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Why Weisfeiler—Leman?

Simple yet powerful graph algorithm: Color Refinement (1-WL).

Efficient and scalable: O(n log n) rounds, each linear in edges.
Crucial in:

e Graph isomorphism testing
o Graph neural networks (GNNs)
e Logic and descriptive complexity

Links combinatorics, algebra, logic, and machine learning.
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Introduction and Motivation

Historical Origins

@ 1968: Weisfeiler and Leman introduce a family of color refinement

algorithms.

@ Base version: 1-WL, known earlier in chemistry as the Morgan

algorithm.
@ Used in:

o Chemical graph comparison
o Symmetry detection
e Preprocessing for isomorphism solvers
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Introduction and Motivation

Historical Origins

@ 1968: Weisfeiler and Leman introduce a family of color refinement
algorithms.

@ Base version: 1-WL, known earlier in chemistry as the Morgan
algorithm.

@ Used in:

o Chemical graph comparison
o Symmetry detection
e Preprocessing for isomorphism solvers

Cai-Fiirer—Immerman (1992): 1-WL = C? logic = Tree homomorphism
profile
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Color Refinement: Core ldea

o Goal: iteratively improve vertex labels by neighborhood structure.
e Initialize: all nodes given the same color (or degree-based).
@ Repeat:

e Each vertex hashes its current color + multiset of neighbor colors.
o Reassigns a new color based on that.

e Continue until no change (stable coloring).
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Introduction and Motivation

Color Refinement: Core ldea

o Goal: iteratively improve vertex labels by neighborhood structure.

e Initialize: all nodes given the same color (or degree-based).
@ Repeat:

e Each vertex hashes its current color + multiset of neighbor colors.

o Reassigns a new color based on that.
e Continue until no change (stable coloring).

This is the 1-dimensional Weisfeiler-Leman algorithm.
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Introduction and Motivation

Color Refinement: Formal Definition

Let G = (V, E).
o Initial coloring: COO(v) =1 forall ve V.
o At step i:

cl+1(v) = Hash (c<">(v), {Cc(u):ue N(v)}})
o Stop when CU*Y = C(). The result is C(>).

Note: {{-}} denotes a multiset.
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Equitable Partitions

Definition

A vertex coloring is equitable if:

Vi,j, every v € C; has same number of neighbors in C;

o WL always converges to an equitable partition.

@ Equitable partitions define a quotient matrix of the graph.
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Color Refinement Example (Graph)

l i
@ g @ e Two triangles: same local structure.

@ All vertices have same degree

@ 1-WL can't distinguish the components
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When 1-WL Fails: Intuition

@ WL only sees vertex types — based on local neighborhood trees.

@ So, graphs with identical multisets of local rooted trees cannot be
distinguished.

@ This includes:

e Strongly regular graphs
o Regular disconnected graphs
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When 1-WL Fails: Intuition

@ WL only sees vertex types — based on local neighborhood trees.

@ So, graphs with identical multisets of local rooted trees cannot be
distinguished.

@ This includes:

e Strongly regular graphs
o Regular disconnected graphs

Key Question: What exactly does 1-WL see — and miss?
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Three Equivalent Worlds (Preview)

@ 1-WL equivalence = tree homomorphism equality
@ 1-WL equivalence = fractional isomorphism

@ Tree hom equality = fractional isomorphism
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Three Equivalent Worlds (Preview)

@ 1-WL equivalence = tree homomorphism equality
@ 1-WL equivalence = fractional isomorphism
@ Tree hom equality = fractional isomorphism

We will prove: these three characterizations are equivalent.

Combinatorics <> Algebra <> Enumeration
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Introduction and Motivation

Next: Graph Homomorphisms

@ Next up: definitions and properties of graph homomorphisms.

@ Focus: tree homomorphism counts hom(T, G)
e We will show:

e Tree counts = WL equivalence
e WL equivalence = fractional isomorphism
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From Fractional Iso to Tree Homomorphisms

Fractional Iso Tree-Hom Equivalence

e Goal: If AcX = XAy, then hom(T, G) = hom(T, H) for all trees T
@ We use induction on the number of nodes in the tree

@ Fractional matrix X “transports” homomorphisms from G to H
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From Fractional Iso to Tree Homomorphisms

Base Case: Single Vertex Tree

e T = Kj (a single vertex)
e hom(Ki, G) = |V(G)| = |V(H)| = hom(Ki, H)

@ This holds because X is doubly stochastic: it preserves total mass
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Inductive Setup

@ Let T be a rooted tree with root r
@ Children subtrees: Ty, To,..., Tx

e We will compute hom(T, G) recursively by:

k
hom(T,G)= > []hom(T;,G|r~v)

vev(G) i=1
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From Fractional Iso to Tree Homomorphisms

