
COMBINATORICS BEHIND HYPERPLANE ARRANGEMENTS

NEIL KRISHNAN

Abstract. A hyperplane arrangement A is a set of hyperplanes in Rn. We examine the number
of regions r(A) in these arrangements by giving a formula for r(A) in terms of the characteristic
polynomial of A, determining the number of regions in the Shi arrangement, discussing the finite
field method for determining the characteristc polynomial of A, and using the finite field method
on the Shi arrangement and hyperplane arrangements generated by Coxeter groups.

1. Introduction

Let K be a field. Let a linear hyperplane be an (n− 1)-dimensional subspace of Kn of the form

a1x1 + a2x2 + . . .+ anxn = 0,

where the (a1, . . . , an) ∈ Kn is the normal vector and the xi are coordinate directions in Kn. Let
a hyperplane be any translate of a linear hyperplane. Though hyperplanes generalize to all vector
spaces of the form Kn, unless otherwise specified, we will let K = R.

Figure 1. Examples hyperplane arrangements in R2.

A hyperplane arrangement denoted A is a finite set of hyperplanes. See Figure 1 for examples of
hyperplane arrangements. A region is a connected component of

Rn −
k⋃

i=1

Hi,
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where H1, . . . ,Hk are the hyperplanes in A. A region is bounded if it can be contained in a sphere
of some radius centered at the origin. In this paper, we will primarily consider the the set of regions
formed by A denoted as R(A) and the number of regions denoted as r(A).

We now present a brief history of hyperplane arrangements. Crapo and Rota [2] formalized
theory in geometric lattices and matroids which relate to the intersection posets of hyperplane
arrangements. Zaslavsky [5] determined the number of regions a hyperplane arrangement divides
space into using the characteristic polynomial of the arrangement. Stanley, Postnikov, Pak and
others (see sections and references in [4]) determined the number of regions for different arrange-
ments like the Shi arrangement, Linial arrangement, and Braid arrangement using bijections among
other techniques. Athanasiadis [1] developed a different way of determining the number of regions
in these arrangements called the finite field method.

In Section 2, we provide the preliminaries for hyperplane arrangements, namely, the intersection
poset, ordered pair functions, and the characteristic polynomial. We use these tools to find a
formula for the number of regions in Section 3. We also find the number of regions in the Shi
arrangement through a fascinating bijections to parking functions Section 4. In Section 5, we
describe the finite field method and apply it to the Shi arrangement and Catalan arrangement.
Finally in Section 6, we describe the connection between hyperplane arrangements and Coxeter
groups and find the number of regions in two infinite classes of such hyperplane arrangements.

2. Preliminaries

In this section, we discuss the intersection poset, ordered pair functions, and the characteristic
polynomial. See [4] for the preliminaries in more depth.

But first, we must discuss some terminology for a hyperplane arrangement A consisting of hy-
perplanes H1, . . . ,Hk in Kn.

• A hyperplane in A is linear if it contains the origin and affine otherwise.
• The defining polynomial of A is

QA = (L1(x)− b1) · · · (Lk(x)− bk),

for x ∈ Rn where the set of solutions to Li(x)− bi = 0 is Hi.
• The dimension of A denoted as dim(A) is n, the dimension of the space A is in.
• The rank of A denoted as rank(A) is the dimension of the space spanned by the normals
of the hyperplanes in A.

• We say A is in general position if the intersection of p distinct hyperplanes in A has dimen-
sion max(n− p, 0).

• We say A is central if the intersection of the hyperplanes in A is nonempty.

For example the left hyperplane arrangement in Figure 1 is central while the right hyperplane
arrangement is in general position.

2.1. Intersection Poset. A poset or partially ordered set is a set S together with a comparison
operation ≤ satisfying three properties

• (Identity) x ≤ x for all x ∈ S,
• (Antisymmetry) if x ≤ y and y ≤ x then x = y for all x, y ∈ S,
• (Transitivity) if x ≤ y and y ≤ z then x ≤ z for all x, y, z ∈ S.
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Figure 2. The intersection posets of the arrangements depicted in Figure 1.

Posets are often depicted in a graphical format with vertices representing elements of S and
directed edges u→ v meaning u ≤ v.

The intersection poset contains all nonempty intersections of the hyperplanes in an arrangement
A. Note that the entire space Rn is considered an intersection of the hyperplanes (intersection of
none of the hyperplanes). The intersections are ordered by reverse inclusion, i.e., if S and T are
intersections of hyperplanes in A and S ⊆ T then T ≤ S. We let the intersection poset of A be
denoted as L(A).

Example 2.1. Consider the hyperplane arrangements in Figure 1. We will refer the hyperplane
arrangements by their equation, e.g., the left arrangement consists of x = 0, y = 0, y − x = 0,
and x + y = 0 while the right arrangement consists of x = 0, y = 0, and x + y − 1 = 0. Their
corresponding posets are shown in Figure 2.

2.2. Ordered Pair Functions. Let an ordered pair be a tuple (x, y) for x, y ∈ L(A) where x ≤ y.
Let O(A) be the set of ordered pairs in L(A). An ordered pair function is a function of the form
f : O(A) → Z. Define a convolution of two ordered pair functions f and g to be

f ∗ g(x, y) =
∑

z∈L(A)
x≤z≤y

f(x, z)g(z, y).

Note that the identity of the convolution operation is the function δ : O(A) → Z such that

δ(x, y) =

{
1 if x = y

0 otherwise
.
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Also note that the convolution is associative as

(f ∗ g) ∗ h(x, y) =
∑

w∈L(A)
x≤w≤y

 ∑
z∈L(A)
x≤z≤w

f(x, z)g(z, w)

h(w, y) =
∑

z,w∈L(A)
x≤z≤w≤y

f(x, z)g(z, w)h(w, y),

and

f ∗ (g ∗ h)(x, y) =
∑

z∈L(A)
x≤z≤y

f(x, z)

 ∑
w∈L(A)
z≤w≤y

g(z, w)h(w, y)

 =
∑

z,w∈L(A)
x≤z≤w≤y

f(x, z)g(z, w)h(w, y).

Let the inverse of an ordered pair function f be a function g such that f ∗ g = δ. Because
(g ∗ f) ∗ g = g ∗ (f ∗ g) = g, and the identity ordered pair function is unique, it also follows that
g ∗ f = δ.

2.3. Characteristic Polynomial. Consider the ordered pair function 1(x, y) = 1. Let its inverse
be the Möbius function µ(x, y). Thus, µ is defined as the unique function where µ(x, x) = 1 and
for (x, y) ∈ O(A) ∑

z∈L(A)
x≤z≤y

µ(x, z) = 0.

Example 2.2. Consider the intersection posets in Figure 2. Figure 3 depicts the intersection poset
with each element x ∈ L(A) labeled with µ(R2, x).

The characteristic polynomial of an arrangement A in Rn is the polynomial

χA(t) =
∑

x∈L(A)

µ(Rn, x)tdim(x).

