PATTERN AVOIDANCE AND EXTREMAL WORDS
NIKHIL RAVISHANKAR

ABSTRACT. This expository paper will focus on exploring combinatorics on words, the study
of finite and infinite sequences of symbols. Specifically, we observe when certain kinds of
patterns, words following some defined structure, must necessarily occur in words, or if they
can be avoided. We discuss how infinite words can be generated with morphisms, look at
the infinite Thue-Morse word and its pattern-avoiding properties, define an infinite family of
unavoidable patterns, show generalized results about all unavoidable patterns with Zimin’s
reducting algorithm, and explore a new branch of research based on a variation of avoidance.

1. INTRODUCTION

Combinatorics on words is a relatively new branch of mathematics that studies both the
properties of finite and infinite sequences of symbols (or words) where each symbol is taken
from a set of symbols ¥*. Axel Thue is credited with making the first developments in the
field by studying square-free words in the 20th century. Many more mathematicians such as
Zimin, the group Lothaire, Dejean, and the group Grytczuk, Kordulewski, and Niewiadomski
have made their own contributions like proving the unavoidability of the Zimin patterns,
providing two comprehensive books on the subject, posing a conjecture about repetition
of words which was later proven, and beginning the study of extremal words, respectively.
First, we provide basic definitions and notation commonly used in combinatorics on words.
Next, we define morphisms, powerful functions that can generate infinite words, sometimes
with special properties related to pattern avoidance. We then formally define patterns and
what it means to encounter or avoid them. We observe the Thue-Morse word and the two
patterns it avoids, as well as use it to generate a new word avoiding a different pattern. We
then explore the infinite family of Zimin patterns, and show that they are all unavoidable,
and characterize all unavoidable patterns. We begin exploring extremal words, a subset of
pattern-avoiding words that lose their avoidance at the addition of a single letter, and end
with some open problems related to this branch.

2. PRELIMINARIES

We begin by introducing rudimentary notation, definitions, and examples for the reader
to understand common terminology used when doing combinatorics on words. For more
reading, see [Lot02].

Definition 2.1. An alphabet is a set of symbols that are called letters. Alphabets are
typically denoted by Y. They are typically finite in the context of words, but can be infinite
in the context of patterns.

Ezample. The English alphabet {A, B, C, ... Z} would be considered an alphabet under this
definition.
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Ezample. Furthermore, the set {0,1} can also be considered an alphabet.

Definition 2.2. A word is a sequence (possibly empty) of letters, all of which are elements
of a particular alphabet . For a finite word w, |w| denotes its length. In particular, there
exists a unique empty word of length 0, denoted by &.

Words may be finite, infinite in one direction, or infinite in both directions. However, this
paper primarily focuses on finite words and one-sided infinite words. The set of words that
can be formed from a given alphabet ¥ is denoted as ¥*, and the set of nonempty words
that can be formed from that alphabet as X*. The words can be classified by the size of
their alphabets (for example, binary and ternary words are made from alphabets of sizes 2
and 3, respectively.

Definition 2.3. A factor of a word w is a contiguous subsequence of the letters of w. A
prefiz is a factor found at the beginning of w and a suffix is a factor found at the end of w.

Ezxample. The word bababba has the factor b as a prefix, bba as a suffix, ba as a prefix and
a suffix, and does not have the word aa as a factor (since the instances of a are not adjacent).

Definition 2.4. The concatenation of two words u and v, is simply denoted as uv. More
precisely, uv is a single word that consists of all the letters of u in order, and then all the
letters of v in order. As long as w is finite, this concatenation is well-defined. In particular,
concatenation is similar to multiplication in that the words being concatenated are factors.
Furthermore, an integer power of a word w™ is simply w concatenated to itself n times. In
particular, any word raised to the power of 0 results in the empty word ¢.

Ezample. If u = aba and v = aab then uv = abaaab, vu = aababa, and u? = abaaba.

