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Hyperplane Arrangement

Definition

A hyperplane be an (n − 1)-dimensional affine subspace of Rn of the form

a1x1 + a2x2 + . . .+ anxn = k .

A hyperplane arrangement A is a set of hyperplanes.

Examples hyperplane arrangements in R2.
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Region

Definition

For a hyperplane arrangement A = {H1, . . . ,Hk}. A region is a connected
component of

Rn −
k⋃

i=1

Hi .

The set of regions is denoted as R(A) and the number of regions is
denoted as r(A).

Left arrangement has 8 regions. Right arrangement has 7 regions.
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Shi Arrangement

Definition

The Shi Arrangement in Rn denoted Sn has hyperplanes

{xi − xj = 0, 1 : 1 ≤ i < j ≤ n}.

x − y = 1 x − y = 0

x − z = 1

x − z = 0

y − z = 1

y − z = 0

Visualization of S3.
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Parking Functions

Cars numbered 1 to n and parking spots numbered 0 to n − 1. Cars
have preferred spots a1, . . . , an.

Cars enter the parking lot from lowest to highest number. When car i
enters, it goes to its preferred spot. If occupied, continues to next
empty spot.

Definition

A parking function is a list a1, . . . , an where the cars can all park.

Proposition

There are (n + 1)n−1 parking functions of length n.
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Pak-Stanley Labeling λ

x − y = 1 x − y = 0

x − z = 1

x − z = 0

y − z = 1

y − z = 0

210

200

201

101

102

110

100

000

001

002

120

010

020

021

011

012
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Proof Sketch

3 1 2 5 4

corresponds to
x3 > x1 > x2 > x5 > x4,

x1 < x5 + 1, x2 < x4 + 1, x3 > x1 + 1, x1 > x4 + 1.

λ has a corresponding definition in permutations and arcs. The definition
implies λ maps to parking functions.
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Proof Sketch

Consider λ−1 to show λ is bijective.

Construct λ−1 recursively, e.g, for (1, 0, 4, 0, 1),

4

2 4

2 5 4

1 2 5 4

3 1 2 5 4

Finally, we show λ−1 exists for all parking functions and is unique (very
tedious).
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Characteristic Polynomial

Goal: Encode information about the intersections of hyperplanes in a
polynomial.

Consider the space outside a hyperplane arrangement A = {H1, . . . ,Hk},

X = Rn −
k⋃

i=1

Hi .

Through, Principle of Inclusion and Exclusion

X = Rn −

 ∑
1≤i≤k

Hi

+

 ∑
1≤i1<i2≤k

Hi1 ∩ Hi2

− · · · .

Remove any empty intersections. Replace all intersections with td where d
is their dimension. The result polynomial χA(t) is the characteristic
polynomial.
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Characteristic Polynomial

Example

x

a

x
c

b

d

X = R2−a−b−c−d+6x−4x+x .

χA(t) = t2 − t − t − t − t + 6− 4 + 1,

= t2 − 4t + 3.

Theorem (Zaslavsky)

The number of regions formed by an arrangement A in Rn is
(−1)nχA(−1).
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Finite Field Method

Goal: find the characteristic polynomial of an arrangement.

Move A from Rn to Fn
q where q is a large prime (H → Hq and

Aq = {Hq : H ∈ A}).

Theorem

Let A be an arrangement. Let q be sufficiently large prime. Then

χA(q) =

∣∣∣∣∣Fn
q −

⋃
Hq∈Aq

Hq

∣∣∣∣∣ .
⋃

Hq∈Aq

Hq =
∑

Hq
i −

∑
Hq
i ∩ Hq

j + · · · .

For large enough q, an intersection of dimension d contains qd points.∣∣∣∣Fn
q −

⋃
Hq∈Aq

Hq

∣∣∣∣ = qn −
∑

qdim(Hq
i ) +

∑
qdim(Hq

i ∩H
q
j ) − · · · = χA(q).
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Counting Problem

χSn(q) = |{(x1, . . . , xn) ∈ Fn
q : xi − xj ̸≡ 0, 1 for 1 ≤ i < j ≤ n}|.

There are n balls and q positions in a circle. Balls are placed in distinct
positions. Balls j and i are clockwise adjacent only if i > j .

Example for (6, 1, 2, 7, 9, 3).

Place ball 1 at some location.

Construct partition of balls into sets
B1, . . . ,Bq−n. WLOG, 1 ∈ B1.

Place the balls in B1, consecutively
after 1 in ascending order. Skip a
spot. Place balls in B2 in ascending
order. Skip a spot. Continue.

This is a bijection to placing the
balls. Thus, χSn(q) = q(q − n)n−1.

1 → 6,B1 = {1, 4},B2 = {5}B3 = ∅B4 = {2, 3, 6}B5 = ∅.
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Number of Regions

So by Zaslavsky’s Theorem,

r(Sn) = (−1)nχSn(−1) = (−1)n(−1)(−1− n)n−1 = (n + 1)n−1.

This method is generalizable.

Question

Find the number of regions in the Catalan arrangement.

Cn = {xi − xj = 0,±1 : 1 ≤ i < j ≤ n}.

Neil Krishnan Hyperplane Arrangements June 2025 18 / 21



Number of Regions

So by Zaslavsky’s Theorem,

r(Sn) = (−1)nχSn(−1) = (−1)n(−1)(−1− n)n−1 = (n + 1)n−1.

This method is generalizable.

Question

Find the number of regions in the Catalan arrangement.

Cn = {xi − xj = 0,±1 : 1 ≤ i < j ≤ n}.

Neil Krishnan Hyperplane Arrangements June 2025 18 / 21



Acknowledgements

Thank you to Simon for suggesting hyperplane arrangements and
organizing the IRPW program. Thank you to Emma Cardwell for her
advise and support. Thank you to all of you for listening.

Neil Krishnan Hyperplane Arrangements June 2025 19 / 21



References I

C. A. Athanasiadis, Algebraic combinatorics of graph spectra,
subspace arrangements and tutte polynomials, (1996).

H. H. Crapo and G.-C. Rota, On the foundations of combinatorial
theory. II: Combinatorial geometries, Stud. Appl. Math. 49 (1970),
109–133 (English). 10.1002/sapm1970492109

S. Fishel, A survey of the shi arrangement, 2020.

R. P. Stanley, An introduction to hyperplane arrangements, Geometric
combinatorics, Providence, RI: American Mathematical Society
(AMS); Princeton, NJ: Institute for Advanced Studies, 2007,
pp. 389–496 (English).

Neil Krishnan Hyperplane Arrangements June 2025 20 / 21



References II

T. Zaslavsky, The slimmest arrangements of hyperplanes. II:
Basepointed geometric lattices and Euclidean arrangements,
Mathematika 28 (1981), 169–179 (English).
10.1112/S0025579300010226

Neil Krishnan Hyperplane Arrangements June 2025 21 / 21


	Preliminaries
	Shi Arrangement: First Proof
	Finite Field Method
	Shi Arrangement: Second Proof