Example 2.3. The characteristic polynomial of the the hyperplanes in Figure 1 are t2−4t+3 and
t2 − 3t+ 3, respectively.

Let us develop an alternative way of forming the characteristic polynomial. LetA be a hyperplane
arrangement consisting of hyperplanes H1, . . . ,Hk. Let us express the space

X = Rn −
k⋃

i=1

Hi,

through set additions and subtractions of the elements of L(A). Through the Principle of Inclusion
and Exclusion, we see that

(2.1) X = Rn −

 ∑
1≤i≤k

Hi

+

 ∑
1≤i1<i2≤k

Hi1 ∩Hi2

− · · · .
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Figure 3. The intersection posets of the arrangements depicted in Figure 1 with
Möbius labelings of the form µ(R2, x).

Now replace every nonempty intersection in Equation (2.1) including Rn with td where d is the
dimension of the intersection. Let us call this polynomial ψA(t). In compact notation, we have

ψA(t) =
∑
B⊆A

B central

(−1)|B|tn−rank(B),

where |B| is the number of hyperplanes in B and n − rank(B) refers to the dimension of the
intersection of the hyperplanes in B.

Example 2.4. To calculate ψA(t) for the arrangements in Figure 1, we can form the following
tables. In the left arrangement, let the hyperplanes x = 0, y = 0, y − x = 0, and x + y = 0 be
denoted a, b, c, and d, respectively. In the right arrangement, let the hyperplanes x = 0, y = 0, and
x+ y − 1 = 0 be denoted x, y, and z, respectively.
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B |B| rank(B)
Rn 0 0
a 1 1
b 1 1
c 1 1
d 1 1

a ∩ b 2 2
a ∩ c 2 2
a ∩ d 2 2
b ∩ c 2 2
b ∩ d 2 2
c ∩ d 2 2

a ∩ b ∩ c 3 2
b ∩ c ∩ d 3 2
c ∩ d ∩ a 3 2
d ∩ a ∩ b 3 2

a ∩ b ∩ c ∩ d 4 2

B |B| rank(B)
Rn 0 0
x 1 1
y 1 1
z 1 1

x ∩ y 2 2
y ∩ z 2 2
z ∩ x 2 2

Therefore, χA(t) is t
2 − 4t+6− 4+ 1 = t2 − 4t+3 in the left arrangement and t2 − 3t+3 in the

right arrangement.

Theorem 2.5. For all hyperplane arrangements A in Rn, we have χA(t) = ψA(t).

Proof. Let us convert χA(t) into an addition and subtraction of sets as in Equation (2.1)

Y =
∑

x∈L(A)

µ(Rn, x)x.

We will now show that the coefficient of the intersections in X and Y are the same through
induction. The coefficient of x = Rn are both 1 as Rn appears with coefficient 1 exactly once in X
and µ(Rn,Rn) = 1 is the coefficient of Rn in Y.

Suppose we want to show the coefficient of x in X and Y is the same now and we already know
the coefficient of all y ≤ x is the same. Let [z]X and [z]Y refer to the coefficient of the intersection
z in X and Y respectively. In Y , we see that

[x]Y = −
∑

y∈L(A)
y<x

µ(Rn, y) = −
∑

y∈L(A)
y<x

[y]Y.

In X, we know if y ≤ x, then y contains x. There must be a point x ∈ x such that x is contained
in all y ≤ x but in no other intersections. Define the count of x to be the number of times it is
added and subtracted in the sum X, i.e., ∑

y∈L(A)
y≤x

[y]X.
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Figure 4. The deletion and restriction of the arrangements in Figure 1 with respect
to the hyperplane x = 0. The deletion and restriction for the left arrangement are
shown on the left above and the deletion and restriction for the right arrangement
are shown on the right above.

In order for X to not include x, the count of x must be 0. Therefore,

[x]X = −
∑

y∈L(A)
y<x

[y]X.

It follows that [x]X = [x]Y, so χA(t) = ψA(t). ■

3. Number of Regions

Let R(A) and r(A) refer to the set and number of regions for a hyperplane arrangement A,
respectively. We will find a relationship between r(A) and χA(t). To do this, we will need a
technique called deletion-restriction. This proof was originally developed by Zaslavsky [5]. See [4]
for more detail.

LetH be a hyperplane inA.DefineAH or the deletion of A with respect to H to be the hyperplane
arrangement A \ H. Define AH or the restriction of A with respect to H to be the hyperplane
arrangement {H ′ ∩H : H ′ ∈ A} where the hyperplane arrangement exists in the subspace H. Note
that the subspace H is isomorphic to Rn−1 and can be treated as such. Therefore, the characteristic
polynomial of AH still exists.

Example 3.1. The deletion and restriction of the arrangements in Figure 1 with respect to the
hyperplane x = 0 are shown in Figure 4.

Proposition 3.2. Let A be a hyperplane arrangement in Rn and H a hyperplane within A. Then

r(A) = r(AH) + r(AH).

Proof. Consider any region T in R(AH). Notice that T must be convex as it is the intersection of
convex half-spaces. It follows thatH can be cut T into at most two pieces. Therefore, r(A) is r(AH)
plus the number of regions in R(AH) which are cut into two pieces by H. Let S ⊆ R(AH) be the
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set of these regions. Notice {R ∩H : R ∈ S} = R(AH). Therefore, we have |S|= |R(AH)|= r(AH)
as every element in S has a corresponding element in R(AH), and vice versa. Thus,

r(A) = r(AH) + r(AH).

■

Example 3.3. For the arrangements in Figure 1, letting H be the hyperplane x = 0, we see

8 = r(A) = r(AH) + r(AH) = 6 + 2,

for the left arrangement A and

7 = r(B) = r(BH) + r(BH) = 4 + 3,

for the right arrangement B.

We have a similar equation for χA(t).

Proposition 3.4. Let A be a hyperplane arrangement in Rn and H a hyperplane within A. Then
χA(t) = χAH

(t)− χAH (t).

Proof. Recall the definition of ψA(t) = χA(t). LetX, Y, and Z be the complement of the hyperplanes
in A, AH , and AH , respectively. We know X = Y − Z. If we write X, Y, and Z into the form
of Equation (2.1), we get two equivalent expressions for the complement of the hyperplanes in A
in terms of intersections of the hyperplanes within A. Note that the coefficient of any intersection
must be the same must be the same in the two expressions. Replacing every intersection x with
tdim(x), we see

χA(t) = χAH
(t)− χAH (t).

■

Example 3.5. For the arrangements in Figure 4, letting H be the hyperplane x = 0, we see

t2 − 4t+ 3 = χA(t) = χAH
(t)− χAH (t) = (t2 − 3t+ 2)− (t− 1),

for the left arrangement A and

t2 − 3t+ 3 = χB(t) = χBH
(t)− χBH (t) = (t2 − 2t+ 1)− (t− 2),

for the right arrangement B.