Remark 2.5. Note that unlike multiplication, concatenation is not commutative, so uv is not
necessarily equal to vu. However, if uv = vu, it can be proven by induction on the length of
uv that there exists some word z such that v and v are both powers of z.

3. MORPHISMS

Morphisms are functions that can be applied to words to generate new words. They are
extremely useful tools for generating infinite words and manipulating them to prove results
about those words.

Definition 3.1. A morphism is a function h : ¥* — I'* that is always distributive over
concatenation. In other words, for any words u,v € ¥*, h(uv) = h(u)h(v). We call h(u) the
image of u with respect to h, and u the preimage of h(u).

Remark 3.2. Thus, since words can always be expressed as concatenations of individual
letters, it follows that morphisms can be thought of as replacing each letter of an input
word with another word to get the newly generated word. In particular, morphisms can be
uniquely defined just by their evaluations on every letter of >.

Claim 3.3. For all morphisms h : ¥* — I'*, we have h(e) = ¢.
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Proof. Choosing u = v = ¢, we have h(eg) = h(e)h(e). But since ee = ¢ by the definition
of the empty word,we have h(ee) = h(e) = h(e)h(e). Looking at the two rightmost terms of
this equation, the only way to concatenate h(e) to a word and still have them equal is for
h(e) to equal e. [

Although it is possible for morphisms to map nonempty words to the empty word, these
morphisms are typically not as useful. Thus, we tend to observe morphisms in which
nonempty words cannot map to the empty word.

Definition 3.4. A nonerasing morphism is a morphism h : ¥* — I'* such that h(u) =
e = u=c¢.

Ezample. In the alphabet ¥ = {0, 1}, the morphism A : ¥* — ¥* defined by h(0) = 1,h(1) =

€ is not nonerasing.
Ezample. However, the one defined by h(1) = 11, h(0) = 0 is.

Definition 3.5. Furthermore, morphisms that map words to other words in the same al-
phabet (denoted h : ¥* — ¥*) are known as endomorphisms. These endomorphisms are
particularly useful for generating infinite words, as they can be applied repetitively without
their outputs leaving the domain.

Definition 3.6. The process of using morphisms to generate infinite words is detailed below.
For a starting letter a and a morphism h, we compute the following limit, where h"(a) is the
composition of h with itself n times, evaluated at a:
: n

g, ha)
Definition 3.7. If, when given the morphism h, there exists at least one a such that this
limit exists and is an infinite word, we call the morphism prolongable, and the resulting
word morphic. If the limit exists (it can be infinite or finite), we call the resulting word
w a fized point of h because it satisfies h(w) = w. We have mentioned that infinite words
can be generated from endomorphisms (although it is possible A is not an endomorphism
if the codomain contains all possible letters appearing in repeated evaluations of h on a.)
However, repeated morphisms do not always generate a morphic word. We now characterize
what qualities are present in these morphic words.

Proposition 3.8. An infinite morphic word w over a morphism h : ¥* — ¥* satisfies the
following conditions:

(1) If a is the starting letter of w, then h(a) = au for some u € ¥F.
(2) For a given starting leter a and morphism h, w is unique and equal to auh(u)h?(u)h3(u) . . .

Proof. In order to prove (1) is true, assume for the sake of contradiction that h(a) # au for
some u € XF. There are two possibilities for the form of h(a) :

If h(a) does not start with a, yet w does start with a as is stated, we have w = ax for some
infinite word z, and h(w) = h(az) = h(a)h(z). We assumed h(a) does not start with a, so
h(w) cannot start with a, so it is impossible for h(w) to equal w, contradicting our earlier
finding that h(w) = w.
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The only other way for h(a) to not equal a that the earlier case does not cover is if h(a) = a.
However, lim,,_,.h™(a) = a, which is not an infinite word. Thus, the only remaining pos-
sibility is that h(a) = au for some nonempty word u. This possibility works, because the
length increases by a nonzero amount (at least |u|) each time h is applied.

