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Abstract

Orthogonal polynomials arise naturally from the abstraction of vector spaces and inner products into the
realm of functions and algebraic expressions. This paper explores the foundational ideas that allow polyno-
mials to behave like vectors, enabling the powerful machinery of linear algebra to be applied to problems in
approximation theory, quantum mechanics, and numerical analysis. Beginning with an overview of vector
and inner product spaces, we define orthogonal polynomials and construct them using the Gram-Schmidt
process. We then investigate classical families of orthogonal polynomials, including Legendre, Chebyshev,
Hermite, and Laguerre, and examine their recurrence relations, differential properties, and practical appli-
cations. Special attention is given to how these polynomials approximate functions more effectively than
Taylor series across intervals, and how their root structures lend themselves to elegant and efficient numerical
algorithms. Ultimately, this paper highlights how orthogonal polynomials form a unifying thread between
pure mathematical theory and practical computational tools.

1 Introduction

Abstraction is a foundational theme in mathematics. In linear algebra, we learn to see vectors not just as
arrows in space, but as abstract objects governed by algebraic structure. This perspective opens the door to
studying functions, polynomials, and other mathematical entities using linear techniques.

Orthogonal polynomials emerge naturally when we apply inner product structure to the space of poly-
nomials. They generalize the geometric idea of perpendicular vectors to the function world, and they play
a central role in areas like approximation theory, numerical methods, and quantum mechanics. This paper
develops the theory of orthogonal polynomials from the ground up, starting with vector spaces and inner
products, and builds toward their applications and structure.

2 Vector Spaces

In a typical linear algebra class, one of the first concepts you encounter is the vector. Initially, vectors are
introduced geometrically as arrows that have both direction and magnitude. In two dimensions, this visual
approach helps build intuition about operations like vector addition and scalar multiplication.

x

y

v⃗
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After seeing vectors as arrows in space, one of the first properties we study is their length. In two
dimensions, the length of a vector v⃗ = ⟨v1, v2⟩ is given by the Pythagorean theorem:

∥v⃗∥ =
√
v21 + v22

As we move beyond two or three dimensions, we need more general tools. To do this, we define an
operation between vectors called the dot product, which gives us both geometric and algebraic insight:

v⃗ · w⃗ = v1w1 + v2w2 + · · ·+ vnwn

Using this definition, we can compute the length (or norm) of a vector in any dimension:

∥v⃗∥ =
√
v⃗ · v⃗

The dot product also allows us to define when two vectors are orthogonal: two vectors are perpendicular
if and only if their dot product is zero.

This idea of an inner multiplication that reflects geometric structure becomes crucial as we transition
from finite-dimensional vectors to functions, polynomials, and beyond.

As we continue to explore vectors, a natural question arises: what actually is a vector? In two or three
dimensions, we think of arrows. But in mathematics, we often follow a general philosophy of abstraction:
we extract the essential properties of an object and generalize them into a broader definition.

In the case of vectors, this leads us to the idea of a vector space. Instead of thinking only about arrows
in space, we define a set along with rules for addition and scalar multiplication that mimic the behavior of
familiar vectors.

Definition: Vector Space A vector space V over a field F (like R or C) is a set equipped with:

• A vector addition operation + : V × V → V

• A scalar multiplication operation · : F× V → V

such that the following axioms hold for all u⃗, v⃗, w⃗ ∈ V and all scalars a, b ∈ F:

1. u⃗+ v⃗ = v⃗ + u⃗ (commutativity)

2. (u⃗+ v⃗) + w⃗ = u⃗+ (v⃗ + w⃗) (associativity)

3. There exists a zero vector 0⃗ ∈ V such that v⃗ + 0⃗ = v⃗

4. Every v⃗ ∈ V has an additive inverse −v⃗ ∈ V such that v⃗ + (−v⃗) = 0⃗

5. a(u⃗+ v⃗) = au⃗+ av⃗ (scalar distributivity)

6. (a+ b)v⃗ = av⃗ + bv⃗

7. a(bv⃗) = (ab)v⃗

8. 1 · v⃗ = v⃗

These axioms may seem vague, but that’s exactly the point. They are abstract enough to apply not just
to arrows in space, but also to objects like polynomials, functions, matrices, and more. As long as a set
supports addition and scalar multiplication in a way that satisfies these rules, it can be considered a vector
space.