We can now illustrate the relationship between r(A) and χA(t).

Theorem 3.6. Let A be a hyperplane arrangement in Rn. Then

r(A) = (−1)nχA(−1).

Proof. Say A contains no hyperplanes. Then r(A) is 1.We also have χA(t) = tn, so (−1)nχA(−1) =
1 as well.

Now consider a any arrangement A. Assume that all hyperplane arrangements B with fewer
hyperplanes than A or with lower dimension satisfy r(B) = (−1)nχB(−1). Therefore,

r(A) = r(AH) + r(AH) = (−1)nχAH
(−1) + (−1)n−1χAH (−1) = (−1)nχA(−1).

■
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e

G Ge Ge

Figure 5. Deletion and contraction of G with respect to e.

Example 3.7. In the hyperplane arrangements in Figure 1, we see that the left hyperplane ar-
rangement A has 8 regions which is (−1)2χA(−1) = (−1)2−4(−1)+3 = 8 and the right hyperplane
arrangement B has 7 regions which is (−1)2χB(−1) = (−1)2 − 3(−1) + 3 = 7.

3.1. Acyclic Orientations. We now introduce a connection between the deletion-restriction in
the characteristic polynomial and the deletion-contraction in the chromatic function for graphs.
We closely follow [4].

Let us start by defining the chromatic function in graphs. A proper coloring of a graph G on k
colors is a function κ : V (G) → {1, . . . , k} such that κ(u) ̸= κ(v) if (u, v) ∈ E(G). The chromatic
function denoted χG : Z+ → N is defined by χG(t) is the number of proper colorings with t colors.

The chromatic function follows a similar relation to deletion-restriction for the characteristic
polynomial. The relation is called deletion-contraction. Let G be a graph on n vertices and e be
an edge in G connecting vertices u and v. Define Ge or the deletion of G with respect to e to be
the graph with e removed. Define Ge or the contraction of G with respect to e to be the graph
where u and v become superimposed into one vertex x such that all edges with an endpoint at u
and v now have an endpoint at x. Remove any duplicated edges, i.e., if w shares an edge with u
and v, we will get two copies of (w, x) if we do this process, so we remove one of these copies. See
Figure 5 for an example of the deletion and contraction of a graph.

Proposition 3.8 (Deletion-Contraction). For a graph G and an edge e = (u, v) in G,

χG(t) = χGe(t)− χGe(t).

Proof. We can think of the equation instead as χGe(t) = χG(t)+χGe(t). Let κ be a proper coloring
of Ge. If κ(u) ̸= κ(v), then we can add the edge e and κ would still be a proper coloring of G. If
κ(u) = κ(v) on the other hand, then we can combine them into one vertex through a contraction
and the result would be a proper coloring of Ge. Every coloring κ falls into one of these categories
and every coloring of G or Ge can be converted into a coloring of Ge. Therefore,

χGe(t) = χG(t) + χGe(t).

■

Remark 3.9. Because of this relation, we can show that χG(t) is a polynomial. When G is a graph
on n vertices with no edges, χG(t) = tn, and through deletion contraction, we can always express
χG(t) as a sum of characteristic functions of graphs with no edges.
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We now illustrate the relationship between hyperplane arrangements and graphs. Let G be a
graph on n vertices. Label its vertices x1, . . . , xn. Let AG = {xi − xj = 0 : (xi, xj) ∈ E(G)}.

Proposition 3.10. For a graph G on n vertices,

χAG
(t) = χG(t).

Proof. We can use the fact that both the characteristic polynomial and chromatic function follow a
deletion-contraction/restriction type relation. Let two arrangements A and B satisfy A ∼= B if there
exists a linear transformation from the vector space containing A to vector space containing B such
that the points in A are mapped to the points of B and vice versa. If A ∼= B, then χA(t) = χB(t).
In order to show that the deletion-contraction in graphs and the deletion-restriction in hyperplane
arrangements are the same, we must verify that AGe

∼= (AG)H and AGe ∼= (AG)
H where e is

the edge (xi, xj) and H is the hyperplane xi − xj = 0 to make sure the relations are completely
analogous.

The equation AGe
∼= (AG)H is true as when we remove e form the graph, we remove xi − xj = 0

from AG. For the second equation, start with (AG)
H . Consider the map ϕ : H → Rn−1 where

ϕ(a1x1 + · · ·+ axi + · · ·+ axj + · · ·+ anxn) = a1x1 + · · ·+ axi + · · ·+ 0xj + · · ·+ anxn,

where there is no xj term. Consider a hyperplane xp − xq = 0 in (AG)
H . Through ϕ, if neither p

nor q are i or j, then xp − xq = 0 is mapped to xp − xq = 0 which is a hyperplane in AGe while if
one of p and q, say p is i or j, then xp − xq = 0 is mapped to xi − xq = 0 which is a hyperplane in
AGe . All hyperplanes in AGe can be achieved in this way, so AGe ∼= (AG)

H .
When G has no edges, χG(t) = tn and AG has no hyperplanes so χAG

(t) = tn. Assume that
G is some graphs and it is shown that for all graphs with fewer vertices or less edges than G
the characteristic polynomial and chromatic function are equal. Using deletion-contraction and
deletion-restriction on some edge e in G and its corresponding hyperplane H, we then have

χAG
(t) = χ(AG)H (t)− χ(AG)H (t) = χAGe

(t)− χAGe (t) = χGe(t)− χGe(t) = χG(t).

Thus, through induction χAG
(t) = χG(t). ■

Define an orientation o of a graph G to be a directed graph G′ with the same vertex set and
edge set as G except the edges are no directed. An orientation is acyclic if there are no directed
cycles. We will now illustrate a relationship between the regions of AG and the acyclic orientations
of G.

Theorem 3.11. Let G be a graph on n vertices. There is a bijection between the acyclic orientations
of G and the regions of AG.

Proof. Consider a region S of AG. We can express S as the intersection of inequalities of the form
xi > xj where (i, j) ∈ E(G). Notice that because S is nonempty it is impossible for there to be
i1, i2, . . . , ik such that

xi1 > xi2 > · · · > xik > xi1 ,

as that would imply there is no solution. With these inequalities, we can construct G′ with vertex
set {x1, . . . , xn} where there is a directed edge from xj to xi if in S, we have xi > xj . Note that
for all (i, j) ∈ E(G), the region S must lie on one side of xi = xj , so all edges in G will appear as
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some directed edge in G′. Let this function mapping regions to acyclic orientations be denoted f,
i.e., f(S) = G′ in the manner described above.

We now show that f is a bijection. First we show injectivity. Consider distinct regions S and T.
Because they are distinct, there must be some hyperplane in AG say xi−xj = 0, where S and T lie
on opposite sides of it. It follows that in f(S) and f(T ) the edge between xi and xj are pointing
in opposite directions.

