bba as a suffix, ba as a prefix and a suffix, and does not have the word aa as a factor.

bababba (aa doesn't appear)

## Final Definitions

Factors can be "multiplied" via concatenation. Concatenating u with v is uv. Raising a word to a power is repeated concatenation.

# **Final Definitions**

Factors can be "multiplied" via concatenation. Concatenating u with v is uv. Raising a word to a power is repeated concatenation.

### Example

- $u = ab, v = ba \longrightarrow uv = abba$
- $u = abba, v = \varepsilon \longrightarrow uv = abba$
- $u = ab \longrightarrow u^3 = ababab$

## **Final Definitions**

Factors can be "multiplied" via concatenation. Concatenating u with v is uv. Raising a word to a power is repeated concatenation.

### Example

- $u = ab, v = ba \longrightarrow uv = abba$
- $u = abba, v = \varepsilon \longrightarrow uv = abba$
- $u = ab \longrightarrow u^3 = ababab$

### Definition

A morphism is a function  $h: \Sigma^* \to \Gamma^*$  that is always distributive over concatenation. In other words, for all words  $u, v \in \Sigma^*$ , h(uv) = h(u)h(v).

#### Definition

Consider a second alphabet  $\Delta$ . The letters in this alphabet are called *variables*, and words in  $\Delta^*$  are called *patterns*. A finite word  $w \in \Sigma^*$  follows a pattern p if there is a way to create w by substituting finite non-empty words in  $\Sigma^*$  for each variable of p.

#### Definition

Consider a second alphabet  $\Delta$ . The letters in this alphabet are called *variables*, and words in  $\Delta^*$  are called *patterns*. A finite word  $w \in \Sigma^*$  follows a pattern p if there is a way to create w by substituting finite non-empty words in  $\Sigma^*$  for each variable of p.

### Example

The word *abab* follows the patterns xx, xy, and xyzy, but not xxx.

#### Definition

Consider a second alphabet  $\Delta$ . The letters in this alphabet are called *variables*, and words in  $\Delta^*$  are called *patterns*. A finite word  $w \in \Sigma^*$  follows a pattern p if there is a way to create w by substituting finite non-empty words in  $\Sigma^*$  for each variable of p.

## Example

The word *abab* follows the patterns xx, xy, and xyzy, but not xxx.

We are interested in distinguishing patterns that infinite words **must** encounter (some factor follows the pattern) from ones that can be **avoided** (no factor follows the pattern) for some large enough alphabet size.

• Squares (pattern xx), which are 2-unavoidable and 3-avoidable.

- Squares (pattern xx), which are 2-unavoidable and 3-avoidable.
- Cubes (pattern xxx), which are 2-avoidable.

- Squares (pattern xx), which are 2-unavoidable and 3-avoidable.
- Cubes (pattern xxx), which are 2-avoidable.
- Overlaps (pattern xyxyx), which are 2-avoidable.

- Squares (pattern xx), which are 2-unavoidable and 3-avoidable.
- Cubes (pattern xxx), which are 2-avoidable.
- Overlaps (pattern xyxyx), which are 2-avoidable.
- The Zimin Patterns, which are always unavoidable.

# The Thue-Morse Sequence

Let  $\mu: \{a,b\}^* \longrightarrow \{a,b\}^*$  be the following morphism:

$$\mu(a) = ab$$

$$\mu(b)=ba$$

# The Thue-Morse Sequence

Let  $\mu: \{a, b\}^* \longrightarrow \{a, b\}^*$  be the following morphism:

$$\mu(a) = ab$$

$$\mu(b) = ba$$

Consider the words  $t_n$  generated by evaluating  $\mu^n(a)$ :

$$t_0 = a$$

$$t_1 = ab$$

$$t_2 = abba$$

$$t_3 = abbabaab$$

$$t_4 = abbabaabbaababba$$

# The Thue-Morse Sequence

Let  $\mu : \{a, b\}^* \longrightarrow \{a, b\}^*$  be the following morphism:

$$\mu(a) = ab$$
  
 $\mu(b) = ba$ 

Consider the words  $t_n$  generated by evaluating  $\mu^n(a)$ :

$$t_0 = a$$
 $t_1 = ab$ 
 $t_2 = abba$ 
 $t_3 = abbabaab$ 
 $t_4 = abbabaabbaababba$ 

There is an infinite limiting word t, the Thue-Morse Word. Importantly,  $\mu(t) = t$ .