One of the most surprising and beautiful aspects of abstraction in linear algebra is that many seemingly
unrelated mathematical objects turn out to behave like vectors. Because they satisfy the same set of vector
space axioms, we can treat them analogously. Below are several important examples of vector spaces:
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• Euclidean space Rn: This is the most familiar example, consisting of ordered n-tuples of real numbers.
Vector addition and scalar multiplication are defined component-wise. This space underlies most of
introductory linear algebra.

• Complex space Cn: Similar to Rn, but with complex-valued components. Scalar multiplication
is done using complex numbers. This vector space is important in electrical engineering, quantum
mechanics, and signal processing.

• Function spaces: The set of all real-valued functions defined on an interval [a, b] forms a vector space.
The sum of two functions is a function, and scalar multiples are defined pointwise. This example is
surprising at first — we can treat entire functions as vectors.

• Polynomial space Pn: The set of all polynomials of degree at most n, with real coefficients, forms
a vector space. The operations are defined by adding polynomials and multiplying them by scalars
term-by-term.

• Matrices Mm×n(R): The set of all m × n matrices with real entries forms a vector space. Matrix
addition and scalar multiplication satisfy all vector space axioms. This example generalizes Rn and
plays a key role in linear transformations.

The fact that such diverse mathematical objects, from simple number lists to entire functions and poly-
nomials, can all be treated as vectors is a powerful idea. By abstracting the notion of “vector,” we gain a
unifying language that allows us to transfer intuition and techniques across different areas of mathematics.
In later sections, we will see how this framework lets us study polynomials and functions using the same
ideas we developed for arrows in space.

3 Inner Product Spaces

Motivation from the Dot Product

In Euclidean space Rn, one of the most fundamental operations between two vectors is the dot product.
Given two vectors v⃗, w⃗ ∈ Rn, the dot product is defined as:

v⃗ · w⃗ =

n∑
i=1

viwi

This operation is algebraically convenient, but it also has deep geometric meaning. In particular, the dot
product relates to the angle θ between two vectors:

v⃗ · w⃗ = ∥v⃗∥∥w⃗∥ cos θ

From this formula, we immediately get an important condition for orthogonality: two vectors are
orthogonal (or perpendicular) if and only if their dot product is zero:

v⃗ · w⃗ = 0 ⇔ θ =
π

2

This concept of orthogonality is central to many parts of linear algebra and functional analysis. But it
turns out the standard definition of a vector space does not include any notion of length or angle. There is
no multiplication between vectors in the vector space axioms.

So to capture notions like length, angle, and orthogonality, we must define a new kind of structure, an
inner product space.
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Definition: Inner Product Space

An inner product space is a vector space equipped with an additional operation that acts like the dot
product.

Definition Let V be a vector space over R or C. An inner product on V is a function

⟨·, ·⟩ : V × V → F

satisfying the following axioms for all u⃗, v⃗, w⃗ ∈ V and scalars a ∈ F:

1. Conjugate symmetry: ⟨v⃗, u⃗⟩ = ⟨u⃗, v⃗⟩

2. Linearity in the first slot: ⟨au⃗+ v⃗, w⃗⟩ = a⟨u⃗, w⃗⟩+ ⟨v⃗, w⃗⟩

3. Positive-definiteness: ⟨v⃗, v⃗⟩ ≥ 0, and ⟨v⃗, v⃗⟩ = 0 ⇐⇒ v⃗ = 0⃗

When a vector space is equipped with such an inner product, it is called an inner product space.

Examples of Inner Product Spaces

• Euclidean Space Rn: The standard inner product is the dot product:

⟨v⃗, w⃗⟩ =
n∑

i=1

viwi

This is the familiar case taught in basic linear algebra courses.

• Complex Space Cn: The inner product is defined by:

⟨v⃗, w⃗⟩ =
n∑

i=1

viwi

The complex conjugate ensures that ⟨v⃗, v⃗⟩ is always a non-negative real number.

