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Introduction and Motivation

Why Weisfeiler–Leman?

Simple yet powerful graph algorithm: Color Refinement (1-WL).

Efficient and scalable: O(n log n) rounds, each linear in edges.

Crucial in:

Graph isomorphism testing
Graph neural networks (GNNs)
Logic and descriptive complexity

Links combinatorics, algebra, logic, and machine learning.
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Introduction and Motivation

Historical Origins

1968: Weisfeiler and Leman introduce a family of color refinement
algorithms.

Base version: 1-WL, known earlier in chemistry as the Morgan
algorithm.

Used in:

Chemical graph comparison
Symmetry detection
Preprocessing for isomorphism solvers

Cai–Fürer–Immerman (1992): 1-WL = C2 logic = Tree homomorphism
profile
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Cai–Fürer–Immerman (1992): 1-WL = C2 logic = Tree homomorphism
profile

Mueed Awais (Euler Circle Seminar Supervised by Rachana Madhukara (MIT))WL Color Refinement July 14, 2025 4 / 57



Introduction and Motivation

Color Refinement: Core Idea

Goal: iteratively improve vertex labels by neighborhood structure.

Initialize: all nodes given the same color (or degree-based).

Repeat:

Each vertex hashes its current color + multiset of neighbor colors.
Reassigns a new color based on that.

Continue until no change (stable coloring).

This is the 1-dimensional Weisfeiler–Leman algorithm.
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Introduction and Motivation

Color Refinement: Formal Definition

Let G = (V ,E ).

Initial coloring: C (0)(v) = 1 for all v ∈ V .

At step i :

C (i+1)(v) = Hash
(
C (i)(v), {{C (i)(u) : u ∈ N(v)}}

)
Stop when C (i+1) = C (i). The result is C (∞).

Note: {{·}} denotes a multiset.
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Introduction and Motivation

Equitable Partitions

Definition

A vertex coloring is equitable if:

∀i , j , every v ∈ Ci has same number of neighbors in Cj

WL always converges to an equitable partition.

Equitable partitions define a quotient matrix of the graph.
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Introduction and Motivation

Color Refinement Example (Graph)

A B

C

D E

F

Two triangles: same local structure.

All vertices have same degree

1-WL can’t distinguish the components
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Introduction and Motivation

When 1-WL Fails: Intuition

WL only sees vertex types — based on local neighborhood trees.

So, graphs with identical multisets of local rooted trees cannot be
distinguished.

This includes:

Strongly regular graphs
Regular disconnected graphs

Key Question: What exactly does 1-WL see — and miss?
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Introduction and Motivation

Three Equivalent Worlds (Preview)

1-WL equivalence = tree homomorphism equality

1-WL equivalence = fractional isomorphism

Tree hom equality = fractional isomorphism

We will prove: these three characterizations are equivalent.

Combinatorics ↔ Algebra ↔ Enumeration
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Introduction and Motivation

Next: Graph Homomorphisms

Next up: definitions and properties of graph homomorphisms.

Focus: tree homomorphism counts hom(T ,G )

We will show:

Tree counts ⇒ WL equivalence
WL equivalence ⇒ fractional isomorphism
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From Fractional Iso to Tree Homomorphisms

Fractional Iso Tree-Hom Equivalence

Goal: If AGX = XAH , then hom(T ,G ) = hom(T ,H) for all trees T

We use induction on the number of nodes in the tree

Fractional matrix X “transports” homomorphisms from G to H

Mueed Awais (Euler Circle Seminar Supervised by Rachana Madhukara (MIT))WL Color Refinement July 14, 2025 12 / 57



From Fractional Iso to Tree Homomorphisms

Base Case: Single Vertex Tree

T = K1 (a single vertex)

hom(K1,G ) = |V (G )| = |V (H)| = hom(K1,H)

This holds because X is doubly stochastic: it preserves total mass
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From Fractional Iso to Tree Homomorphisms