Conditional Homomorphisms

@ Let hom(T;, G | r — u) = ways to map T; to G with root sent to u
o We apply X:

Z Xy -hom(T;, G | r— u) =hom(T;, H | r— v)
ueV(G)

@ This lets us recursively carry the homomorphism profile through X
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Putting It Together

@ Combining subtree counts:
hom(T, G) Z Hhom(T,,G|r»—>v)
veVv(G) i=1
@ Apply X entrywise to shift these into H:
hom(T, G) = hom(T, H)

@ Thus: fractional isomorphism implies equal tree homomorphism
counts
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From Fractional Iso to Tree Homomorphisms

Visual Intuition

A rooted tree T of depth 1. Homomorphisms from T into G can be
transferred to H via X
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From Fractional Iso to Tree Homomorphisms

Example

Let T be a star: central node + 3 leaves
Homomorphisms into G and H reflect degree profiles

If X is fractional iso, degrees must align on average

So the number of star maps is equal in G and H
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From Fractional Iso to Tree Homomorphisms

Proof Summary

@ Base case: vertex counts preserved by stochasticity of X

@ Inductive step: subtree recursion + X mapping preserves
homomorphisms

@ Thus: hom(T, G) = hom(T, H) for all trees T
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From Fractional Iso to Tree Homomorphisms

Conclusion: Direction 2 Complete

o We've shown:
AcX = XAy = hom(T, G) = hom(T, H)

@ This bridges linear algebra to enumeration

@ Next: show the reverse direction using WL

Mueed Awais (Euler Circle Seminar Supervis| WL Color Refinement July 14, 2025 20 /57



Goal: Tree Counts WL Equivalence

@ Suppose hom(T, G) = hom(T, H) for all trees T
@ We want to show: G ~1.w H
@ Strategy: prove the contrapositive

o If 1-WL distinguishes G and H, then 3 tree T with
hom(T, G) # hom(T, H)
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What Does 1-WL Track?

@ It refines vertex colors based on local rooted neighborhoods
@ At each round: labels capture tree shapes rooted at each vertex

@ Eventually: classifies vertices by tree neighborhoods
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What Does 1-WL Track?

@ It refines vertex colors based on local rooted neighborhoods
@ At each round: labels capture tree shapes rooted at each vertex
@ Eventually: classifies vertices by tree neighborhoods

So: different WL colorings = different rooted tree profiles
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Constructing Distinguishing Tree

Suppose G and H differ in WL colors at round k
Let color ¢ appear in G with frequency f and in H with ' # f

This means: some rooted tree T explains this difference

Construct T that reflects the neighborhood profile of ¢
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Tree Counts to WL Equivalence

Color Signatures

@ Each vertex at round k has a “signature”: multiset of neighbor colors

from round k — 1
@ These signatures correspond to rooted trees of depth k

@ So a difference in counts of a signature = a difference in
homomorphism count for its tree
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Tree Counts to WL Equivalence

Example: Color Signature Tree

Tree rooted at r with 3 children — represents a color signature at depth 1
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Tree Counts to WL Equivalence

Intuition Recap

o WL distinguishes graphs by “counting” tree signatures
@ Each WL color corresponds to a rooted tree type

@ Mismatch in WL color count = mismatch in tree homomorphism
counts
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Tree Counts to WL Equivalence

Formal Statement

Lemma
If G #£1.wiL H, then there exists a rooted tree T such that:

hom(T, G) # hom(T, H)
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Tree Counts to WL Equivalence

Formal Statement

Lemma

If G #£1.wiL H, then there exists a rooted tree T such that:

hom(T, G) # hom(T, H)

This proves the contrapositive: WL distinguishability tree-count inequality
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Tree Counts to WL Equivalence

Connecting All Directions

o We've now completed the full cycle:
WL eq. = Frac. Iso. = Tree Hom. = WL eq.

@ Each view strengthens our understanding of graph similarity
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Tree Counts to WL Equivalence

Triangle of Equivalences

Color Refinement

/N

Fractional Isomorphism Tree Homomorphisms
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Tree Counts to WL Equivalence

Triangle of Equivalences

Color Refinement

/N

Fractional Isomorphism Tree Homomorphisms

Result:

all three conditions are equivalent!
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Tree Counts to WL Equivalence

Proof Summary

o G ~1wL H same WL color profiles
@ common equitable partition fractional isomorphism
@ tree homomorphism counts agree