• Function Space C[a, b]: The set of continuous real-valued functions on an interval [a, b] can be turned
into an inner product space by defining:

⟨f, g⟩ =
∫ b

a

f(x)g(x) dx

This is often called the L2 inner product. It allows us to measure the ”overlap” between functions,
just like the dot product measures alignment between vectors.

• Polynomial Space Pn: The set of real polynomials of degree at most n can be given an inner product
using an integral over an interval:

⟨p, q⟩ =
∫ b

a

p(x)q(x)w(x) dx

where w(x) is a weight function. This setting leads directly to the study of orthogonal polynomials.

Length and Orthogonality in Inner Product Spaces

Just like in Euclidean space, the inner product allows us to define:

• Length (norm):

∥v⃗∥ =
√
⟨v⃗, v⃗⟩

• Orthogonality: Two vectors v⃗, w⃗ are orthogonal if:

⟨v⃗, w⃗⟩ = 0

These concepts extend naturally to spaces of functions and polynomials. This is what allows us to speak
of orthogonal polynomials, as we’ll explore in the next section.
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Why This Matters

By abstracting the dot product into a general inner product, we now have a language to talk about angle,
projection, and perpendicularity even in infinite-dimensional settings. This framework is the foundation of
Fourier analysis, quantum mechanics, and many areas of applied mathematics.

Most importantly for this paper, inner product spaces allow us to define when two functions or polynomi-
als are orthogonal, unlocking the door to approximation, spectral theory, and beautiful structure in classical
mathematical physics.

4 Defining Orthogonal Polynomials

We now have all the mathematical machinery we need to define one of the central concepts of this paper:
orthogonal polynomials.

What Are Orthogonal Polynomials?

Just as vectors can be orthogonal if their inner product is zero, so too can polynomials. We define two
polynomials p(x) and q(x) to be orthogonal with respect to a weight function w(x) over an interval [a, b] if:

⟨p, q⟩ =
∫ b

a

p(x)q(x)w(x) dx = 0

A sequence of orthogonal polynomials {p0(x), p1(x), p2(x), . . . } is a sequence where each pn(x) is a
polynomial of degree n, and the set satisfies:

⟨pn, pm⟩ = 0 for n ̸= m

The weight function w(x) must be positive on the interval [a, b], and it can influence the form of the
polynomials significantly. The choice of interval and weight function determines the inner product, and thus
determines what “orthogonal” means in that space.

A Simple Example of Orthogonality

Let’s consider two simple polynomials: p(x) = 1 and q(x) = x. Are they orthogonal with respect to the
standard inner product on [−1, 1], using the weight function w(x) = 1?

We compute:

⟨1, x⟩ =
∫ 1

−1

(1)(x)(1) dx =

∫ 1

−1

x dx = 0

So yes, the constant function 1 and the linear function x are orthogonal under this inner product. This
example highlights how even familiar functions can be orthogonal in this extended sense.

Building Orthogonal Polynomials: Regular Method

Now, instead of using special techniques (like Gram-Schmidt), we can construct orthogonal polynomials
directly by choosing a specific inner product space, defined by an interval and a weight function, and
checking orthogonality.

Example 1: Orthogonal polynomials on [−1, 1] with weight w(x) = 1
Let’s check if p0(x) = 1, p1(x) = x, and p2(x) =

1
2 (3x

2 − 1) are mutually orthogonal.
We already showed that:

⟨p0, p1⟩ =
∫ 1

−1

1 · x dx = 0
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Now:

⟨p0, p2⟩ =
∫ 1

−1

1 · 1
2
(3x2 − 1) dx =

1

2

∫ 1

−1

(3x2 − 1) dx =
1

2

(
3

∫ 1

−1

x2dx−
∫ 1

−1

dx

)

=
1

2

(
3 · 2

3
− 2

)
=

1

2
(2− 2) = 0

Also:

⟨p1, p2⟩ =
∫ 1

−1

x · 1
2
(3x2 − 1) dx =

1

2

∫ 1

−1

x(3x2 − 1) dx =
1

2

∫ 1

−1

(3x3 − x) dx = 0

So, these three polynomials are mutually orthogonal over [−1, 1] with weight 1. Even though we didn’t
derive them algorithmically, they satisfy the required condition.