Because morphisms behave like functions, evaluating h on anything can only have at most
one value, thus, if the limiting word w exists, after each successive composition of h, the
generated word can only have at most one value, so the final infinite word can only have at
most one value. Thus, if w exists, it is unique.

To prove the second part of (2), we can easily verify the form of w satisfies h(w) = w :

w = auh(u)h? (u)h?(u)h*(u) ..
h(w) = h(auh(u)h*(u)h ()h4() )
h(w) = h(a)h(w)h(h(u))h(h*(u)) ..
h(w) = auh(u)h?(u)h3(u)h*(u) . .
h(w) = w

The evaluation of a becoming au is highlighted in red. Essentially, when the morphism is
applied, a evaluates to au, u to h(u), and in general, h"(u) to h""!(u). Every part of w is
generated, and the parts are generated in the same order they appear. We have found a
word that is a fixed point of h, so this is the unique value of w. [

We also prove another useful characteristic about the finite words generated by successive
applications of morphisms, namely the following:

Proposition 3.9. If applying the morphism h : ¥* — ¥* repeatedly to the starting letter
a € ¥ produces the infinite word w, and we define w,, to be the finite word h™(a), then w, is
a prefix of wyy1 for alln € ZT.

Proof. By the definitions of the terms w;, we have h(w,) = w,; for all integers n > 1. We
first define h(a) as au for some u € X*. Observing the first few values of w;, we find these:
wy =a
Wy = au
w3 = auh(u)
wy = auh(u)h?(u)
ws = auh(u)h?(u)h? (u)

We can conjecture that for all n > 3, w, is equal to the concatenation auh(u)h?(u) ... h"%(u).
In fact, we can easily prove this is the case with induction:

Our base case starts at n = 3, and this is true because auh(u) = auh®%(u). Our inductive
hypothesis is that w, = auh(u)h?(u)...h"%(u), and we would like to show our inductive
step that if we assume w, is of the aforementioned form, then w,; is as well.
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Applying the morphism A to our expression for w,, we find the following:
h(w,) = h (auh(u)h®(u) ... K" *(u))
W1 = h(a) h(u) h(h(u) h(R*(w)) ... h(h" 2 (u)
W1 = auh(w)h?(u) ... K" 1 (u)

We used the fact that h(w,) = w,,1, and a similar finding to the previous proof occurs
where all the current terms are generated by u up to the previous term h"~3(u), essentially
replicating the entirety of w, and then appending hA"~!(u). This completes the inductive
proof.

Now that we know the forms of all the w;, we can verify our main prefix claim, but we must
manually check our first two cases: a is a prefix of au, and au is a prefix of auh(u). For
n > 3, we have the following:

W1 = auh(w)h?(w)h*(u) ... A" 2(w)h™ H(u) = w,h" ' (u)
[

Remark 3.10. This prefix constraint can be strengthened (since being a prefix of a word is a
transitive property): for any i,j € N, if ¢ < j, then w; is a prefix of w;. Furthermore, all w;
are prefixes of the infinite morphic word w, because to allow the limiting word w to exist at

all, the first n letters of w for any finite n must stay the same after applying the morphism
h.

We end this section by using morphisms to generate a well-known example of a morphic
word, namely the Fibonacci word. (The Thue-Morse word is another prominent example,
which will be covered in more detail later.)

We are working with the binary alphabet ¥ = {0,1}. Consider the following morphism
@ 2" — ¥* defined as follows:

#(0) = 01
p(1) =0
Our starting letter will be 0 since applying the morphism to 0 results in a word that
both starts with 0 and is longer than just O itself. We define f, as the word resulting

from evaluating ¢"(0). We can repeatedly apply ¢ and observe the first few letters of the
Fibonacci word:

fo=0

fi =01

£, = 010
f5 = 01001

fa = 01001010
f5 = 0100101001001
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The limiting word f is known as the Fibonacci word, primarily because an equivalent
definition to generate new f; recursively is fn,11 = fofn_1 for all n > 1.