@ These equivalences provide combinatorial, algebraic, and logical lenses
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Applications of 1-WL

o Widely used in:

e Graph isomorphism testing
o Graph Neural Networks (GNNs)
o Graph kernels in ML

@ Fast, combinatorial, and scalable

@ Central to many modern algorithms despite its simplicity
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Example: G vs 2K3

GCs: 6-cycle

2K3: two disjoint triangles

Both are 3-regular with 6 vertices
1-WL fails to distinguish them

But: they are not isomorphic
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Example: G vs 2K3

GCs: 6-cycle
2K3: two disjoint triangles
Both are 3-regular with 6 vertices
1-WL fails to distinguish them
@ But: they are not isomorphic
This illustrates the limitations of 1-WL!
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Applications and Examples

Example: Shrikhande vs Rook Complement

e Two different strongly regular graphs on 16 vertices
@ Have identical WL colorings
@ Same spectrum, tree hom counts, fractional isomorphism

@ Yet: not isomorphic
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Applications and Examples

Example: Shrikhande vs Rook Complement

e Two different strongly regular graphs on 16 vertices

@ Have identical WL colorings

@ Same spectrum, tree hom counts, fractional isomorphism
@ Yet: not isomorphic

These graphs show deep symmetry and test WL's expressiveness
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1-WL and Graph Kernels

o Weisfeiler-Lehman subtree kernel (Shervashidze et al. 2009)
@ Uses WL iterations to build label histograms

@ Popular in chemical and biological graph classification

@ 1-WL forms the backbone of this kernel
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1-WL and Graph Neural Networks

GNNs aggregate neighbor features — just like WL!
Any standard Message-Passing GNN (MPNN) has power 1-WL
If 1-WL can’t distinguish two graphs, neither can an MPNN

Limitation — motivation for deeper models
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Applications and Examples

Overcoming WL's Limitations

Use higher-dimensional WL: 2-WL, 3-WL, etc.
More expressive but more computationally expensive

In ML: DeepSets, Graph Transformers, or logic-guided GNNs

Trade-off between expressiveness and efficiency
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When Does WL Work Well?

@ Almost all random graphs are distinguishable by 1-WL
@ It fails mostly on symmetric or regular graphs

@ In practice: WL distinguishes most graphs used in applications
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When Does WL Work Well?

@ Almost all random graphs are distinguishable by 1-WL
@ It fails mostly on symmetric or regular graphs
@ In practice: WL distinguishes most graphs used in applications

Key insight: it's not perfect, but very powerful in practice
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Logic and Descriptive Complexity

e 1-WL C? logic (2-variable logic with counting)
o Each WL iteration simulates quantifier patterns in C?

e Thus: graphs indistinguishable by 1-WL satisfy same C? sentences
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Logic and Descriptive Complexity

e 1-WL C? logic (2-variable logic with counting)
o Each WL iteration simulates quantifier patterns in C?
e Thus: graphs indistinguishable by 1-WL satisfy same C? sentences

Gives a formal logic lens to understand WL's expressiveness
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1-WL in Practice

o WL is used in:

o Chemical informatics (e.g., RDKit)
e Software decompilation and malware detection
e Preprocessing for NAUTY / graph isomorphism solvers

@ Also: node classification and similarity scoring
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Summary: Power and Limits of 1-WL

Simple, scalable, combinatorial
Powerful in practice but fails on highly symmetric graphs

Informs the design of GNNs and graph kernels

Part of a hierarchy — can be generalized to k-WL

Mueed Awais (Euler Circle Seminar Supervis| WL Color Refinement July 14, 2025 40 /57



Beyond 1-WL: Higher WL Hierarchy

1-WL — 2-WL — 3-WL ... form a hierarchy
k-WL compares k-tuples instead of individual vertices

Increasing k gives strictly more power

But runtime grows rapidly: O(n*) per round
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Beyond 1-WL: Higher WL Hierarchy

o 1-WL — 2-WL — 3-WL ... form a hierarchy

@ k-WL compares k-tuples instead of individual vertices
@ Increasing k gives strictly more power

@ But runtime grows rapidly: O(nk) per round

Trade-off: expressiveness vs scalability
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Treewidth and WL Power

@ k-WL can distinguish graphs with treewidth k
@ 1-WL matches tree homomorphisms (treewidth-1)

@ 2-WL relates to path homomorphisms and cycles

Mueed Awais (Euler Circle Seminar Supervis| WL Color Refinement July 14, 2025 42 /57



Treewidth and WL Power

@ k-WL can distinguish graphs with treewidth k
@ 1-WL matches tree homomorphisms (treewidth-1)
@ 2-WL relates to path homomorphisms and cycles

The hierarchy mirrors increasing structural complexity
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Graphons and Limit Theory

@ In dense graph limits: we use graphons — analytic objects
@ Homomorphism densities t(F, G) extend naturally to graphons