We now show surjectivity. Consider some acyclic orientation G′ of G. We will prove that there
exists some labeling L : V (G′) → {1, . . . , n} of the vertices of G′ with numbers in {1, . . . , n} such
that if there exists a directed edge from xi to xj , then the label for xi is less than the label for
xj . We will induct on the number of vertices. In all one vertex acyclic orientations, the one vertex
can be labeled 1 and we are done. Assume that all n− 1 acyclic orientations have a labeling with
{1, . . . , n−1}. Now consider the acyclic orientation G′ on n vertices. Notice that G′ must have some
sink vertex v, i.e., v has no directed edges out of it, as if we start at a random vertex u and continue
along a directed path from u, the path must end at a sink vertex as there are a finite number of
vertices and no cycles. Label v with n and remove it to get an acyclic orientation with n−1 vertices
and possibly multiple connected components. We can label this graph with {1, . . . , n − 1} by the
inductive hypothesis, so we now have the labeling L for G′. Let

x = (L(x1), . . . , L(xn)).

Consider the region S containing x. This region has the acyclic orientation G′. Thus f is surjective.
■

This bijection between regions and acyclic orientations also implies the following fascinating
result.

Corollary 3.12. The number of acyclic orientations of a graph G on n vertices is (−1)nχG(−1).

Proof. The number of regions of AG is (−1)nχAG
(−1). Because of the bijection, the number of

acyclic orientations of G is

(−1)nχAG
(−1) = (−1)nχG(−1).

■

4. Shi Arrangement and Parking Functions

Define the Shi Arrangement Sn to consist of the hyperplanes

{xi − xj = 0 : 1 ≤ i < j ≤ n} ∪ {xi − xj = 1 : 1 ≤ i < j ≤ n}.

This section is about determining the number of regions formed by the arrangement. See [4] for
more detail.

Ultimately, we will establish a bijection between the regions of the Shi arrangement and parking
functions, but we must first define parking functions. A parking function is a sequence of integers
(a1, . . . , an) such that its sorted sequence (b1, . . . , bn) satisfies 1 ≤ bi ≤ i. Parking functions arise
from the following problem.

Let there be n cars numbered 1 to n queued to park in n parking spots numbered 0 to n − 1.
Car i has a preferred parking spot ai. One by one the cars enter the parking lot. If their preferred
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x− y = 1 x− y = 0
x− z = 1

x− z = 0

y − z = 1

y − z = 0

210

200

201

101

102

110

100

000

001

002

120

010

020

021

011

012

Figure 6. The Shi arrangement S3. In the diagram x1, x2, x3 are replaced with The
red hyperplanes are the planes of the form xi − xj = 0 while the blue hyperplanes
are of the form xi − xj = 1. The labels in the regions are parking functions.

parking spot is available, they park there. Otherwise, they park at the first available parking spot
after their preferred parking spot.

Proposition 4.1. The cars can park if and only if their preferred parking spots (a1, . . . , an) form
a parking function.

Proof. Assume that (a1, . . . , an) is a parking function. Consider some point in time in the parking
process and let k be last open parking spot. This would imply that there are n − k cars with a
preferred parking spot larger than k. Because (a1, . . . , an) is a parking function, there can be no
other cars with a preferred parking spot larger than k. Thus the next car can always park.

We can modify the logic above to prove the other direction. Assume (a1, . . . , an) is not a parking
function. Then there is some k for which there are more than n− k cars with a preferred parking
spot larger than k. Therefore even if n − k of the cars manage to park, they will fill all parking
spots with number larger than k, so the next car with a preferred parking spot larger than k cannot
park. ■

We will now define a bijection λ : R(Sn) → Zn from the regions of Sn to parking functions. Let
R0 denote the region where xi > xj and xi < xj +1 for all 1 ≤ i < j ≤ n. This is the region marked
000 in Figure 6. Set λ(R0) = (0, . . . , 0). Let two regions S and T be separated by a hyperplane H
if S and T lie on opposite sides of H. The bijection is defined for the rest of the regions as follows.
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• If regions R and R′ are separated by exactly one hyperplane xi−xj = 0 with 1 ≤ i < j ≤ n
and R and R0 are on the same side of the hyperplane, then λ(R′) = λ(R) + xj where xj is
the vector with 0 is all components except for a 1 in the jth position.

• If regions R and R′ are separated by exactly one hyperplane xi−xj = 1 with 1 ≤ i < j ≤ n
and R and R0 are on the same side of the hyperplane, then λ(R′) = λ(R) + xi.

Note that λ is well-defined as λ(R) only depends on the set of hyperplanes separating R from R0.
The values for λ are illustrated in Figure 6 in the case of S3.

We now have to prove that λ is indeed a bijection from R(Sn) to the parking functions. It will
help to think about every region R of Sn in two stages. First, we consider which region of the
arrangement Bn = {xi − xj = 0 : 1 ≤ i < j ≤ n} the region R is and then we think about which
region of the arrangement Cn = {xi − xj = 1 : 1 ≤ i < j ≤ n} the region R is in. The intersection
of these regions will be R.

Let us first examine the regions of Bn. This arrangement is actually known as the Braid arrange-
ment. Notice that each region is the intersection of half-spaces of the form xi > xj . As a result,
every region can be expressed in the form

xσ(1) > xσ(2) > · · · > xσ(n),

where σ is a permutation of {1, . . . , n}. It follows that there is a bijection from the regions of Bn

and permutations.
Let us determine which regions of Cn which intersect xσ(1) > xσ(2) > · · · > xσ(n). For i <

j and σ(i) > σ(j), we already know xσ(i) > xσ(j), so we already know R is in the half-space
xσ(j) < xσ(i) + 1. Therefore, it suffices to consider the half-spaces on the sides of the hyperplanes
xσ(i) − xσ(j) = 1 where i < j and σ(i) < σ(j).

Consider if xσ(i) < xσ(j) + 1. Therefore we have the chain

xσ(j) + 1 > xσ(i) > xσ(i+1) > · · · > xσ(j).

From the chain, we also see xσ(k) < xσ(l) +1 is implied for all i ≤ k < l ≤ j. Intuitively, this means
that the gap between xσ(i) and xσ(j) is small and hence there is small gap between xσ(k) and xσ(l) if
k and l are between i and j. Therefore, if we know xσ(i) < xσ(j) + 1, we can omit xσ(k) < xσ(l) + 1.
Now consider if xσ(i) > xσ(j) + 1. Intuitively, this means that the gap between xσ(i) and xσ(j) is
large. Notice then that is impossible for there to be k and l such that k ≤ i < j ≤ l such that
xσ(k) < xσ(l) + 1.

We can form a visualization of these inequalities through arcs over a permutation σ.