4. PATTERNS AND AVOIDABILILTY

In this section, we introduce patterns, which are not merely words, but structures that
simultaneously encompass all words of a certain form. Then, we explore what patterns must
necessarily occur in sufficiently long words on certain alphabets and what patterns can be
avoided for a well-constructed infinite word.

Definition 4.1. We denote A to be the pattern alphabet, the letters of which are called
variables. Furthermore, words in A* are called patterns.

Example. A common pattern is the square, which can be written in variables as ac.

Definition 4.2. We say a word w € ¥* follows a pattern p € A* if there exists some non-
erasing morphism h : A* — ¥* such that h(p) = w. In other words, if each variable in p can
be substituted with a word in ¥* to generate w, w follows the pattern.

Definition 4.3. For longer finite and infinite words, we say that a word w encounters a
pattern if there exists some factor of w that follows the pattern p. If no such patterns follow
p, then w avoids p. Patterns are called avoidable or unavoidable based on if an infinite word
can be constructed that avoids p, or if there are none.

Example. The word abab follows the patterns zz, zy, zyzy, but not xxx. The morphisms
showing the following of the patterns are h(z) = ab for xz, h(x) = h(y) = ab for xy, and
h(z) = h(z) = a, h(y) = b for zyzy. However, abab can’t be written as some nonempty word
repeated three times. It is also notable that distinct variables can map to the same words,
so the morphisms need not be injective.

Definition 4.4. Patterns can be labeled k-avoidable if an alphabet of size k is sufficiently
large to be able to construct an infinite word avoiding the pattern. In this case, k is called
the avoidability index of the pattern if k£ is the minimal alphabet size required to avoid the
pattern. Patterns may be labeled k-unavoidable if such a construction is impossible with
a size k alphabet. If a pattern is unavoidable no matter how large the alphabet is, its
avoidability index is oco.

This is the central concept of pattern avoidance. Which patterns can be avoided and on
which alphabets?

This paper focuses primarily on the following patterns:

e Squares, which are 2-unavoidable and 3-avoidable.

e Cubes, which are 2-avoidable.

e Overlaps (of the form afSafa), which are 2-avoidable.

e The infinite family of Zimin patterns, which are unavoidable.

We can start our observations with squares, noting that a binary alphabet is insufficient
to avoid squares infinitely:

Claim 4.5. All binary words of length 4 or more encounter a square.
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Proof. Without loss of generality, 3 = {a, b}, and the first letter is a. We cannot put another
a without creating the square aa, so the next letter is b. Continuing this logic, we must
alternate a’s and b’s. But after 4 letters, we form abab = (ab)? and encounter a square. M

However, we can show a binary alphabet can avoid cubes indefinitely. A prominent ex-
ample of an infinite binary cube-free word is the Thue-Morse word. It is defined by the
following morphism p : 3* — ¥* where X = {a, b}.

p(a) = ab
w(b) = ba

Let ty = a, and t,, be the n-fold composition of y evaluated at a, u"(a), for n > 1. The
first few iterations are shown below:

to = a
tl =ab
ty = abba

t3 = abbabaab
t, = abbabaabbaababba
ts = abbabaabbaababbabaababbaabbabaab

The infinite word ¢, the Thue-Morse word, is the fixed point of this morphism. We can
prove t is cube-free, overlap-free, and use it to generate a square-free word over a ternary
alphabet. We will need to prove some smaller lemmas about ¢ first, however.

Lemma 4.6. All occurrences of aa or bb in t occur at even positions. We assume the first
letter is indexed at 1, and the occurence’s position is indexed by the position of the leftmost
letter.

Proof. Because t is a fixed point of i, we know pu(t) = t. Furthermore, we know each letter
in ¢t maps to a two letter word with exactly one a and one b after applying . In other words,
the first two letters (positions 1-2) are an a and a b in some order, the next two (positions
3-4) are an a and a b in some order, and so on. Thus, all two letter words at odd positions
cannot possibly be aa or bb. Thus, all occurrences of aa or bb can only happen at even
positions. [

Corollary 4.7. It follows that aaa and bbb do not occur in t, because regardless of the parity
of the position in which they occur, they would place an aa or bb at an odd position, which
1s impossible.

