Orthogonal Polynomials

Nidhruv Murali

Euler Circle

July 8, 2025

Vectors

3D Orthogonal Vectors

2D Orthogonal Vectors

Dot Product

Definition (Geometric)

$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \, \|\vec{v}\| \cos \theta$$

- $ightharpoonup \vec{u}, \vec{v}$ are vectors
- $ightharpoonup \|\vec{u}\|$, $\|\vec{v}\|$ are magnitudes
- ightharpoonup heta is the angle between them

Definition (Component Form)

If $\vec{u}, \vec{v} \in \mathbb{R}^n$ with components

$$\vec{u} = (u_1, u_2, \dots, u_n), \vec{v} = (v_1, v_2, \dots, v_n)$$
, then:

$$\vec{u} \cdot \vec{v} = \sum_{i=1}^{n} u_i v_i$$

Vector Spaces

Definition

A **vector space** V over a field \mathbb{F} (like \mathbb{R}) is a set with:

- ightharpoonup vector addition: $V \times V \to V$
- ightharpoonup scalar multiplication: $\mathbb{F} \times V \to V$

that satisfies the following axioms for all $\vec{u}, \vec{v}, \vec{w} \in V$, and $a, b \in \mathbb{F}$:

Addition

A1.
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

A2.
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

A3.
$$\exists \vec{0} \in V : \vec{v} + \vec{0} = \vec{v}$$

A4.
$$\exists -\vec{v} \in V : \vec{v} + (-\vec{v}) = \vec{0}$$

Scalar Multiplication

A5.
$$a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$$

A6.
$$(a+b)\vec{v} = a\vec{v} + b\vec{v}$$

A7.
$$a(b\vec{v}) = (ab)\vec{v}$$

A8.
$$1\vec{v} = \vec{v}$$

Examples of Vector Spaces

- $ightharpoonup \mathbb{R}^n$: Euclidean space of n-tuples of real numbers
- $ightharpoonup \mathbb{C}$: The field of complex numbers (also a vector space over \mathbb{R})
- $ightharpoonup \mathcal{F}(X,\mathbb{R})$: Space of all real-valued functions defined on a set X
- $ightharpoonup \mathbb{R}[x]$: Space of all real polynomials in variable x
- ▶ $M_{m \times n}(\mathbb{R})$: Space of all $m \times n$ real matrices

Inner Products

Definition

An inner product on a vector space V over $\mathbb R$ is a function

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$$

satisfying, for all $\vec{u}, \vec{v}, \vec{w} \in V$, and $a \in \mathbb{R}$:

- \blacktriangleright $\langle \vec{v}, \vec{v} \rangle \geq 0$, with equal to 0 if.f. $\vec{v} = \vec{0}$

Example: Function Space Inner Product

$$\langle f, g \rangle = \int_a^b f(x)g(x)w(x) dx$$
 with $w(x) > 0$

Orthogonal Polynomials

Definition

A sequence of polynomials $\{P_n(x)\}_{n=0}^{\infty}$ is called **orthogonal** with respect to a weight function w(x)>0 on an interval [a,b] if for all $m\neq n$:

$$\int_{a}^{b} P_m(x) P_n(x) w(x) dx = 0$$

and each $P_n(x)$ is of degree n.

Legendre Polynomials

Definition

The Legendre polynomials $\{P_n\}$ are orthogonal on [-1,1] with weight w(x)=1:

$$\int_{-1}^{1} P_m(x) P_n(x) dx = 0, \quad m \neq n.$$

First few polynomials:

$$P_0 = 1$$
, $P_1 = x$, $P_2 = \frac{1}{2}(3x^2 - 1)$, $P_3 = \frac{1}{2}(5x^3 - 3x)$.

Laplace's Equation

$$\nabla^2 \Phi = 0$$

Legendre polynomials arise when solving this in spherical coordinates.