(4.1) 3 1 2 5 4

The sequence of numbers represents the inequalities defining the region in Bn. The arcs represent
the chains of inequalities, e.g. the arc between 1 and 5 shows x5 + 1 > x1 > x2 > x5. If i < j and
σ(i) < σ(j) and there is no arc over both i and j, then xσ(i) < xσ(j) + 1 is impossible so we have
xσ(i) > xσ(j) + 1. In the example above, the inequalities defining the region, not mentioning too



14 NEIL KRISHNAN

many superfluous ones, would be

x3 > x1 > x2 > x5 > x4,

x1 < x5 + 1, x2 < x4 + 1,

x3 > x1 + 1, x1 > x4 + 1.

We can split λ into two parts. Let λ1 be defined so that λ1(R0) = (0, . . . , 0) and if regions R
and R′ are separated by exactly one hyperplane of Bn and R and R0 are on the same side of the
hyperplane, then λ(R′) = λ(R) + xj . When crossing over a hyperplane of Cn let λ1 not change.
Similarly define λ2 where it does not change when crossing a hyperplane of Bn but does change
when crossing a hyperplane of Cn so that λ1(R) + λ2(R) = λ(R).

Note that the ith component of λ1(R) denoted as λ
(i)
1 (R) is the number of j < i such that the

hyperplane xj − xi = 0 is in between R and R0. Before the hyperplane is crossed, we have xj > xi
and after it is crossed, we have xi > xj even though j < i. Therefore, the number of such j is the

number of j less than i appearing after xi in the permutation σ. In other words, we have λ
(i)
1 (R) is

number of j where σ−1(i) < σ−1(j) and i > j.

The ith component of λ2(R) denoted as λ
(i)
2 (R) is the number of j > i such that the hyperplane

xi − xj = 1 is in between R and R0. Before the hyperplane is crossed, we have xi − xj < 1 and
after, we have xi − xj > 1. This corresponds to an absence of an arc over both i and j. Also note

that xi − xj > 1 > 0, so i must appear before j in σ. Thus, we have λ
(i)
2 (R) is the number of j

where σ−1(i) < σ−1(j) and i < j, but there is no arc containing i and j.

Note that if a j is counted in λ
(i)
1 (R), it cannot be counted in the λ

(i)
2 (R) as λ1 forces i > j

while λ2 forces i < j. It then follows that the ith component of λ(R) denoted λ(i)(R) is at most
n− σ−1(i) as only the j after i in σ can possibly be counted in λ1 or λ2. Therefore, λ(R) is always
a parking function.

Example 4.2. We can illustrate this argument with the region corresponding to the permutations
and arcs in (4.1). Let us first determine λ1(R).

(1) λ
(1)
1 is the number of j < 1 after 1 which is 0.

(2) λ
(2)
1 is the number of j < 2 after 2 which is 0.

(3) λ
(3)
1 is the number of j < 3 after 3 which is 2.

(4) λ
(4)
1 is the number of j < 4 after 4 which is 0.

(5) λ
(5)
1 is the number of j < 5 after 5 which is 1.

Let us now determine λ2(R).

(1) λ
(1)
2 is the number of j > 1 after 1 where there is no arc over both 1 and j which is 1.

(2) λ
(2)
2 is the number of j > 2 after 2 where there is no arc over both 2 and j which is 0.

(3) λ
(3)
2 is the number of j > 3 after 3 where there is no arc over both 3 and j which is 2.

(4) λ
(4)
2 is the number of j > 4 after 4 where there is no arc over both 4 and j which is 0.

(5) λ
(5)
2 is the number of j > 5 after 5 where there is no arc over both 5 and j which is 0.
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Therefore, λ(R) = (1, 0, 4, 0, 1). From the process, we can see that λ(i)(R) ≤ n− σ−1(i) as only the

j after i could be counted towards λ(i)(R).

We must now show that λ(R) is injective and surjective. To do this, we will look at the inverse
of λ mapping parking functions to regions. We must first define terminology a prove a lemma to
do this. If j is counted in the ith component of λ1, i.e., σ

−1(i) < σ−1(j) and i > j, then we refer
to (i, j) as a type 1 pair. If j is counted in the ith component of λ2, i.e., σ

−1(i) < σ−1(j) and i < j
and there is no arc over i and j, then we refer to (i, j) as a type 2 pair.

Lemma 4.3. If (i, j) is a type 1 or 2 pair, then λ(i)(R) > λ(j)(R)

Proof. Suppose (i, j) is a type 1 pair. Then, j is smaller than i but after i in the permutation σ. It

follows that λ
(i)
1 (R) > λ

(j)
1 (R), as k counted in λ

(j)
1 (R) is smaller than j > i and further past the

σ−1(j) > σ−1(i) position, so k must be counted in λ
(i)
1 (R) as well. As for λ2(R), any k > i after j

in the permutation σ with no arc over j and k must be counted in both λ
(i)
2 (R) and λ

(j)
2 (R). Thus,

we are left with the k satisfying j < k < i after j in σ with no arc over both j and k. But notice

then that even though k is counted in λ
(j)
2 (R) but not λ

(i)
2 (R), we have that k is counted in λ

(i)
1 (R).

as k is smaller than i but after i in σ. Therefore, λ(i)(R) > λ(j)(R).
Now suppose (i, j) is a type 2 pair. Then j is larger than i and after i in σ but there is no arc

over both i and j. Notice then that all k after j and larger than j with no arc over k and j are

counted in λ
(j)
2 (R) and λ

(i)
2 (R) as k is larger than i and after i and there is no arc over k and i.

Similarly, all k after j and smaller than i are counted in both λ
(i)
1 (R) and λ

(j)
1 (R). Finally, all k

after j and satisfying i < k < j are counted in λ
(j)
1 (R) and λ

(i)
2 (R) as k is larger than i and there

cannot be an arc over both i and k as there is no arc over both i and j. ■

Example 4.4. In the permutations and arcs of (4.1), Lemma 4.3 implies that

λ(1) > λ(4), λ(3) > λ(1), λ(3) > λ(2), λ(3) > λ(5), λ(3) > λ(4), λ(5) > λ(4).

With Lemma 4.3, we can now develop a method of finding the inverse of λ. We will do this by
constructing the permutations and arcs sequentially, i.e., starting with one number, then adding
another number and its arcs, then adding another number and its arcs, and so on. Start with the
parking function α. Let 1 ≤ i ≤ n be some integer. The goal when constructing the permutations
and arcs sequentially is that when we add the next number, we can determine is position and the
arcs over it exactly. Consider iterating through {1, . . . , n} starting with the i with the smallest
α(i) from largest to smallest and then moving onto the i with the next smallest α(i) moving from
largest to smallest and so on. In Equation (4.1), we know λ = (1, 0, 4, 0, 1), so we would traverse
{1, . . . , 5} in the order 4, 2, 5, 1, 3. Let this order be represented by the permutation τ. If we use
this order, whenever we add τ(i), the only possible j which could form a type 1 or type 2 pair
(τ(i), j) are the j satisfying α(j) < α(τ(i)) by Lemma 4.3, so τ−1(j) < i. Thus, j is already in the
permutation and arcs, so we can just place τ(i) in the location where the number of type 1 or 2
pairs τ(i) forms is α(τ(i)).