Lemma 4.8. For some subword u of t such that u starts on an odd position, the word formed
by taking just the odd-position letters of u also appears in t.

Proof. Since u starts on an odd position, it is a concatenation of several two-letter words
that are either ab or ba, and possibly an unpaired a or b (also at an odd position) if |u| is
odd. Because the 2-letter words of u occur at odd positions, each is the image of some earlier
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letter in t. The preimages of ab and ba are a and b, notably the letter at the odd position,
since ab and ba are themselves at odd positions. [ |

Remark 4.9. If u starts at an even position, we can determine the letter before the leftmost
letter of u, and similarly if v ends at an odd position, we can determine the letter after the
rightmost letter, by using the fact that any two consecutive letters (where the first of the
two letters has an odd position) must consist of one a and one b. In either case, if we can
determine a letter, it would be the opposite of what letter it is adjacent to.

We have the tools to prove a larger result.
Proposition 4.10. The Thue-Morse word is cube-free.

Proof. For the sake of contradiction, assume that ¢ contains a nonempty word of the form
uuu, and assume uuu is the smallest such instance of a cube in ¢. By 4.7 uuu cannot equal
aaa or bbb (corresponding to the only possible 1-letter values for u), so |u| > 2 and |uuu| > 6.

It is also impossible for uuu to alternate between a and b, because that implies the exis-
tence of ababab or bababa somewhere in wuu. No matter if these subwords start at even or
odd positions, determining any extra letters as detailed in would preserve this alternating
property. The contradiction arises when taking a preimage with respect to u, as this would
result in either an aaa or a bbb in ¢, which are impossible by [4.7]

Thus, vuu must contain some occurrence of aa or bb. Because 4 = |uu| > |aal, |bb| = 2,
the occurrence must be contained in the factor uu. Furthermore, it must occur in two places:
the first wu of wuu and the second uu of uuu. Since the second instance of wu (and thus
the second occurrence of aa or bb) is precisely |u| letters later than the first, by [4.6] both
occurrences must be at even positions, so |u| is even.

If uuu starts at an odd position, we can take the odd position letters of wuu. Since |u|
is even, taking all the odd letters of uuu is equivalent to taking the odd letters of u three
times. Thus, it must also be a cube in ¢, and one with half the length of wuu, which would
contradict the minimality of uuu.

If uuu starts at an even position, taking all the odd position letters of uuu (positions based
on the start of ¢) is equivalent to taking all the even position letters of u (where positions
are based on the start of u) three times. This also creates a cube in ¢ with a smaller length,
a contradiction. [ |

We can use a similar proof to show the Thue-Morse word avoids a different pattern:
overlaps, which can be represented in variables as afafa. They are called overlaps because
there are two instances of a single word afSa such that the two overlap, sharing an a.

Proposition 4.11. The Thue-Morse word is overlap-free.

Proof. We once again assume, for the sake of contradiction, that ¢ has a factor of the form
uvuvy of minimal length. We then aim to show that this implies a smaller overlap, contra-
dicting the minimality.

Once again, we can show that it is impossible for uvuvu to alternate between a and b.
Since uvuvuv > 5, if it were to alternate, it implies the existence of either ababa or babab in
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t. Since 5 is odd, either the leftmost letter is at an even position or the rightmost letter is
at an odd position. It must be the case that the procedure described in [4.9 will determine
an additional letter, implying the existence of the subword ababab or bababa in t, moreover
starting at an odd position and ending at an even position (thus consisting of three 2-letter
words generated by an earlier word in ¢). However, taking the preimage implies the existence
of one of aaa or bbb in ¢, which is impossible by [4.7]

Once again, if uvuvu cannot alternate between a and b, it must have at least one occur-
rence of aa or bb, and since this length of 2 is less than the minimum length of |uvu| = 3,
there are occurrences of aa or bb in one instance of uvu, and another instance of uvu that is
lvu| letters later. Based on the restrictions on where aa and bb can occur as detailed in [1.6]
|vu| is even.