Legendre's DE

$$(1 - x^2)y'' - 2xy' + n(n+1)y = 0,$$

with solutions $y = P_n(x)$.

Chebyshev Polynomials

Definition (Orthogonality)

The Chebyshev polynomials of the first kind $\{T_n(x)\}$ are orthogonal on [-1,1] with respect to the weight function $w(x)=\frac{1}{\sqrt{1-x^2}}$:

$$\int_{-1}^{1} T_m(x) T_n(x) \frac{1}{\sqrt{1 - x^2}} dx = 0 \quad \text{for } m \neq n.$$

First few Chebyshev polynomials:

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_2(x) = 2x^2 - 1$, $T_3(x) = 4x^3 - 3x$

Trigonometric Definition

$$T_n(x) = \cos(n \arccos x)$$

Hermite Polynomials

Orthogonality

Hermite polynomials $H_n(x)$ are orthogonal on $(-\infty,\infty)$ with weight $w(x)=e^{-x^2}$:

$$\int_{-\infty}^{\infty} H_m(x)H_n(x)e^{-x^2} dx = 0 \quad \text{for } m \neq n.$$

First few Hermite polynomials:

$$H_0 = 1$$
, $H_1 = 2x$, $H_2 = 4x^2 - 2$, $H_3 = 8x^3 - 12x$

Hermite Differential Equation

$$y'' - 2xy' + 2ny = 0$$

Quantum Harmonic Oscillator

The Schrödinger equation:

$$-\frac{\hbar^2}{2m}\psi'' + \frac{1}{2}m\omega^2 x^2 \psi = E\psi$$

has solutions:

$$\psi_n(x) = C_n H_n(x) e^{-x^2/2}$$

Gram-Schmidt on Polynomial Space

Given a basis $\{1, x, x^2, \dots\}$, we can orthonormalize it using:

$$P_n(x) = x^n - \sum_{k=0}^{n-1} \frac{\langle x^n, P_k \rangle}{\langle P_k, P_k \rangle} P_k(x)$$

with inner product $\langle f,g\rangle=\int_a^b f(x)g(x)w(x)\,dx$

Recurrence Relations

- **Legendre:** $(n+1)P_{n+1}(x) = (2n+1)xP_n(x) nP_{n-1}(x)$
- ▶ Chebyshev: $T_{n+1}(x) = 2xT_n(x) T_{n-1}(x)$
- ► Hermite: $H_{n+1}(x) = 2xH_n(x) 2nH_{n-1}(x)$
- **Laguerre:** $(n+1)L_{n+1}(x) = (2n+1-x)L_n(x) nL_{n-1}(x)$

Rodrigues' / Derivative Formulas

- ▶ Legendre: $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 1)^n$
- ► Hermite: $H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$

Approximation

Fourier Series

A 2π -periodic function f(x) can be written as:

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$

with:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx, \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

Orthogonal Polynomial Approximation

Given orthogonal polynomials $P_n(x)$ on [a,b] with weight w(x):

$$f(x) \approx \sum_{n=0}^{N} a_n P_n(x), \quad a_n = \frac{\int_a^b f(x) P_n(x) w(x) dx}{\int_a^b P_n^2(x) w(x) dx}$$

Mean Square Error

$$MSE = \int_a^b |f(x) - \tilde{f}(x)|^2 w(x) dx$$

Roots

Interlacing Roots

A sequence of polynomials $\{P_n(x)\}$ is said to have **interlacing roots** if the real roots of $P_{n-1}(x)$ lie strictly between the real roots of $P_n(x)$.

In other words, if the roots of $P_n(x)$ are:

$$x_1 < x_2 < \dots < x_n,$$

then the roots of $P_{n-1}(x)$ are:

$$y_1 < y_2 < \cdots < y_{n-1},$$

with

$$x_1 < y_1 < x_2 < y_2 < \dots < x_{n-1} < y_{n-1} < x_n.$$

Thank You!