We must show that there exists a unique position and arcs satisfying this. To do this, let us
first determine where τ(i) can be added. In order to not affect λ(j)(R) for any other j already in
the permutation, τ(i) must be placed before the first element larger than τ(i) in the permutation.
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In addition, no arc can be added which does not start or end at τ(i) as this will necessarily affect

λ(j)(R) where j is is the number at the start of the arc. It follows that at most two arcs can appear
with one start at τ(i) and the other ending at τ(i).

We sketch a proof of the existence of such placement and arcs. We do this through induction
by starting with λ(τ(i))(R) large and decreasing λ(τ(i)(R) by 1 at each step if possible. Start by
placing τ(i) in the leftmost location in the permutation. Let there be no arc over τ(i). Thus, we

have λ(τ(i))(R) = i − 1. This is the maximum possible value of λ(τ(i)) because α + 1 is a parking
function.

Assume that τ(i) is in the pth position. Let the elements before it be j1, . . . , jp−1 and the
elements after it be jp+1, . . . , ji. Let there be an arc from je to τ(i) and an arc from τ(i) to jf for
1 ≤ e ≤ p and p ≤ f ≤ i. Let these arcs be referred to as the left arc and right arc respectively.
If the left arc or right arc don’t actually exist, let e = p or f = p, respectively. Let these arcs be
redundant meaning if τ(i) is within an arc from je′ to jf ′ then e ≤ e′ and f ≥ f ′ but it is possible
for the left arc or right arc to be contained in another arc.

We now take cases on whether τ(i) < jp+1. Depending on this, we either swap τ(i) and jp+1

causing us to possible change e or we increase f . If we cannot do either, it can be proved that
we always find an element jy such that λ(jy)(R) ≥ λ(τ(i))(R). Because τ is ordered by α, it is not

necessary to decrease λ(τ(i))(R). The conditions on these two changes are complicated though, so
we provide the following example instead

Example 4.5. We can illustrate the sequence of permutations and arcs in the case of (4.1).

4

2 4

2 5 4

1 2 5 4

3 1 2 5 4

• We start by adding τ(1) = 4 to the permutation.

• We add τ(2) = 2 to the permutation. We know 2 must lie before 4 so λ(4)(R) does not

increase. Because λ(2)(R) = 0, there must be an arc over 2 and 4.

• We add τ(3) = 5. In order for λ(5)(R) = 1, 5 must lie behind exactly one element in σ.

• We add τ(4) = 1. In order to not increase λ(2)(R), λ(5)(R), or λ(4)(R), we see 1 must lie

before 2, 5, and 4 in σ. We have λ(1)(R) = 1, so there must be an arc between 1 and 5.

• We add τ(5) = 3. In order for λ(3) = 4, we see 3 must lie at the start of σ. There cannot be
any arcs over 3.

As for uniqueness of the position, we first make two observations

(1) If we increase p, leaving f the same, then λ(τ(i))(R) decreases or remains the same.

(2) If we increase f, leaving p the same, then λ(τ(i))(R) decreases or remains the same.
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Assume two tuples of position, left arc startpoint, and right arc endpoint (p, e, f) and (p′, e′, f ′)

make λ(τ(i))(R) = α(τ(i). Let the j elements be indexed j1 through ji−1. If τ(i) is in position q,

then τ(i) is placed between jq and jq+1. If p = p′, note e = e′ as if e < e′, we have that λ(je)(R)

changes in the two tuples and f = f ′ as otherwise the tuples do not produce the same λ(τ(i))(R).

Therefore, we can assume p < p′ without loss of generality. Note that f > f ′. If λ(τ(i))(R) is
the same in both scenarios, then the number of jy where p + 1 ≤ y ≤ p′ such that jy < τ(i) is
equal to the number of jz where f ′ + 1 ≤ z ≤ f − 1. such that jz > τ(i). Let y′ be the first y to

satisfy this condition and z′ be the last z to satisfy this condition. Because λ(y
′)(R) cannot change

between the tuples, it follows that there must be an arc betwee y′ and z′. In that case f ′ actually
should be z′ as the right arc is redundant. Thus, for all p + 1 ≤ y ≤ p′ we have jy > τ(i) and for
all f ′ + 1 ≤ z ≤ f − 1, we have jz < τ(i). So, when we move from the tuple (p, e, f) to the tuple

(p′, e′, f ′), we have λ(jy) for p+1 ≤ y ≤ p′ increases. This is a contradiction, so the tuples must be
the same.

Thus, the inverse map of λ is injective as there is a unique permutation and arcs and surjective
as there always is a permutation and arcs corresponding to any α. Thus, we have a bijection. We
can find the number of parking functions with the following argument.

Proposition 4.6. The number of parking functions of length n is (n+ 1)n−1.

Proof. Consider the parking lot and parking spots. Imagine that the parking spots form a loop
with points numbered from 1 to n+ 1 counter clockwise instead of 1 to n. When we say spot l for
l > n+1, we are referring to the parking spot equivalent to l modulo n+1. Cars enter the parking
at spot 1 and move around the circle counter clockwise until they reach their preferred spot. Once
there, they continue to the nearest empty spot counterclockwise. Note that the cars can always
park, but their preferred spots (a1, . . . , an) form a parking function if and only if the empty spot at
the end of the process is numbered n+1. Note that given any preferred spots (a1, . . . , an) that lead
to an empty spot at m, if we use preferred spots of (a1 + k, . . . , an + k) for some k, note that the
empty spot is not at m+k. Therefore, exactly one of the preferred spot tuples in (a1+k, . . . , an+k)
for fixed ai for 1 ≤ i ≤ n and variable 0 ≤ k ≤ n works. There are a total of (n+1)n preferred spot
tuples, so 1/(n + 1) of these tuples are parking functions. Thus, the number of parking functions
is (n+ 1)n−1. ■

Thus the number of regions in the Shi arrangement is (n+ 1)n−1.

5. Finite Field Method

In the previous section, we spent a lot of effort developing a bijection to determine the number
of regions in the Shi arrangement. But the bijection only told us a limited amount of information
(just the number of regions but not the characteristic polynomial of the arrangement), is not
generalizable to other arrangements, and also took a lot of work to prove. The finite field method
fixes these problems. See [1] for more detail.

Let A be a hyperplane arrangement in Rn. Let H ∈ A be a hyperplane of the form a1x1 + · · ·+
anxn = k. Define Hq to be

{(x1, . . . , xn) ∈ Fn
q : a1x1 + · · ·+ anxn ≡ k (mod p)},
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for a prime q. Define Aq = {Hq : H ∈ A}. We can define the intersection poset L(Aq) as we would
normally define L(A).