The Thue-Morse Word is cube-free.

The Thue-Morse Word is cube-free.

## Proof (Rough Idea).

• Assume for contradiction there is a cube uuu of minimal length in t.

The Thue-Morse Word is cube-free.

## Proof (Rough Idea).

- Assume for contradiction there is a cube uuu of minimal length in t.
- $oldsymbol{2}$  Use properties of  $\mu$  to show |u| is even

The Thue-Morse Word is cube-free.

## Proof (Rough Idea).

- Assume for contradiction there is a cube uuu of minimal length in t.
- **2** Use properties of  $\mu$  to show |u| is even
- § Show the factor that would generate uuu after applying  $\mu$  is a smaller cube in t, contradicting uuu's minimality.

The Thue-Morse Word is cube-free.

## Proof (Rough Idea).

- Assume for contradiction there is a cube uuu of minimal length in t.
- **2** Use properties of  $\mu$  to show |u| is even
- **3** Show the factor that would generate uuu after applying  $\mu$  is a smaller cube in t, contradicting uuu's minimality.

The Thue-Morse word is also overlap-free, and a similar proof (albeit with more casework) can prove that this is true.

# Using t to Generate a Square-free Ternary Word

We go through the Thue-Morse word and observe how many b's appear between consecutive instances of a. If it is a 0, 1, or 2, we append a, b, or c. Continue infinitely, generating u.

We go through the Thue-Morse word and observe how many b's appear between consecutive instances of a. If it is a 0, 1, or 2, we append a, b, or c. Continue infinitely, generating u.

Proof that the infinite word u is square-free.

We go through the Thue-Morse word and observe how many b's appear between consecutive instances of a. If it is a 0, 1, or 2, we append a, b, or c. Continue infinitely, generating u.

#### Proof that the infinite word u is square-free.

① Define the morphism  $\pi: a \rightarrow a, b \rightarrow ab, c \rightarrow abb$ , and notice  $\pi(u) = t$ .

We go through the Thue-Morse word and observe how many b's appear between consecutive instances of a. If it is a 0, 1, or 2, we append a, b, or c. Continue infinitely, generating u.

### Proof that the infinite word u is square-free.

- **①** Define the morphism  $\pi: a \to a, b \to ab, c \to abb$ , and notice  $\pi(u) = t$ .
- ② Assume a square vv exists in u for the sake of contradiction. Consider vv and whatever letter appears next, say x.

We go through the Thue-Morse word and observe how many b's appear between consecutive instances of a. If it is a 0, 1, or 2, we append a, b, or c. Continue infinitely, generating u.

### Proof that the infinite word u is square-free.

- **①** Define the morphism  $\pi: a \to a, b \to ab, c \to abb$ , and notice  $\pi(u) = t$ .
- ② Assume a square vv exists in u for the sake of contradiction. Consider vv and whatever letter appears next, say x.
- 3 It follows  $\pi(vvx) = \pi(v)\pi(v)\pi(x)$  appears in t, and since each of these factors starts with an a,  $\pi(vvx)$  can be rewritten as  $aw_1aw_1aw_2$ , which implies the existence of either a cube or overlap in t, a contradiction.

### Unavoidable Patterns

We once again consider the alphabet of variables  $\Delta$ . The *Zimin patterns* are defined as follows:

We once again consider the alphabet of variables  $\Delta$ . The *Zimin* patterns are defined as follows:

#### Definition

Start with  $Z_0 = \varepsilon$ , and perform the following process:

We once again consider the alphabet of variables  $\Delta$ . The *Zimin patterns* are defined as follows:

#### Definition

Start with  $Z_0 = \varepsilon$ , and perform the following process:

We once again consider the alphabet of variables  $\Delta$ . The *Zimin patterns* are defined as follows:

#### Definition

Start with  $Z_0 = \varepsilon$ , and perform the following process:

• 
$$Z_1 = \alpha$$

We once again consider the alphabet of variables  $\Delta$ . The *Zimin patterns* are defined as follows:

#### Definition

Start with  $Z_0 = \varepsilon$ , and perform the following process:

• 
$$Z_1 = \alpha$$

• 
$$Z_2 = \alpha \beta \alpha$$

We once again consider the alphabet of variables  $\Delta$ . The *Zimin patterns* are defined as follows:

#### Definition

Start with  $Z_0 = \varepsilon$ , and perform the following process:

• 
$$Z_1 = \alpha$$

• 
$$Z_2 = \alpha \beta \alpha$$

• 
$$Z_3 = \alpha \beta \alpha \gamma \alpha \beta \alpha$$

We once again consider the alphabet of variables  $\Delta$ . The *Zimin* patterns are defined as follows:

#### Definition

Start with  $Z_0 = \varepsilon$ , and perform the following process:

Given the pattern  $Z_n$ , we pick a variable x in  $\Delta$  that has not been used prior and perform the concatenation  $Z_{n+1} = Z_n x Z_n$ . Here are the first few examples:

- $Z_1 = \alpha$
- $Z_2 = \alpha \beta \alpha$
- $Z_3 = \alpha \beta \alpha \gamma \alpha \beta \alpha$

It turns out all Zimin patterns are unavoidable, no matter how large the alphabet is.

### Proposition

All Zimin patterns are unavoidable on all alphabets.

### Proposition

All Zimin patterns are unavoidable on all alphabets.

#### Proof.

We proceed by induction, assuming that  $Z_n$  is encountered by all words of some finite length I in  $\Sigma^*$ .

### Proposition

All Zimin patterns are unavoidable on all alphabets.

#### Proof.

We proceed by induction, assuming that  $Z_n$  is encountered by all words of some finite length I in  $\Sigma^*$ .

**1** Base case:  $Z_1 = \alpha$  is unavoidable for all words of length 1.

#### Proposition

All Zimin patterns are unavoidable on all alphabets.

#### Proof.

We proceed by induction, assuming that  $Z_n$  is encountered by all words of some finite length I in  $\Sigma^*$ .

- **①** Base case:  $Z_1 = \alpha$  is unavoidable for all words of length 1.
- Inductive proof: Split into blocks of I letters, with one letter of space between each. After a large enough number of blocks, we must have a block repeated.

#### Proposition

All Zimin patterns are unavoidable on all alphabets.

#### Proof.

We proceed by induction, assuming that  $Z_n$  is encountered by all words of some finite length I in  $\Sigma^*$ .

- **①** Base case:  $Z_1 = \alpha$  is unavoidable for all words of length 1.
- ② Inductive proof: Split into blocks of I letters, with one letter of space between each. After a large enough number of blocks, we must have a block repeated. The blocks are identical and must contain the same word following  $Z_n$ . We set the new variable to be the word between the instances of  $Z_n$ . Thus, we have encountered  $Z_{n+1}$  within a finite number of letters.

### Zimin's Characterization

### Theorem (Zimin's Theorem)

A pattern p is unavoidable on all alphabets if and only if p is a factor of a Zimin pattern.

The proof of this is omitted, but results from reducing patterns via the Zimin algorithm.

### Some Open Problems

### Extremal Words

#### Definition

We say a finite word is *extremal pattern-free* if the word avoids the pattern, but all *extensions* (additions of a letter to the word at any position) cause it to encounter the pattern.

### Extremal Words

#### Definition

We say a finite word is *extremal pattern-free* if the word avoids the pattern, but all *extensions* (additions of a letter to the word at any position) cause it to encounter the pattern.

### Example

The only binary extremal square-free words are aba and bab.

### Extremal Words

#### Definition

We say a finite word is *extremal pattern-free* if the word avoids the pattern, but all *extensions* (additions of a letter to the word at any position) cause it to encounter the pattern.

### Example

The only binary extremal square-free words are aba and bab.

### Example

There are infinitely many ternary extremal square-free words, the shortest of which is abcabacbcabcbabcabcabcabc.

• Two MIT students proved in 2021 that there are no extremal square-free words for alphabets of size 17 or larger.

- Two MIT students proved in 2021 that there are no extremal square-free words for alphabets of size 17 or larger.
- But are there extremal square-free words for alphabets of size 4-16?

- Two MIT students proved in 2021 that there are no extremal square-free words for alphabets of size 17 or larger.
- But are there extremal square-free words for alphabets of size 4-16?
- Are there any extremal cube-free binary words?

- Two MIT students proved in 2021 that there are no extremal square-free words for alphabets of size 17 or larger.
- But are there extremal square-free words for alphabets of size 4-16?
- Are there any extremal cube-free binary words?
- It is known that infinitely many extremal overlap-free words exist in binary alphabets, but do any exist for larger alphabets?

## Thank you!