Example 2: Orthogonal polynomials on [0, 1] with weight w(x) = x
Let’s test:

p0(x) = 1, p1(x) = x, p2(x) = x2 − 6

5

We check:

⟨p0, p1⟩ =
∫ 1

0

1 · x · x dx =

∫ 1

0

x2dx =
1

3
⇒ Not orthogonal

So we adjust p1(x) = x− 3
4 , and recompute:

⟨p0, p1⟩ =
∫ 1

0

1 · (x− 3

4
) · x dx =

∫ 1

0

x(x− 3

4
)dx =

∫ 1

0

(x2 − 3

4
x)dx =

1

3
− 3

8
= 0

So, p0(x) = 1, p1(x) = x− 3
4 are orthogonal with respect to the inner product:

⟨f, g⟩ =
∫ 1

0

f(x)g(x)x dx

This shows how changing the weight function modifies what it means to be orthogonal.

Some Observations

• Orthogonal polynomials are highly sensitive to the choice of interval and weight function.

• Even “familiar” polynomials like x2 or x − 1
2 may or may not be orthogonal depending on the inner

product.

• The orthogonality condition is symmetric: if ⟨p, q⟩ = 0, then ⟨q, p⟩ = 0.

• This construction is foundational for approximation theory, as orthogonal polynomials act like “basis
vectors” in function spaces.

Why This Matters

We now see that polynomials can behave like geometric vectors. They can be “perpendicular,” “normalized,”
and combined just like arrows in space. Orthogonality gives us structure in the infinite world of functions
and polynomials.

In later sections, we will explore how to systematically generate orthogonal polynomials using algebraic
methods like the Gram-Schmidt process, and we will study their deeper properties including recurrence
relations and root behavior.
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5 Gram-Schmidt Process

The Gram-Schmidt process is a fundamental algorithm in linear algebra that allows us to construct an
orthogonal basis from any given basis in an inner product space. While a given basis spans the space, the
Gram-Schmidt process transforms it into a more “structured” basis, one where all the vectors are mutually
orthogonal.

Intuition Behind the Process

At its core, the process works by taking each new vector and subtracting off the projections of that vector
onto the ones that came before it, leaving only the “new direction” that wasn’t already captured. It is a
method of peeling off components until what remains is orthogonal to everything that came earlier.

Example: Vectors in R3

Let’s orthogonalize the following basis of R3:

v⃗1 =

11
0

 , v⃗2 =

10
1

 , v⃗3 =

01
1


We begin with u⃗1 = v⃗1.
Next, we subtract the projection of v⃗2 onto u⃗1:

u⃗2 = v⃗2 −
⟨v⃗2, u⃗1⟩
⟨u⃗1, u⃗1⟩

u⃗1

Compute:
⟨v⃗2, u⃗1⟩ = 1(1) + 0(1) + 1(0) = 1, ⟨u⃗1, u⃗1⟩ = 12 + 12 + 02 = 2

u⃗2 =

10
1

− 1

2

11
0

 =

 1
2

− 1
2
1


Repeat for u⃗3, subtracting projections onto both u⃗1 and u⃗2.
This results in an orthogonal basis {u⃗1, u⃗2, u⃗3}. If desired, each can be normalized to form an orthonormal

basis.

Applying Gram-Schmidt to Polynomials

Since we’ve already seen that polynomials can form a vector space and can be equipped with an inner product
(such as integration over an interval), we can apply the same Gram-Schmidt process to construct orthogonal
polynomials.

Let’s start with the standard basis for the space of polynomials of degree at most 2:

{1, x, x2}

We’ll construct orthogonal polynomials over the interval [−1, 1], with weight function w(x) = 1. The
inner product is:

⟨f, g⟩ =
∫ 1

−1

f(x)g(x) dx
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Example: Constructing Orthogonal Polynomials

Let:
p0(x) = 1

p1(x) = x− ⟨x, p0⟩
⟨p0, p0⟩

p0 = x−
∫ 1

−1
x · 1 dx∫ 1

−1
12 dx

· 1 = x− 0

2
= x

So far:

⟨p0, p1⟩ =
∫ 1

−1

1 · x dx = 0

Now define:

p2(x) = x2 − ⟨x2, p0⟩
⟨p0, p0⟩

p0 −
⟨x2, p1⟩
⟨p1, p1⟩

p1

Compute:

⟨x2, p0⟩ =
∫ 1

−1

x2 · 1 dx =
2

3
, ⟨p0, p0⟩ = 2 ⇒ projp0

(x2) =
2

3
/2 =

1

3

⟨x2, p1⟩ =
∫ 1

−1

x3 dx = 0, ⟨p1, p1⟩ =
∫ 1

−1

x2dx =
2

3
⇒ projp1

(x2) = 0

So:

p2(x) = x2 − 1

3

Final orthogonal polynomials:

p0(x) = 1, p1(x) = x, p2(x) = x2 − 1

3

These are mutually orthogonal under the given inner product.

Another Example: Weight Function w(x) = 1 + x on [0, 1]

Let’s try constructing the first two orthogonal polynomials with a different weight function:

⟨f, g⟩ =
∫ 1

0

f(x)g(x)(1 + x) dx

Let p0(x) = 1
Now compute:

p1(x) = x− ⟨x, 1⟩
⟨1, 1⟩

⟨x, 1⟩ =
∫ 1

0

x(1 + x)dx =

∫ 1

0

(x+ x2)dx =
1

2
+

1

3
=

5

6

⟨1, 1⟩ =
∫ 1

0

(1 + x)dx = 1 +
1

2
=

3

2

So:

p1(x) = x− 5

6
· 2
3
= x− 10

18
= x− 5

9

Even this simple step shows how the weight function completely alters the result. Gram-Schmidt for
polynomials is exact but can become algebraically messy.
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6 Examples of Orthogonal Polynomials

Orthogonal polynomials appear throughout pure and applied mathematics, particularly in approximation
theory, numerical analysis, and mathematical physics. In this section, we explore specific families of orthog-
onal polynomials and their properties, beginning with the Legendre polynomials.

Legendre Polynomials

The Legendre polynomials {Pn(x)} form a sequence of orthogonal polynomials on the interval [−1, 1]
with weight function w(x) = 1. That is:∫ 1

−1

Pn(x)Pm(x) dx = 0 for n ̸= m

They arise naturally when solving certain differential equations in physics, especially problems exhibiting
spherical symmetry.

First Few Polynomials

We list the first few Legendre polynomials:

P0(x) = 1

P1(x) = x

P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
(5x3 − 3x)

P4(x) =
1

8
(35x4 − 30x2 + 3)

Each Pn(x) is a degree-n polynomial, and they are orthogonal under the standard inner product on
[−1, 1].

Orthogonality Property

The orthogonality relation is: ∫ 1

−1

Pn(x)Pm(x) dx =

{
0 if n ̸= m

2
2n+1 if n = m

This property allows Legendre polynomials to serve as a basis for approximating functions defined on the
interval [−1, 1], similar to how Fourier series are built from sine and cosine functions.

Appearance in Physics: Solving Laplace’s Equation

One of the most significant appearances of Legendre polynomials is in solving Laplace’s equation in
spherical coordinates:

∇2Φ = 0

In spherical coordinates (r, θ, ϕ), assuming azimuthal symmetry (no ϕ-dependence), Laplace’s equation
reduces to:

1

r2
∂

∂r

(
r2
∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
= 0

Using separation of variables Φ(r, θ) = R(r)Θ(θ), the angular part satisfies:
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1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+ λΘ = 0

Letting x = cos θ, this becomes:

d

dx

[
(1− x2)

dΘ

dx

]
+ λΘ = 0

This is precisely the Legendre differential equation:

d

dx

[
(1− x2)

dP

dx

]
+ λP = 0

This equation has solutions only for λ = n(n + 1), where P (x) = Pn(x) is the Legendre polynomial of
degree n.

Legendre’s Differential Equation

To summarize, Legendre polynomials are solutions to the second-order linear differential equation:

(1− x2)
d2Pn

dx2
− 2x

dPn

dx
+ n(n+ 1)Pn = 0

This equation arises both from mathematical properties of orthogonality and from physical systems
involving radial and angular symmetry — most notably when solving for the potential field around spherical
objects.