Just as we did in the last proof, we can form a word by taking all the letters at odd
positions within uvuvu. Since |uv| is even, the set of letters taken from the first uv ,which
we will call v'v" (v being the letters taken from w, and v’ is defined identically) is identical
to the letters taken from the second uw, and the letters taken from the final u will be u as
well. Thus, we have found a smaller overlap u/v'u/v'u’ in t and contradicted the minimality

of wvuvu. Hence, t is overlap-free. [ |

We have shown cubes and overlaps are 2-avoidable, but we can also use ¢ to generate an
infinite square-free word over a ternary (3-letter) alphabet. The process is as follows:

Definition 4.12. Let the infinite word u be generated in the following manner: We write
out the entirety of the Thue-Morse word ¢t. We then note how many b’s appear between each
consecutive instance of a. This number must be 0, 1, or 2 because if it were 3 or more, there
would be a cube in ¢, which is impossible. Using the alphabet T' = {0, 1,2}, we append the
corresponding number of b’s, continuing this process indefinitely.

t = abbabaabbaababbabaababbaabbabaab . . .
uw = 2102012101202102. ..

Definition 4.13. We define a new morphism = : {0,1,2}* — {a,b}* as follows:

7(0) =a
(1) =ab
7(2) = abb

This morphism generates an a with n copies of b afterward when evaluated on n (where n
is 0, 1, or 2). Importantly, ¢ starts with a, and by the nature of how we constructed u by
counting how many b’s appear between instances of a, we have that 7(u) = t.

Proposition 4.14. The ternary infinite word u is square-free.

Proof. For the sake of contradiction, assume that there exists a square vv in u. Consider vv
and whichever letter immediately follows vv. It is either a 0, 1, or 2, but we will call it z. Since
we have assumed vvz is in u, and we know that m(u) = ¢, it follows that 7(vvz) is a factor of ¢.
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Morphisms are distributive over concatenation, therefore 7(vvx) = m(v)w(v)7(z) appears in
t. No matter what v and x are, their images under m must start with a, because all of 0,1,
and 2 map to words starting with a. If we let 7(v) = aw; and 7(x) = aws, for possibly empty
words wy, wsy, then we know that aw;aw;awy appears in t. However, this word contains the
factor aw;aw;a. Depending on if w; is empty or nonempty, this factor is either a cube or
an overlap, respectively. However, t is cube-free and overlap-free, so this is a contradiction.
Hence u is square-free. [ |

5. THE UNAVOIDABLE ZIMIN PATTERNS

In the previous sections, we have touched on patterns like squares, cubes, and overlaps,
which can all be avoided by words on a sufficiently large alphabet. Now, we will explore
an infinite family of patterns called the Zimin patterns, also known as the sesquipowers in
the pattern alphabet. Unlike the patterns we have previously observed, all of them are
unavoidable, meaning no infinite word can avoid them, no matter how large the alphabet is.

Definition 5.1. Assume the pattern alphabet A has infinitely many variables. We recur-
sively define the nth Zimin pattern Z,, as follows:

[} ZO =£

® /.1 = ZyxZ,, where x is a new variable in A that has not been used in Z,,.
The first few Zimin patterns are shown below for illustrative purposes, and we use Greek
letters as variables:

(] Z1 =

e />y =afa

e /3 = afavyafa

Theorem 5.2 ( [Zim84]). All Zimin patterns are unavoidable.

Proof. This can be shown by induction on n. Our inductive hypothesis is that given a size
k alphabet, all words of some finite length [ encounter Z,.

The base case is when n = 1. Z; = « is unavoidable for all words of length 1, as we can
substitute that letter to represent o and find an occurence of the pattern.