Inductive Setup

Let T be a rooted tree with root r

Children subtrees: T1,T2, . . . ,Tk

We will compute hom(T ,G ) recursively by:

hom(T ,G ) =
∑

v∈V (G)

k∏
i=1

hom(Ti ,G | r 7→ v)
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From Fractional Iso to Tree Homomorphisms

Conditional Homomorphisms

Let hom(Ti ,G | r 7→ u) = ways to map Ti to G with root sent to u

We apply X :∑
u∈V (G)

Xvu · hom(Ti ,G | r 7→ u) = hom(Ti ,H | r 7→ v)

This lets us recursively carry the homomorphism profile through X
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From Fractional Iso to Tree Homomorphisms

Putting It Together

Combining subtree counts:

hom(T ,G ) =
∑

v∈V (G)

k∏
i=1

hom(Ti ,G | r 7→ v)

Apply X entrywise to shift these into H:

hom(T ,G ) = hom(T ,H)

Thus: fractional isomorphism implies equal tree homomorphism
counts
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From Fractional Iso to Tree Homomorphisms

Visual Intuition

r

a b

A rooted tree T of depth 1. Homomorphisms from T into G can be
transferred to H via X
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From Fractional Iso to Tree Homomorphisms

Example

Let T be a star: central node + 3 leaves

Homomorphisms into G and H reflect degree profiles

If X is fractional iso, degrees must align on average

So the number of star maps is equal in G and H
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From Fractional Iso to Tree Homomorphisms

Proof Summary

Base case: vertex counts preserved by stochasticity of X

Inductive step: subtree recursion + X mapping preserves
homomorphisms

Thus: hom(T ,G ) = hom(T ,H) for all trees T

Mueed Awais (Euler Circle Seminar Supervised by Rachana Madhukara (MIT))WL Color Refinement July 14, 2025 19 / 57



From Fractional Iso to Tree Homomorphisms

Conclusion: Direction 2 Complete

We’ve shown:

AGX = XAH ⇒ hom(T ,G ) = hom(T ,H)

This bridges linear algebra to enumeration

Next: show the reverse direction using WL
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Tree Counts to WL Equivalence

Goal: Tree Counts WL Equivalence

Suppose hom(T ,G ) = hom(T ,H) for all trees T

We want to show: G ∼1-WL H

Strategy: prove the contrapositive

If 1-WL distinguishes G and H, then ∃ tree T with
hom(T ,G ) ̸= hom(T ,H)
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Tree Counts to WL Equivalence

What Does 1-WL Track?

It refines vertex colors based on local rooted neighborhoods

At each round: labels capture tree shapes rooted at each vertex

Eventually: classifies vertices by tree neighborhoods

So: different WL colorings ⇒ different rooted tree profiles
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Tree Counts to WL Equivalence

Constructing Distinguishing Tree

Suppose G and H differ in WL colors at round k

Let color c appear in G with frequency f and in H with f ′ ̸= f

This means: some rooted tree T explains this difference

Construct T that reflects the neighborhood profile of c

Mueed Awais (Euler Circle Seminar Supervised by Rachana Madhukara (MIT))WL Color Refinement July 14, 2025 23 / 57



Tree Counts to WL Equivalence

Color Signatures

Each vertex at round k has a “signature”: multiset of neighbor colors
from round k − 1

These signatures correspond to rooted trees of depth k

So a difference in counts of a signature ⇒ a difference in
homomorphism count for its tree
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Tree Counts to WL Equivalence

Example: Color Signature Tree

r

a b c

Tree rooted at r with 3 children — represents a color signature at depth 1
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Tree Counts to WL Equivalence

Intuition Recap

WL distinguishes graphs by “counting” tree signatures

Each WL color corresponds to a rooted tree type

Mismatch in WL color count ⇒ mismatch in tree homomorphism
counts
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Tree Counts to WL Equivalence

Formal Statement

Lemma

If G ̸∼1-WL H, then there exists a rooted tree T such that:

hom(T ,G ) ̸= hom(T ,H)

This proves the contrapositive: WL distinguishability tree-count inequality
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Tree Counts to WL Equivalence

Connecting All Directions

We’ve now completed the full cycle:

WL eq. ⇒ Frac. Iso. ⇒ Tree Hom. ⇒ WL eq.