Chebyshev Polynomials

The Chebyshev polynomials of the first kind, denoted {Tn(x)}, are orthogonal polynomials defined on
the interval [−1, 1] with respect to the weight function:

w(x) =
1√

1− x2

That is, they satisfy the orthogonality condition:∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = 0 for n ̸= m

First Few Polynomials

The first few Chebyshev polynomials of the first kind are:

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

Each Tn(x) is a degree-n polynomial, and these polynomials are highly symmetric and computationally
efficient for certain numerical tasks.
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Trigonometric Definition

One of the most striking features of Chebyshev polynomials is their connection to trigonometry. They can
be defined using the identity:

Tn(x) = cos(n cos−1(x)), x ∈ [−1, 1]

This definition reveals their oscillatory behavior and helps explain why they are especially effective in ap-
proximating functions. Since cosine is bounded between −1 and 1, the values of Tn(x) also remain bounded
on the interval [−1, 1], making them numerically stable and well-suited for interpolation and minimax ap-
proximation.

Importance in Approximation Theory

Chebyshev polynomials are crucial in numerical analysis due to their minimization of the maximum error in
polynomial interpolation, a problem known as the minimax approximation. If we want to approximate a
function f(x) with a polynomial, choosing the interpolation nodes to be the zeros of Chebyshev polynomials
significantly reduces the error due to Runge’s phenomenon.

Hermite Polynomials

The Hermite polynomials, denoted {Hn(x)}, are orthogonal polynomials on the interval (−∞,∞) with
respect to the weight function:

w(x) = e−x2

They satisfy the orthogonality condition:∫ ∞

−∞
Hn(x)Hm(x)e−x2

dx = 0 for n ̸= m

First Few Hermite Polynomials

The first few Hermite polynomials are:

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12

These polynomials are symmetric in structure and increase rapidly in degree and coefficient size.

Hermite Differential Equation

Hermite polynomials are the solutions to the second-order linear differential equation:

H ′′
n(x)− 2xH ′

n(x) + 2nHn(x) = 0

This is known as the Hermite differential equation. Its structure, involving both the function and
its first and second derivatives, makes it well-suited to describing oscillatory behavior with damping, a key
reason why it emerges in quantum mechanics.
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Appearance in Quantum Mechanics: The 1D Harmonic Oscillator

In quantum mechanics, the time-independent Schrödinger equation for the one-dimensional harmonic oscil-
lator is:

− ℏ2

2m

d2ψ

dx2
+

1

2
mω2x2ψ = Eψ

By applying a change of variables and using dimensionless units, this equation can be rewritten as:

d2ψ

dy2
= (y2 − λ)ψ

To solve this, physicists typically look for solutions of the form:

ψn(x) = Nn ·Hn(x) · e−x2/2

Here:
Hn(x) is the Hermite polynomial of degree n - e−x2/2

Laguerre Polynomials

The Laguerre polynomials, denoted {Ln(x)}, are orthogonal polynomials on the interval [0,∞) with
respect to the weight function:

w(x) = e−x

They satisfy the orthogonality relation:∫ ∞

0

Ln(x)Lm(x)e−x dx = 0 for n ̸= m

First Few Laguerre Polynomials

The first few Laguerre polynomials are:

L0(x) = 1

L1(x) = −x+ 1

L2(x) =
1

2
(x2 − 4x+ 2)

L3(x) =
1

6
(−x3 + 9x2 − 18x+ 6)

Each Ln(x) is a polynomial of degree n, and the signs alternate in a consistent pattern. These polynomials
are often used in applications involving exponential decay.

Laguerre Differential Equation

Laguerre polynomials satisfy the differential equation:

x
d2Ln

dx2
+ (1− x)

dLn

dx
+ nLn = 0

This equation characterizes Ln(x) as solutions that remain finite as x → ∞, making them ideal for
systems with boundary conditions on [0,∞).
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Appearance in Quantum Mechanics: Hydrogen Atom

Laguerre polynomials appear naturally in quantum mechanics when solving the Schrödinger equation for the
hydrogen atom, particularly in the radial component.