Now we prove the inductive step. Given an infinite word w on a k-letter alphabet, we
consider w in blocks of [ letters each, with one letter of space between each block. There are
k! distinct [-letter words over the k-letter alphabet, and importantly this quantity is finite.
After k' +1 blocks with 1-letter gaps between (or (I+1)(k'+1)—1 letters), by the Pigeonhole
Principle, there must be one block of length [ that was repeated. If the block is repeated,
the instance of Z,, that the particular block encountered was also repeated. And because we
left 1 letter of space between consecutive blocks, we are guaranteed that the word between
the two instances of Z,, is nonempty. Therefore, we can set the new variable z equal to this
word between the copies of Z,, and we have found an occurrence of Z,z7,, = Z,,1 in w.
This completes the inductive proof. |

Zimin himself characterized all unavoidable patterns in the following theorem:

Theorem 5.3 (Zimin’s Theorem). A pattern p is unavoidable if and only if it is encountered
m a Zimin pattern.
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It is easy to show that p is unavoidable if it is encountered in a Zimin pattern. Once a Zimin
pattern is encountered, the factors within that pattern are also necessarily encountered. It
is much harder to prove that p being unavoidable implies it is encountered by some Zimin
pattern.

Ezample. Although the pattern xyz is not explicitly contained in afS«a (since Z, is not the
concatenation of three distinct variables), it is still true that zyz is still encountered if we
let x and z map to the same word.

Zimin used a technique called the Zimin algorithm to reduce patterns to smaller patterns,
and then proved that if reduction resulted in an unavoidable pattern, the original pattern
was itself unavoidable. We present an abridged version of the reduction process. All words
following the pattern aSa must also follow xyz. This was first presented in [Zim84] but we
present it more closely to how it was presented in [Lot02].

For a pattern p € A*, define P as the set of all distinct variables occurring in p. Then
we construct the adjacency graph G(p), which is a bipartite undirected graph, where the set
of vertices is simply P repeated twice, P, and Pg. Edges are drawn between vertices z,
and yg if and only if xy occurs in the pattern p. In other words, an edge is drawn for each
two-variable pattern that p contains.

Ezxample. The adjacency graph of the pattern afavyaf would have four edges, and is depicted
below:

Qay, aR
BL BR
L TR

We then define a free set F' of P as a subset of P such that for all pairs of variables
x,y € F, there is no path between z; and yg that travels along the edges of G(p). In other
words, the vertices x;, and Yy are on separate connected components of the adjacency graph,
regardless of the choice of z and y. In the above example, {a}, {5}, {7}, {5,7} are all the
possible free sets.

The reduction of a pattern p given a free set F' is simply the resulting pattern ¢ from
deleting all letters in F' from p. We could then perform the same process on g. If there exists
at least one sequence of these reductions (noting the changes in the adjacency graph as we
go along) takes a pattern p to the empty word, we call p reducible, and irreducible otherwise.

Not all sequences of reductions will behave the same. Using our previous example, reduc-
ing with the free set {a} results in ¢ = S, which could be reduced further using the free
sets {#} then {7} in that order. However, using {3,~} first would result in the irreducible
aaa. Thus, it is necessary to check all possible reduction sequences before deeming a pattern
irreducible.

This idea can be used to prove Zimin’s theorem by showing an equivalent result:

Theorem 5.4. A pattern p is unavoidable if and only if it is reducible.
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The proof of this is complicated, but one direction of the proof relies on induction on the
size of the alphabet.

6. EXTREMAL WORDS

This section is devoted to exploring a more recent field of thought in pattern avoidance,
extremal words, which were first studied by Grytczuk, Kordulewski, and Niewiadomski in
2020 when the trio looked at extremal square-free words. Unlike the traditional notions of
pattern avoidance, we primarily work with finite words.

Definition 6.1. An extension of a word w is the word resulting from an addition of a
single letter to w at any location. More formally, a word is an extension of w if there exist
possibly empty words wy,ws and letter x such that the extension can be written as wixws
and wywy, = w.