Each view strengthens our understanding of graph similarity
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Tree Counts to WL Equivalence

Triangle of Equivalences

Color Refinement

Fractional Isomorphism Tree Homomorphisms

Result:
all three conditions are equivalent!
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Tree Counts to WL Equivalence

Proof Summary

G ∼1-WL H same WL color profiles

common equitable partition fractional isomorphism

tree homomorphism counts agree

These equivalences provide combinatorial, algebraic, and logical lenses
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Applications and Examples

Applications of 1-WL

Widely used in:

Graph isomorphism testing
Graph Neural Networks (GNNs)
Graph kernels in ML

Fast, combinatorial, and scalable

Central to many modern algorithms despite its simplicity
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Applications and Examples

Example: C6 vs 2K3

C6: 6-cycle

2K3: two disjoint triangles

Both are 3-regular with 6 vertices

1-WL fails to distinguish them

But: they are not isomorphic

This illustrates the limitations of 1-WL!
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Applications and Examples

Example: Shrikhande vs Rook Complement

Two different strongly regular graphs on 16 vertices

Have identical WL colorings

Same spectrum, tree hom counts, fractional isomorphism

Yet: not isomorphic

These graphs show deep symmetry and test WL’s expressiveness
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Applications and Examples

1-WL and Graph Kernels

Weisfeiler–Lehman subtree kernel (Shervashidze et al. 2009)

Uses WL iterations to build label histograms

Popular in chemical and biological graph classification

1-WL forms the backbone of this kernel
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Applications and Examples

1-WL and Graph Neural Networks

GNNs aggregate neighbor features — just like WL!

Any standard Message-Passing GNN (MPNN) has power 1-WL

If 1-WL can’t distinguish two graphs, neither can an MPNN

Limitation → motivation for deeper models
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Applications and Examples

Overcoming WL’s Limitations

Use higher-dimensional WL: 2-WL, 3-WL, etc.

More expressive but more computationally expensive

In ML: DeepSets, Graph Transformers, or logic-guided GNNs

Trade-off between expressiveness and efficiency
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Applications and Examples

When Does WL Work Well?

Almost all random graphs are distinguishable by 1-WL

It fails mostly on symmetric or regular graphs

In practice: WL distinguishes most graphs used in applications

Key insight: it’s not perfect, but very powerful in practice
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Applications and Examples

Logic and Descriptive Complexity

1-WL C2 logic (2-variable logic with counting)

Each WL iteration simulates quantifier patterns in C2

Thus: graphs indistinguishable by 1-WL satisfy same C2 sentences

Gives a formal logic lens to understand WL’s expressiveness
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Applications and Examples

1-WL in Practice

WL is used in:

Chemical informatics (e.g., RDKit)
Software decompilation and malware detection
Preprocessing for NAUTY / graph isomorphism solvers

Also: node classification and similarity scoring
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Applications and Examples

Summary: Power and Limits of 1-WL

Simple, scalable, combinatorial

Powerful in practice but fails on highly symmetric graphs

Informs the design of GNNs and graph kernels

Part of a hierarchy — can be generalized to k-WL
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Further Directions and Research Links

Beyond 1-WL: Higher WL Hierarchy

1-WL → 2-WL → 3-WL ... form a hierarchy

k-WL compares k-tuples instead of individual vertices

Increasing k gives strictly more power

But runtime grows rapidly: O(nk) per round

Trade-off: expressiveness vs scalability
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Further Directions and Research Links

Treewidth and WL Power

k-WL can distinguish graphs with treewidth k

1-WL matches tree homomorphisms (treewidth-1)

2-WL relates to path homomorphisms and cycles

The hierarchy mirrors increasing structural complexity
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Further Directions and Research Links

Graphons and Limit Theory

In dense graph limits: we use graphons — analytic objects

Homomorphism densities t(F ,G ) extend naturally to graphons

One can define fractional isomorphism for graphons as well

Interesting link between WL, hom counts, and real analysis!
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Further Directions and Research Links