The time-independent Schrödinger equation in spherical coordinates for the hydrogen atom separates
into radial and angular parts. The radial part becomes:

d2u

dr2
+

[
2m

ℏ2

(
E +

e2

4πϵ0r

)
− ℓ(ℓ+ 1)

r2

]
u = 0

After changing variables and applying appropriate substitutions, this reduces to a form whose solutions
involve a polynomial term that turns out to be a generalized Laguerre polynomial.

The radial wavefunction Rnℓ(r) has the form:

Rnℓ(r) = Nnℓ · rℓ · e−r/na0 · L2ℓ+1
n−ℓ−1

(
2r

na0

)
Here: L

(α)
k (x) is a generalized Laguerre polynomial , Nnℓ is a normalization constant , a0 is the Bohr

radius

7 Approximating Functions

One of the most powerful uses of orthogonal polynomials is in approximating arbitrary functions. Just as we
use sine and cosine functions in Fourier series, we can use orthogonal polynomials as a basis to approximate
a function over a given interval.

Orthogonal Polynomial Approximation

Given a function f(x) defined on an interval [a, b], and a set of orthogonal polynomials {pn(x)} with respect
to a weight function w(x), we can approximate f as:

f(x) ≈
N∑

n=0

cnpn(x)

where the coefficients cn are given by:

cn =
⟨f, pn⟩
⟨pn, pn⟩

=

∫ b

a
f(x)pn(x)w(x) dx∫ b

a
p2n(x)w(x) dx

This is analogous to projecting a vector onto a basis, except here, our ”vectors” are functions, and our
inner product is defined using an integral.

Comparison to Taylor Series

The Taylor series of a function at a point x = a provides a polynomial approximation using derivatives
evaluated at a single point:

f(x) ≈
N∑

n=0

f (n)(a)

n!
(x− a)n

While Taylor series are highly effective near the expansion point, they can perform poorly over wider
intervals, especially if the function has rapid changes or lacks smoothness.

Orthogonal polynomial approximation, on the other hand, minimizes the approximation error over an
entire interval. This makes it much more effective when global behavior of the function is important.
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Chebyshev Approximation and Least Squares Error

Chebyshev polynomials are particularly important because they minimize the maximum deviation (also
known as minimax error) from the function being approximated. In other words, the best polynomial
approximation Pn(x) to a function f(x) under the maximum norm satisfies:

∥f − Pn∥∞ = min
Q∈Pn

∥f −Q∥∞

where Pn is the set of all polynomials of degree ≤ n, and the infinity norm represents the maximum error
over the interval.

The Chebyshev nodes (the roots of the Chebyshev polynomials) are used to choose interpolation points
that minimize Runge’s phenomenon and yield near-optimal approximation:

xk = cos

(
2k − 1

2n
π

)
, k = 1, 2, ..., n

Example: Approximating |x| using Chebyshev Polynomials

Let us consider the function f(x) = |x| defined on the interval [−1, 1]. This function is continuous, but not
differentiable at x = 0, which makes it poorly approximated by a Taylor series centered at the origin.

To approximate f using Chebyshev polynomials Tn(x), we compute the coefficients:

cn =
2

π

∫ 1

−1

f(x)Tn(x)√
1− x2

dx, for n ≥ 1, c0 =
1

π

∫ 1

−1

f(x)√
1− x2

dx

For f(x) = |x|, the first few Chebyshev coefficients are known to be:

c0 =
2

π
c1 = 0

c2 = − 4

3π
c3 = 0

c4 =
4

15π

Thus, the degree-4 Chebyshev approximation of |x| is:

f(x) ≈ 2

π
T0(x)−

4

3π
T2(x) +

4

15π
T4(x)

Substituting the Chebyshev polynomials:

T0(x) = 1

T2(x) = 2x2 − 1

T4(x) = 8x4 − 8x2 + 1

We obtain:

f(x) ≈ 2

π
− 4

3π
(2x2 − 1) +

4

15π
(8x4 − 8x2 + 1)

Why This Works

This approximation captures the shape of |x| over the entire interval, even though |x| is not smooth at
x = 0. Unlike the Taylor series, which relies on derivatives at a point and fails to represent the global shape
accurately, Chebyshev approximation spreads the approximation power across the whole interval [−1, 1].