@ One can define fractional isomorphism for graphons as well
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Graphons and Limit Theory

@ In dense graph limits: we use graphons — analytic objects
@ Homomorphism densities t(F, G) extend naturally to graphons
@ One can define fractional isomorphism for graphons as well

Interesting link between WL, hom counts, and real analysis!
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Compact Graphs: Open Questions

@ A graph is compact if all fractional automorphisms are actual
automorphisms

@ Full characterization of compact graphs is unknown

o Compact graphs satisfy: fractional iso = actual iso
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Compact Graphs: Open Questions

@ A graph is compact if all fractional automorphisms are actual
automorphisms

@ Full characterization of compact graphs is unknown
o Compact graphs satisfy: fractional iso = actual iso

Study of compactness ties algebra and symmetry deeply
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Further Directions and Research Links

Descriptive Complexity Perspective

e 1-WL C? logic
o k-WL CK*1 logic (with k + 1 variables)

@ Higher WLs simulate higher-order logic expressiveness
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Further Directions and Research Links

Descriptive Complexity Perspective

e 1-WL C? logic
o k-WL CK*1 logic (with k + 1 variables)
@ Higher WLs simulate higher-order logic expressiveness

Implication: WL sits at the boundary of tractable logical inference
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Further Directions and Research Links

Expressive Power in Machine Learning

@ GNNs built on message passing are at most 1-WL expressive
@ Models that exceed 1-WL:

o Higher-order GNNs (e.g., 2-WL GNNs)
e Graph transformers
e Subgraph-based models
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Further Directions and Research Links

Expressive Power in Machine Learning

@ GNNs built on message passing are at most 1-WL expressive
@ Models that exceed 1-WL:

o Higher-order GNNs (e.g., 2-WL GNNs)
e Graph transformers
e Subgraph-based models

Design of future ML models can draw directly from WL theory
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Suggested Reading

Cai, Firer, Immerman (1992): Descriptive Complexity of WL
Grohe (2017): Descriptive Complexity of Graphs

Babai (2016): Graph Isomorphism in Quasipolynomial Time
Shervashidze et al. (2009): Weisfeiler—Lehman Kernel

Morris et al. (2021): WL Hierarchy in GNNs
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Open Problems

@ Which graphs are compact?

@ Can tree homomorphism profiles be efficiently inverted?

@ How to best extend WL to graphon setting?

@ What is the minimal logic beyond WL that distinguishes all graphs?

Mueed Awais (Euler Circle Seminar Supervis| WL Color Refinement July 14, 2025 48 /57



Open Problems

@ Which graphs are compact?

@ Can tree homomorphism profiles be efficiently inverted?

@ How to best extend WL to graphon setting?

@ What is the minimal logic beyond WL that distinguishes all graphs?

These questions bridge combinatorics, logic, and algebra
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Conclusion and Wrap-Up

@ WL refinement = a central concept in modern graph theory
@ Three perspectives:

e Combinatorics: color refinement
o Algebra: fractional isomorphism
e Enumeration: tree homomorphisms

@ Rich area of ongoing research across theory and ML
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Acknowledgments and Closing

Final Summary

@ Explored three views of graph similarity:

@ Weisfeiler—Leman Color Refinement
@ Fractional Isomorphism
© Tree Homomorphism Counts

@ All three are equivalent for testing 1-WL equivalence
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What You Should Remember

@ 1-WL is a fast, powerful but limited tool
@ Tree homomorphisms and fractional isomorphisms give deeper insight

@ Algebra, logic, and combinatorics work together
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What You Should Remember

@ 1-WL is a fast, powerful but limited tool
@ Tree homomorphisms and fractional isomorphisms give deeper insight
@ Algebra, logic, and combinatorics work together

Use WL as a stepping stone — not an endpoint
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Three Takeaways

@ WL isomorphism test — but often good enough
@ Fractional isomorphism is algebraic color refinement

© Homomorphism counts reflect structure and complexity
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Suggested Practice

@ Try running WL on simple graphs by hand
@ Implement 1-WL in Python using NetworkX
@ Compare spectra and tree hom counts between small graphs

@ Use RDKit or PyTorch Geometric to explore GNN behavior
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Stay Curious!

WL is just the beginning.

Explore logic, algebra, symmetry, and learning through
graphs.
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Acknowledgments and Closing

Questions?

Thank You!

Questions, comments, or discussion?

Feel free to reach out: mueed.awais@eulercircle.org

Mueed Awais (Euler Circle Seminar Supervis| WL Color Refinement July 14, 2025

56 /57



Acknowledgments and Closing

Thank you for your attention!
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