Compact Graphs: Open Questions

A graph is compact if all fractional automorphisms are actual
automorphisms

Full characterization of compact graphs is unknown

Compact graphs satisfy: fractional iso ⇒ actual iso

Study of compactness ties algebra and symmetry deeply
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Further Directions and Research Links

Descriptive Complexity Perspective

1-WL C2 logic

k-WL Ck+1 logic (with k + 1 variables)

Higher WLs simulate higher-order logic expressiveness

Implication: WL sits at the boundary of tractable logical inference
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Further Directions and Research Links

Expressive Power in Machine Learning

GNNs built on message passing are at most 1-WL expressive

Models that exceed 1-WL:

Higher-order GNNs (e.g., 2-WL GNNs)
Graph transformers
Subgraph-based models

Design of future ML models can draw directly from WL theory
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Further Directions and Research Links

Suggested Reading

Cai, Fürer, Immerman (1992): Descriptive Complexity of WL

Grohe (2017): Descriptive Complexity of Graphs

Babai (2016): Graph Isomorphism in Quasipolynomial Time

Shervashidze et al. (2009): Weisfeiler–Lehman Kernel

Morris et al. (2021): WL Hierarchy in GNNs
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Further Directions and Research Links

Open Problems

Which graphs are compact?

Can tree homomorphism profiles be efficiently inverted?

How to best extend WL to graphon setting?

What is the minimal logic beyond WL that distinguishes all graphs?

These questions bridge combinatorics, logic, and algebra

Mueed Awais (Euler Circle Seminar Supervised by Rachana Madhukara (MIT))WL Color Refinement July 14, 2025 48 / 57



Further Directions and Research Links

Open Problems

Which graphs are compact?

Can tree homomorphism profiles be efficiently inverted?

How to best extend WL to graphon setting?

What is the minimal logic beyond WL that distinguishes all graphs?

These questions bridge combinatorics, logic, and algebra

Mueed Awais (Euler Circle Seminar Supervised by Rachana Madhukara (MIT))WL Color Refinement July 14, 2025 48 / 57



Further Directions and Research Links

Conclusion and Wrap-Up

WL refinement = a central concept in modern graph theory

Three perspectives:

Combinatorics: color refinement
Algebra: fractional isomorphism
Enumeration: tree homomorphisms

Rich area of ongoing research across theory and ML
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Acknowledgments and Closing

Acknowledgments

This talk is based on a paper presented at Euler Circle

Author: Mueed Awais

Supervised by: Rachana Madhukara (MIT)

Special thanks to:

Euler Circle Community
Simon Rubinstein-Salzedo (founder)

Mueed Awais (Euler Circle Seminar Supervised by Rachana Madhukara (MIT))WL Color Refinement July 14, 2025 50 / 57



Acknowledgments and Closing

Final Summary

Explored three views of graph similarity:
1 Weisfeiler–Leman Color Refinement
2 Fractional Isomorphism
3 Tree Homomorphism Counts

All three are equivalent for testing 1-WL equivalence
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Acknowledgments and Closing

What You Should Remember

1-WL is a fast, powerful but limited tool

Tree homomorphisms and fractional isomorphisms give deeper insight

Algebra, logic, and combinatorics work together

Use WL as a stepping stone — not an endpoint
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Acknowledgments and Closing

Three Takeaways

1 WL isomorphism test — but often good enough

2 Fractional isomorphism is algebraic color refinement

3 Homomorphism counts reflect structure and complexity
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Acknowledgments and Closing

Suggested Practice

Try running WL on simple graphs by hand

Implement 1-WL in Python using NetworkX

Compare spectra and tree hom counts between small graphs

Use RDKit or PyTorch Geometric to explore GNN behavior
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Acknowledgments and Closing

Stay Curious!

WL is just the beginning.

Explore logic, algebra, symmetry, and learning through
graphs.
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Questions?

Thank You!

Questions, comments, or discussion?

Feel free to reach out: mueed.awais@eulercircle.org
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Acknowledgments and Closing

Thank you for your attention!
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