In the figure, we compare the Chebyshev approximation and the Taylor approximation of |x| up to degree
5. The Taylor polynomial oscillates and diverges near the endpoints, while the Chebyshev approximation
remains close to |x| over the whole interval.
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Mean Square Error (L2 Norm)

Another common measure of how well a polynomial approximates a function is the mean square error,
defined as:

E =

∫ b

a

(f(x)− Pn(x))
2w(x) dx

Orthogonal polynomials minimize this error when projected using the inner product structure. That is,
choosing Pn(x) =

∑n
k=0 ckpk(x) with coefficients derived via orthogonal projection yields the polynomial of

best approximation in the L2 norm.

8 Recurrence Relations and Derivative Expressions

Orthogonal polynomials are not only defined by their orthogonality conditions and weight functions, but also
by elegant recursive and differential structures. These recurrence relations and derivative identities allow us
to construct polynomials efficiently and understand their properties in depth.

Recurrence Relations

Many classical orthogonal polynomials satisfy three-term recurrence relations of the form:

pn+1(x) = (Anx+Bn)pn(x) + Cnpn−1(x)

These allow each polynomial to be built using only the previous two.

Legendre Polynomials:
(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x)

Chebyshev Polynomials (First Kind):

Tn+1(x) = 2xTn(x)− Tn−1(x)

Hermite Polynomials:
Hn+1(x) = 2xHn(x)− 2nHn−1(x)

Laguerre Polynomials:

(n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x)− nLn−1(x)

Rodrigues’ Theorem

Rodrigues’ formula provides an explicit representation for orthogonal polynomials in terms of derivatives:

pn(x) =
1

w(x)
· d

n

dxn
[w(x) · r(x)n]

where w(x) is the weight function and r(x) is a polynomial chosen based on the family.

Examples:

• Legendre:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n

• Hermite:

Hn(x) = (−1)nex
2 dn

dxn

(
e−x2

)
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• Laguerre:

Ln(x) =
ex

n!

dn

dxn
(xne−x)

• Chebyshev: While Chebyshev polynomials do not have a traditional Rodrigues formula, they can be
defined via:

Tn(x) = cos(n cos−1(x))

9 Roots

Orthogonal polynomials possess highly structured roots. These roots play crucial roles in approximation
theory, numerical integration, and interpolation.

Real, Simple Roots within the Interval

Let {pn(x)} be a sequence of polynomials orthogonal on an interval [a, b] with respect to a positive weight
function w(x) > 0. Then:

• pn(x) has exactly n real and distinct roots.

• All roots lie strictly within the open interval (a, b).

Sketch of Proof: Assume pn(x) has fewer than n distinct real roots in (a, b). Then there exists a nonzero
polynomial q(x) of degree < n that shares the same sign as pn(x) on [a, b], meaning:∫ b

a

pn(x)q(x)w(x) dx ̸= 0

This contradicts orthogonality, which requires ⟨pn, q⟩ = 0 for all deg(q) < n. Thus, pn must have exactly n
distinct real roots in (a, b).

Interlacing of Roots

Another remarkable property is that the roots of consecutive orthogonal polynomials interlace. That is,
between any two roots of pn(x), there exists exactly one root of pn+1(x).

Theorem: Let pn(x) and pn+1(x) be orthogonal polynomials with respect to the same weight function on
[a, b]. Then the roots of pn(x) and pn+1(x) interlace.

Proof: Let x1 < x2 < · · · < xn be the n distinct roots of pn(x). Define the function:

f(x) =
pn+1(x)

pn(x)

Since pn has simple real roots, f(x) is continuous and strictly monotonic on each subinterval between
consecutive roots of pn(x). It follows from Sturm comparison or intermediate value arguments that f(x)
must change sign between each xi, implying pn+1(x) = 0 has exactly one root between each pair xi, xi+1.

Thus, pn+1(x) has n roots between the roots of pn(x), and one additional root outside the interval
spanned by the roots of pn(x), ensuring the full interlacing structure:

x
(n+1)
1 < x

(n)
1 < x

(n+1)
2 < x

(n)
2 < · · · < x(n)n < x

(n+1)
n+1
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