Theorem 5.1. Let A be an arrangement. Let q be sufficiently large prime. Then

χA(q) =

∣∣∣∣∣∣Fn
q −

⋃
Hq∈Aq

Hq

∣∣∣∣∣∣ .
Proof. We must first show that for sufficient large primes, we have L(Aq) ∼= L(A). Consider some
k-dimensional intersection of a subset of the hyperplanes of A in Rn. We will first ensure that none
of these intersections are degenerate. It follows that the intersection can be expressed as{

(a1, . . . , an) +

k∑
i=1

xi(v
(i)
1 , . . . , v(i)n ) : (x1, . . . , xk) ∈ Rk

}
,

for vectors (a1, . . . , an) and linearly independent (v
(i)
1 , . . . , v

(i)
n ) for 1 ≤ i ≤ k. Note that if q does

not divide the determinant of the submatrix of

A =


v
(1)
1 v

(1)
2 . . . v

(1)
n

v
(2)
1 v

(2)
2 . . . v

(2)
n

...
...

. . .
...

v
(k)
1 v

(k)
2 . . . v

(k)
n

 ,

with rank equal to the rank of A, meaning the vectors (v
(i)
1 , . . . , v

(i)
n ) are linearly independent in

Fn
q , the intersection intersects qk points in Fn

q because for any two distinct elements of

S =

{
(a1, . . . , an) +

k∑
i=1

xi(v
(i)
1 , . . . , v(i)n ) : (x1, . . . , xk) ∈ Fk

q

}
,

say (x1, . . . , xk) = (y1, . . . , yk) and (x1, . . . , xk) = (z1, . . . , zk), we have

(a1, . . . , an) +
k∑

i=1

yi(v
(i)
1 , . . . , v(i)n )− (a1, . . . , an)−

k∑
i=1

zi(v
(i)
1 , . . . , v(i)n ) =

k∑
i=1

(yi − zi)(v
(i)
1 , . . . , v(i)n ),

which cannot be 0 as the (v
(i)
1 , . . . , v

(i)
n ) are independent. There are finitely many intersections, so

there are finitely many primes q which will divide the determinant of the matrix comprising of the
vectors spanning the intersection. Thus, for sufficiently large q, the intersection occupies qk points
if the dimension of the intersection is k.

In order to verify L(Aq) ∼= L(A), we also need to ensure that for r, s ∈ L(A) and corresponding
rq, sq ∈ L(Aq) that if r ≤ s then rq ≤ sq and if r ̸≤ s then rq ̸≤ sq. Note that if r ≤ s then rq ≤ sq
follows as we are just taking the intersections in Fq. Assume that r and s are

(a1, . . . , an) +
k∑

i=1

xi(v
(i)
1 , . . . , v(i)n ), (b1, . . . , bn) +

l∑
j=1

yj(u
(j)
1 , . . . , u(j)n ),
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respectively. If r ̸≤ s, then s ̸⊆ r, so

rank


v
(1)
1 v

(2)
1 . . . v

(n)
1 u

(1)
1 u

(2)
1 . . . u

(n)
1 b1 − a1

v
(1)
2 v

(2)
2 . . . v

(n)
n u

(1)
2 u

(2)
2 . . . u

(n)
2 b2 − a2

...
...

. . .
...

...
...

. . .
...

...

v
(1)
n v

(2)
n . . . v

(n)
n u

(1)
n u

(2)
n . . . u

(n)
n bn − an

 > rank


v
(1)
1 v

(2)
1 . . . v

(n)
1

v
(1)
2 v

(2)
2 . . . v

(n)
n

...
...

. . .
...

v
(1)
n v

(2)
n . . . v

(n)
n

 ,

meaning the intersections lie in different directions or are parallel to each other. If the rank of
the left matrix is t, then there must be a t × t sub-matrix with nonzero determinant. There are
finitely many q which divide this determinant. Since there are finitely many pairs of intersections,
for sufficiently large q, we know q will not divide any of these determinants and L(Aq) ∼= L(A).

Therefore, for sufficiently large q any intersection of dimension k will occupy qk points in Fn
q and

the intersection poset of Aq will be identical to the normal intersection poset. By the formula for
ψA(t) = χA(t), for

X = Rn −

 ∑
1≤i≤k

Hi

+

 ∑
1≤i1<i2≤k

Hi1 ∩Hi2

− · · · = Rn −
⋃
H∈A

H,

if we replace every intersection with td where d is the dimension of the intersection, we get χA(t).
Using t = q, it follows that

χA(q) =

∣∣∣∣∣∣Fn
q −

⋃
Hq∈Aq

Hq

∣∣∣∣∣∣ .
■

The way we can use Theorem 5.1 is by turning the problem of determining χA(q) into a counting
problem. When we solve the counting problem, we get a formula for χA(q) in terms of n and
q. Because the formula holds over infinitely many q, the formula must be χA(q) as χA(q) is a
polynomial of degree n. Let us apply this method to the Shi arrangement Sn.

Theorem 5.2. The characteristic polynomial of Sn is

χSn(q) = q(q − n)n−1.

Proof. Let q be extremely large compared to n. For the remainder of this proof, we will omit the
modulo q. We have

χSn(q) = |{(x1, . . . , xn) ∈ Fn
q : xi − xj ̸≡ 0, 1 for 1 ≤ i < j ≤ n}|.

We can think about this set as the number of ways of placing n balls numbered 1 to n on a loop
with q marked points numbered 0 to q − 1, such that all balls are on distinct marked points and
two balls i and j are consecutive with j clockwise of i only if i < j.

Split the balls into groups where they are consecutive. Traversing the balls each group on the
loop in clockwise order, they must be ascending. There must be at least one marked point between
each group. Let B1, . . . , Bq−n set disjoint sets of the balls whose union is all of the balls. Assume
without loss of generality that ball 1 is in B1. There are q positions for ball 1 in the loop. Place
the balls in B1 in ascending order after 1. Then skip a marked point and add the balls in B2 in
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ascending order. Then skip a marked point and continue. Through this process, we get a bijection
between these sets with a position for ball 1 and a placement of the n balls. It follows that there
are q(q − n)n−1 ways of placing the balls, so through Theorem 5.1

χSn(q) = q(q − n)n−1.

■

With the characteristic polynomial and using Theorem 3.6, we have

Corollary 5.3. The number of regions of Sn is (n+ 1)n−1.

To show the flexibility of this method, we also find the number of regions in the Catalan ar-
rangement

Cn = {xi − xj = 0,±1 : 1 ≤ i < j ≤ n}.

Theorem 5.4. The characteristic polynomial of Cn is

χCn(q) = q(q − n− 1)(q − n− 2) · · · (q − 2n+ 1).

Thus, the number of regions is n!Cn where Cn is the nth Catalan number.

Proof. Let q be extremely large compared to n. We will omit modulo q for the remainder of the
proof. We have

χCn(q) = |{(x1, . . . , xn) ∈ Fn
q : xi − xj ̸≡ 0,±1 for 1 ≤ i < j ≤ n}|.