Example. Extensions of the English word ”par” over the English alphabet include the words
"spar,” "pear,” "pair,” and "part.” Each example highlights an extension at a different
location.

Definition 6.2. A word w is extremal pattern-free if w itself avoids the pattern, but all
extensions of w encounter the pattern. In other words, w cannot be extended while preserving
its pattern-free property.

We will mainly look at extremal square-free words.
Claim 6.3. The only extremal square-free binary words are aba and bab.

Proof. By [4.5] it suffices to check just words of length 1 through 3. Furthermore, all possibil-
ities must alternate in order to be square-free. The words of length 1 and 2 can be extended
while staying square-free (e.g. a to ab, or ba to bab), but the words of length 3,aba and bab,
cannot be extended without staying square-free, and hence they are extremal. [ |

Ezxample. If we look at words over a ternary alphabet, it turns out the shortest extremal
square-free word here is the 25-letter word abcabacbcabcbabcabacbcabe. The verification,
discovery of this solution, and the proof that there are no shorter extremal square-free ternary
words were all done by computer search.

Furthermore, Grytczuk, Kordulewski, and Niewiadomski also showed that there are in-
finitely many extremal square-free ternary words, and that there exist extremal square-free
ternary words for an arbitrary length that is sufficiently large. The proof that infinitely many
of these words exist is somewhat complicated, but uses a recursive construction considering
walks on a directed graph of vertices, a morphism that generates words based on the steps
of the walk, and computer verifications. A proof in more detail can be found in |[GKN20].

The proof that for a sufficiently large length (in particular, for all lengths at least 87)
an extremal square-free ternary word exists, mainly uses the graph-walking idea, as well as
building blocks called nearly extremal square-free words, words that have 1 or 2 extensions
that still do not contain squares. Furthermore, these extensions should be additions of letters
at the leftmost or the rightmost position.

The proof consists of finding two of these words that could be extended at both sides,
such that the two have relatively prime lengths. We also need two ending words that only
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have extensions on a single side. In particular, we can modify the words we have found with
permutations of the alphabet {a,b,c} as well as reversals, to find other suitable words.

The idea of the construction is to keep chaining these words together, and use the Chicken
McNugget theorem to show that for a large enough length, the words of relatively prime
lengths can be combined in such a way to reach the exact length we desire (after adding
ending words). Then, we add our ending words to make sure that no extensions remain.
The bound was then lowered to 87 by the use of a multitude of similar constructions with
differing word lengths, as well as brute-force computer searching.

7. OPEN PROBLEMS

This section is devoted to lightly exploring some open problems and conjectures, particu-
larly those related to extremal words, and not just extremal square-free ones.

Conjecture 7.1 ( [GKN20]). No extremal square-free words exist for alphabets of size 4 or
larger.

In |[GKP21]| there is computer evidence that a single letter on a 4-letter alphabet could be
extended to a length of 50,000 while staying square-free, suggesting that it is always possible
to find a square-free extension and that no extremal square-free words exist in this alphabet.
Furthermore, their extension algorithm only considered extensions at the last or second to
last position, suggesting that even more extensions are possible if the entire word were to be
considered.

At the time this conjecture was made, there was no knowledge of an upper bound, in other
words, an alphabet size large enough that there was always a square-free extension available.
However, in [HZ22], two MIT students proved that there exist no extremal square-free words
for alphabets of size 17 or larger, providing an upper bound to the problem. Their proof
relied mainly on extensive casework and proof by contradiction.

However, it is still open whether there exist extremal-square free words on alphabets of
size 4 through 16.

Of course, the notion of extremal words does not only apply to the property of being
square-free. The following are a few more open questions revolving around other patterns:

e Do any extremal cube-free words exist on binary alphabets?

e It was proven in [MRS20| that there are infinitely many binary words that are ex-
tremal overlap-free. It is unknown, however, if there are any extremal overlap-free
words over larger alphabets.

e In a similar vein, it is also unknown if there exist any extremal cube-free words over
the binary alphabet.
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