This is the number of ways to place n balls numbered 1 to n on a loop with q marked points
numbered 0 to q − 1 such that all balls are in distinct nonadjacent positions.

There are q positions for the first ball. There are (n − 1)! ways to order to remaining balls.
Consider a sequence of q elements consisting of the n balls and q − n marked points with no ball
on them in the loop. Let the leftmost element of the sequence be ball 1. This corresponds to the
loop when cut just before ball 1. Place n marked points after each of the balls, so that there is a
marked point between each of the balls in the loop. Thus, there are a total of

χCn(q) = q(n− 1)!

(
q − 2n+ (n− 1)

n− 1

)
= q

(q − n− 1)!

(q − 2n)!
= q(q − n− 1)(q − n− 2) · · · (q − 2n+ 1).

ways to place n balls.
Using Theorem 3.6, we then have that the number of regions is

(−1)n · −(−1− n− 1)(−1− n− 2) · · · (−1− 2n+ 1) = (n+ 2)(n+ 3) · · · (2n),

=
(2n)!

(n+ 1)!
= n! · 1

n+ 1

(
2n

n

)
= n!Cn.

■
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6. Coxeter Arrangements

The finite field method can also help in determining the number of regions in a Coxeter arrange-
ment. Let us start by defining terminology. See [3] and [4] for more detail.

A Coxeter group is a group generated by elements s1, . . . , sn with identity e with the following
relations

• sisi = e.
• (sisj)

mij = e for some 2 ≤ mij = mji ≤ ∞. If mij = ∞, then there is no relation of the
form (sisj)

mij = e should be imposed. These relations are called the braid relations.

Example 6.1. Consider the Coxeter group with generators s and t and identity e with the braid
relation (st)3 = e. This braid relation can be rewritten as sts = tst. See Figure 7 for a depiction of
the group.

e

s t

st ss tt ts

sss sts tst ttt

stt tts sst tss

stss tsts stst ttts. . . . . .

Figure 7. Words of the Coxeter group with generators s and t and identity e with
the braid relation (st)3 = e. The colors depict the equivalence classes in the words.

This group can be constructed in a different way. Consider a triangle as depicted in Figure 8
with reflection moves s and t. We have ss = e, and we also know that st is a rotation by 120◦

clockwise, so (st)3 = e. This technique of looking at Coxeter groups as the reflections of a shape
applies more generally with the use of higher-dimensional shapes. The condition of sisi = e means

1 2

3

s

t

Figure 8. A triangle and two reflective axes of symmetry: s and t.
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that si is a reflection and the condition of (sisj)
mij = e can be interpreted as sisj is a rotation and

it takes mij rotations to bring the shape back to its normal orientation, so the angle between the
hyperplanes which induce reflection of si and sj is 2π/mij . Removing the shape and just keeping
the normal vectors of the reflecting planes, we get a root system ∆ consisting of a finite set of
vectors in Rn for some n such that

• For all α ∈ ∆, we have ∆ ∩ {xα : x ∈ R} = {−α, α}.
• Reflecting over the linear hyperplane normal to α maps ∆ to itself.

The main question we will ask is how many regions do the hyperplanes normal to the vectors of
the roots system form. This question has a general solution using the finite field method (see [1]
for more details). We will examine two infinite classes of Coxeter groups and their corresponding
arrangements. Using the finite field method, we can find the number of regions.

6.1. Coxeter Groups of Type A. In Figure 8, we saw that the symmetries of a triangle formed a
Coxeter group. By labeling the vertices as shown on the figure, the group is actually the permutation
group on three numbers. For example, s corresponds to the permutation 213 and t corresponds
to the permutation 132, i.e., swapping the first two elements and second two elements. These
permutations extend naturally to 4 elements where the permutations s = 2134, t = 1324, and
u = 1243 are the generators. Here the braid relations are (st)3 = e, (tu)3 = e, and (su)2 = e. In
general, for n length permutations the generators s1, . . . , sn−1 follow the braid relations (sisj)

3 = e
if i and j are consecutive and (sisj)

2 = e otherwise. This Coxeter group is referred to as An−1.
The group of permutations of length n can be expressed as the symmetries of an n-simplex, i.e.,

the polytope with vertices at the unit coordinate vectors ei for 1 ≤ i ≤ n in Rn. The generator
permutations correspond to reflections over the hyperplanes xi − xi+1 = 0 for i = 1, . . . , n − 1 as
these reflections swap the ith coordinate with the (i + 1)st coordinate and leave all of the other
coordinates unchanged. The root system generated by the normal vectors to these hyperplanes
is ei − ej = 0 for 1 ≤ i < j ≤ n, so the hyperplanes formed by the root system is the Braid
arrangement Bn. In Section 4, we found that the number of regions in the arrangement was n! .

6.2. Coxeter Groups of Type B. Consider the following root system ∆ with vectors ±ei for
1 ≤ i ≤ n and ±ei ± ej for 1 ≤ i < j ≤ n. To show this is a root system, if we reflect it over
xi = 0, the vectors of the form ±ej = 0 and ±ej ± ek for j, k ̸= i are mapped to themselves, the
vector ei and −ei are interchanged, and the vectors of the form ±ei ± ej are mapped to ∓ei ± ej .
for 1 ≤ i ̸= j ≤ n.

If we reflect over the hyperplane xi−xj = 0 on the other hand, we are swapping the ith and jth
coordinate. Thus, ±ek and ±ek ± el for k, l ̸= i, j are mapped to themselves while ±ei and ±ej are
interchanged and ±ei ± ek and ±ej ± ek are interchanged for k ̸= i, j.

If we reflect over the hyperplane xi + xj = 0, we are swapping and inverting the ith and jth
coordinate. Thus, ±ek and ±ek ± el for k, l ̸= i, j are mapped to themselves while ±ei and ∓ej are
interchanged and ±ei ± ek and ∓ej ± ek are interchanged for k ̸= i, j.

Therefore ∆ is indeed a root system, and we refer to the Coxeter group represented by the system
as Bn. This family of Coxeter groups turn out to be the symmetries of a hypercube, i.e., polytopes
with vertices at S = {

∑n
i=1±ei} .
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With these hyperplanes, we can now determine the number of regions in Bn. We have

χBn(q) = {(x1, . . . , xn) ∈ Fn
q : xi ̸≡ 0,±xj for 1 ≤ i, j ≤ n}.

There are q − 1 choices for x1 as x1 cannot be 0. There are then q − 3 choices for x2 as x3 cannot
be 0,±x2. Continuing, we see that the number of ways to pick (x1, . . . , xn) is

χBn(q) = (q − 1)(q − 3) · · · (q − (2n− 1)),

so the number of regions is

(−1)n(−1− 1)(−1− 3) · · · (−1− (2n− 1)) = (2)(4) · · · (2n) = 2nn! .
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